
COS 318: Operating Systems

CPU Scheduling

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

Steve Jobs 1955-2011
“Your time is limited, so don't
waste it living someone else's
life. Don't be trapped by
dogma — which is living with
the results of other people's
thinking. Don't let the noise of
others' opinions drown out
your own inner voice. And
most important, have the
courage to follow your heart
and intuition. They somehow
already know what you truly
want to become. Everything
else is secondary…”

Stanford University Commencement Address 2005
http://news.stanford.edu/news/2005/june15/jobs-061505.html

Announcements

  No rest for the weary…
  Project 2 now posted. Due Oct 19.

  Upcoming Seminar:
  Prof. Tom Wenisch, University of Michigan
  “Making Enterprise Computing Green: Efficiency

Challenges in Warehouse-Scale Computers”
  Range of novel techniques for managing data centers in order

to reduce energy consumption or peak power dissipation.
  CS Small Auditorium, 4:30pm, Oct 18.

  Also, he’ll be doing a session at 1pm that day (before
this class) on grad school opportunities at UMichigan.

3

4

Today’s Topics

  CPU scheduling basics
  CPU Scheduling algorithms

When to Schedule?

  Process/thread creation
  Process/thread exit
  Blocking on I/O or synchronization
  I/O interrupt
  Clock interrupt (pre-emptive scheduling)

5

6

Preemptive vs. Non-Preemptive Scheduling

  Preemptive
scheduling
  Running ⇒ ready
  Blocked ⇒ ready
  Running ⇒ blocked
  Terminate

  Non-preemptive
scheduling
  Running ⇒ ready
  Blocked ⇒ ready

  Batch vs interactive
vs real-time

Running

Blocked
Ready

Resource free,
I/O completion interrupt

(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

Separation of Policy and Mechanism

  “Why and What” vs. “How”
  Objectives and strategies vs. data structures, hardware

and software implementation issues.
  Process abstraction vs. Process machinery

Policy and Mechanism

  Scheduling policy answers the question:
Which process/thread, among all those ready to run,
should be given the chance to run next?

  Mechanisms are the tools for supporting the process/
thread abstractions and affect how the scheduling policy
can be implemented. (this is review)
  How the process or thread is represented to the system - process or

thread control blocks.
  What happens on a context switch.
  When do we get the chance to make these scheduling decisions

(timer interrupts, thread operations that yield or block, user program
system calls)

CPU Scheduling Policy

  The CPU scheduler makes a sequence of “moves”
that determines the interleaving of threads.
  Programs use synchronization to prevent “bad moves”.
  …but otherwise scheduling choices appear (to the

program) to be nondeterministic.
  The scheduler’s moves are dictated by a

scheduling policy.

Scheduler
ready pool

Wakeup or
ReadyToRun GetNextToRun()

SWITCH()

Scheduler Policy:
Goals & Metrics of Success

  Response time or latency (to minimize the average time
between arrival to completion of requests)

•  How long does it take to do what I asked? (R) Arrival -> done.
  Throughput (to maximize productivity)

•  How many operations complete per unit of time? (X)
  Utilization (to maximize use of some device)

•  What percentage of time does the CPU (and each device) spend
doing useful work? (U)
time-in-use / elapsed time

  Fairness
•  What does this mean? Divide the pie evenly? Guarantee low

variance in response times? Freedom from starvation?
  Meet deadlines and guarantee jitter-free periodic tasks

•  real time systems (e.g. process control, continuous media)

Articulating Policies

  Given some of the goals just mentioned, what kind of
policies can you imagine?

  What information would you need to know in order to
implement such a policy?

  How would you get the information?

Multiprogramming and Utilization

  Early motivation: Overlap of computation and I/O
  Determine mix and multiprogramming level with the goal

of “covering” the idle times caused by waiting on I/O.

Time ->

CPU I/O Gantt Chart

Multiprogramming and Utilization

  Early motivation: Overlap of computation and I/O
  Determine mix and multiprogramming level with the goal

of “covering” the idle times caused by waiting on I/O.

Time ->

CPU I/O Gantt Chart

Context switch overheads

Flavors

  Long-term scheduling - which jobs get resources (e.g.
get allocated memory) and the chance to compete for
cycles (be on the ready queue).

  Short-term scheduling or process scheduling -
which of those gets the next slice of CPU time

  Non-preemptive - the running process/thread has to
explicitly give up control

  Preemptive - interrupts cause scheduling opportunities
to reevaluate who should be running now (is there a
more “valuable” ready task?)

Scheduling Algorithms

  FIFO, FCFS
  SJF - Shortest Job First (provably optimal in

minimizing average response time, assuming we know
service times in advance)

  Round Robin
  Multilevel Feedback Queuing
  Priority Scheduling

A Simple Policy: FCFS

  The most basic scheduling policy is first-come-
first-served, also called first-in-first-out (FIFO).
  FCFS is just like the checkout line at the QuickiMart.

•  Maintain a queue ordered by time of arrival.
•  GetNextToRun selects from the front of the queue.

  FCFS with preemptive timeslicing is called round robin.

Wakeup or
ReadyToRun GetNextToRun()

ready list

List::Append

RemoveFromHead

 CPU

First-Come-First-Serve (FCFS) Policy

  What does it mean?
  Run to completion (old days)
  Run until blocked or yields

  Example 1
  P1 = 24sec, P2 = 3sec, and P3 = 3sec, submitted together
  Average response time = (24 + 27 + 30) / 3 = 27

  Example 2
  Same jobs but come in different order: P2, P3 and P1
  Average response time = (3 + 6 + 30) / 3 = 13

P1 P2 P3

P2 P3 P1

(Gantt Graph)

Behavior of FCFS Queues
Assume: stream of normal task arrivals with mean arrival rate λ.
Tasks have normally distributed service demands with mean D.

Then: Utilization U = λD (Note: 0 <= U <= 1)
 Probability that service center is idle is 1-U.
 “Intuitively”, R = D/(1-U)

λ=1/60 (i.e. 1 task every 60s)
D = 30 (service time of 30s)
U=50%

R

U 1(100%)

Service center saturates as
1/ λ approaches D: small
increases in λ cause large
increases in the expected
response time R.

service
center

Little’s Law

For an unsaturated queue in steady state, queue length N and response
time R are governed by:

Little’s Law: N = λR.

While task T is in the system for R time units, λR new tasks arrive.
During that time, N tasks depart (all tasks ahead of T).
But in steady state, the flow in must balance the flow out.
 (Note: this means that throughput X = λ).

Little’s Law gives response time R = D/(1 - U).

Intuitively, each task T’s response time R = D + DN.
Substituting λR for N: R = D + D λR
Substituting U for λD: R = D + UR
R - UR = D --> R(1 - U) = D --> R = D/(1 - U)

Why Little’s Law Is Important

  1. Intuitive understanding of FCFS queue behavior.
•  Compute response time from demand parameters (λ, D).
•  Compute N: tells you how much storage is needed for the

queue.

  2. Notion of a saturated service center. If D=1: R = 1/(1- λ)
•  Response times rise rapidly with load and are unbounded.
•  At 50% utilization, a 10% increase in load increases R by 10%.
•  At 90% utilization, a 10% increase in load increases R by 10x.

  3. Basis for predicting performance of queuing
networks.

•  Cheap and easy “back of napkin” estimates of system
performance based on observed behavior and proposed
changes, e.g., capacity planning, “what if” questions.

Scheduler Policy:
Goals & Metrics of Success

  Response time or latency (to minimize the average time
between arrival to completion of requests)

•  How long does it take to do what I asked? (R) Arrival -> done.
  Throughput (to maximize productivity)

•  How many operations complete per unit of time? (X)
  Utilization (to maximize use of some device)

•  What percentage of time does the CPU (and each device) spend
doing useful work? (U)
time-in-use / elapsed time

  Fairness
•  What does this mean? Divide the pie evenly? Guarantee low

variance in response times? Freedom from starvation?
  Meet deadlines and guarantee jitter-free periodic tasks

•  real time systems (e.g. process control, continuous media)

Evaluating FCFS

  How well does FCFS achieve the goals of a scheduler?
  throughput. FCFS is as good as any non-preemptive policy.

•  ….if the CPU is the only schedulable resource in the system.
  fairness. FCFS is intuitively fair…sort of.

•  “The early bird gets the worm”…and everyone else is fed
eventually.

  response time. Long jobs keep everyone else waiting.

3 5 6
D=3 D=2 D=1

Time
R = (3 + 5 + 6)/3 = 4.67

Preemptive FCFS: Round Robin

  Preemptive timeslicing is one way to improve fairness of FCFS.
•  If job does not block or exit, force an involuntary context switch

after each quantum Q of CPU time.
•  Preempted job goes back to the tail of the ready list.
•  With infinitesimal Q round robin is called processor sharing.

D=3 D=2 D=1

3+ε 5 6

R = (3 + 5 + 6 + ε)/3 = 4.67 + ε

In this case, R is unchanged by timeslicing.
Is this always true?

quantum Q=1

preemption
overhead = ε

FCFS

round robin

Evaluating Round Robin

  Response time. RR reduces response time for short jobs.
•  For a given load, a job’s wait time is proportional to its D.

  Fairness. RR reduces variance in wait times.
•  But: RR forces jobs to wait for other jobs that arrived later.

  Throughput. RR imposes extra context switch overhead.
•  CPU is only Q/(Q+ε) as fast as it was before.
•  Degrades to FCFS with large Q.

D=5 D=1
R = (5+6)/2 = 5.5

R = (2+6 + ε)/2 = 4 + ε

FCFS vs. Round Robin
  Example

  10 jobs and each takes 100 seconds
  What is the average response time for FCFS and RR?

  FCFS: non-preemptive
  RR: time slice 1sec and no overhead

  FCFS (non-preemptive scheduling)
  job 1: 100s, job2: 200s, ... , job10: 1000s

  Round Robin (preemptive scheduling)
  time slice 1sec and no overhead
  job1: 991s, job2: 992s, ... , job10: 1000s

  Comparisons
  Round robin is much worse (turnaround time) for jobs about

the same length
  Round robin is better for short jobs (relative to slice)
  What is *good* about round robin?

CPU + I/O: Resource Utilization Example

  A, B, and C run forever (in this order)
  A and B each uses 100% CPU forever
  C is a CPU plus I/O job (1ms CPU + 10ms disk I/O)

  Time slice 100ms
  A (100ms CPU), B (100ms CPU), C (1ms CPU + 10ms I/O),

  Time slice 1ms
  A (1ms CPU), B (1ms CPU), C (1ms CPU),

A (1ms CPU), B (1ms CPU), C(10ms I/O) || A, B, …, A, B

  100ms time slice:
  CPU Util=201ms of CPU / (201 + I/O syscall) = ~99.9%
  Disk Util: 10ms of disk usage over ~201 ms = ~5%

  1ms time slice:
  CPU Util = ~99.9%
  Disk Util: 10ms disk usage over 15ms

  What do we learn from this example?

27

Virtual Round Robin

  Aux queue is FIFO
  I/O bound processes go

to aux queue (instead
of ready queue) to get
scheduled

  Aux queue has
preference over ready
queue

CPU Admit

Timeout

Dispatch

I/O wait

I/O wait

I/O wait

Aux queue

I/O
 c

om
pl

et
io

n

Shortest Job First/STCF

  Shortest Job First (SJF) aka Shortest Time to
Completion First (Shortest Job First)
  Non-preemptive

  is provably optimal if the goal is to minimize R.
•  Example: express lanes at the MegaMart

  Idea: get short jobs out of the way quickly to minimize
the number of jobs waiting while a long job runs.

•  Intuition: longest jobs do the least possible damage to the wait
times of their competitors.

1 3 6
D=3 D=2 D=1

R = (1 + 3 + 6)/3 = 3.33

SRTCF/SRPT

 Shortest Remaining Time to Completion First (Shortest
Remaining Processing Time)
  Preemptive version

 Example
  P1 = 6sec, P2 = 8sec, P3 = 7sec, P4 = 3sec
  All arrive at the same time

 Can you do better than SRTCF in terms of average
response time?

  Issues with this approach?

P1 P2 P3 P4

30

Priority Scheduling

 Obvious
  Not all processes are equal, so rank them

 The method
  Assign each process a priority
  Run the process with highest priority in the ready queue first
  Adjust priority dynamically (I/O wait raises the priority, reduce

priority as process runs)
 Why adjusting priorities dynamically

  T1 at priority 4, T2 at priority 1 and T2 holds lock L
  Scenario

•  T1 tries to acquire L, fails, blocks.
•  T3 enters system at priority 3.
•  T2 never gets to run!

Multiple Queues: One Approach

  Jobs start at priority=4 queue (high priority, but short time slice)
  If timeout expires, decrement to priority 3, and double time slice
  If timeout doesn’t expires, stay or pushup one level

  What does this method do?

Priority
4
3
2
1

Time slices
1
2
4
8

Lottery Scheduling

  Motivations
  SRTCF does well with average response time, but unfair

  Lottery method
  Give each job a number of tickets
  Randomly pick a winning tickets
  To approximate SRTCF, give short jobs more tickets
  To avoid starvation, give each job at least one ticket
  Cooperative processes can exchange tickets

  Question
  How do you compare this method with priority scheduling?

33

Multiprocessor and Cluster

Multiprocessor architecture
  Cache coherence
  Single OS

Cluster or multicomputer
  Distributed memory
  An OS in each box

…
CPU

L1 $

L2 $

CPU

L1 $

L2 $

…

Memory Network

34

Multiprocessor/Cluster Scheduling

 Design issue
  Process/thread to processor assignment

 Gang scheduling (co-scheduling)
  Threads of the same process will run together
  Processes of the same application run together

 Dedicated processor assignment
  Threads will be running on specific processors to completion
  Is this a good idea?

35

Real-Time Scheduling

 Two types of real-time
  Hard deadline

•  Must meet, otherwise can cause fatal error
  Soft Deadline

•  Meet most of the time, but not mandatory

 Admission control
  Take a real-time process only if the system can guarantee the

“real-time” behavior of all processes
  The jobs are schedulable, if the following holds:

 where Ci = computation time, and Ti = period

∑ Ci
Ti

≤ 1

36

Rate Monotonic Scheduling (Liu & Layland 73)

  Assumptions
  Each periodic process must complete within its period
  No process is dependent on any other process
  Each process needs the same amount of CPU time on each

burst
  Non-periodic processes have no deadlines
  Process preemption occurs instantaneously (no overhead)

  Main ideas of RMS
  Assign each process a fixed priority = frequency of occurrence
  Run the process with highest priority
  Only works if CPU utilization is not too high

  Example
  P1 runs every 30ms gets priority 33 (33 times/sec)
  P2 runs every 50ms gets priority 20 (20 times/sec)

37

Earliest Deadline First Scheduling

 Assumptions
  When a process needs CPU time, it announces its deadline
  No need to be periodic process
  CPU time needed may vary

 Main idea of EDF
  Sort ready processes by their deadlines
  Run the first process on the list (earliest deadline first)
  When a new process is ready, it preempts the current one if its

deadline is closer
  Provably optimal

 Example
  P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec
  P1 goes first
  More in MOS 7.5.3-7.5.4

38

4.3 BSD Scheduling with Multi-Queue

  “1 sec” preemption
  Preempt if a process doesn’t block or complete within 1

second
  Priority is recomputed every second

  Pi = base + (CPUi-1) / 2 + nice, where CPUi = (Ui + CPUi-1) / 2
  Base is the base priority of the process
  Ui is process utilization in interval i

  Priorities
  Swapper
  Block I/O device control
  File operations
  Character I/O device control
  User processes

39

Linux Scheduling

  Time-sharing scheduling
  Two priority arrays: active and expired
  40 priority levels, lower number = higher priority
  Priority = base (user-set) priority + “bonus”

•  Bonus between -5 and +5, derived from sleep_avg
•  Bonus decremented when task sleeps, incremented when it runs
•  Higher priority gets longer timeslice

  Move process with expired quantum from active to expired
  When active array empty, swap active and expired arrays

  Real-time scheduling
  100 static priorities, higher than time sharing priorities
  Soft real-time

40

Windows Scheduling

 Classes and priorities
  Real time: 16 static priorities
  User: 16 variable priorities, start at a base priority

•  If a process has used up its quantum, lower its priority
•  If a process waits for an I/O event, raise its priority

 Priority-driven scheduler
  For real-time class, do round robin within each priority
  For user class, do multiple queue

 Multiprocessor scheduling
  For N processors, normally run N highest priority threads
  Threads have hard or soft affinity for specific processors
  A thread will wait for processors in its affinity set, if there are

other threads available (for variable priorities)

41

Summary

  Different scheduling goals
  Depend on what systems you build

  Scheduling algorithms
  Small time slice is important for improving I/O utilization
  STCF and SRTCF give the minimal average response time
  Priority and its variations are in most systems
  Lottery is flexible
  Real-time depends on admission control

