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Steve Jobs  1955-2011 
“Your time is limited, so don't 
waste it living someone else's 
life. Don't be trapped by 
dogma — which is living with 
the results of other people's 
thinking. Don't let the noise of 
others' opinions drown out 
your own inner voice. And 
most important, have the 
courage to follow your heart 
and intuition. They somehow 
already know what you truly 
want to become. Everything 
else is secondary…” 

Stanford University Commencement Address 2005 
http://news.stanford.edu/news/2005/june15/jobs-061505.html 



Announcements 

  No rest for the weary…  
  Project 2 now posted. Due Oct 19. 

  Upcoming Seminar: 
  Prof. Tom Wenisch, University of Michigan 
  “Making Enterprise Computing Green: Efficiency 

Challenges in Warehouse-Scale Computers” 
  Range of novel techniques for managing data centers in order 

to reduce energy consumption or peak power dissipation. 
  CS Small Auditorium, 4:30pm, Oct 18. 

  Also, he’ll be doing a session at 1pm that day (before 
this class) on grad school opportunities at UMichigan. 
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Today’s Topics 

  CPU scheduling basics 
  CPU Scheduling algorithms 



When to Schedule? 

  Process/thread creation 
  Process/thread exit 
  Blocking on I/O or synchronization 
  I/O interrupt 
  Clock interrupt (pre-emptive scheduling) 
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Preemptive vs. Non-Preemptive Scheduling 

  Preemptive 
scheduling 
  Running ⇒ ready 
  Blocked ⇒ ready 
  Running ⇒ blocked 
  Terminate 

  Non-preemptive 
scheduling 
  Running ⇒ ready 
  Blocked ⇒ ready 

  Batch vs interactive 
vs real-time 

Running 

Blocked 
Ready 

Resource free,  
I/O completion interrupt 

(move to ready queue) 

Create 

Terminate 
(call scheduler) 

Yield, Interrupt 
(call scheduler) 

Block for resource 
(call scheduler) 

Scheduler 
dispatch 

Exited 



Separation of Policy and Mechanism 

  “Why and What” vs. “How” 
  Objectives and strategies vs. data structures, hardware 

and software implementation issues. 
  Process abstraction vs. Process machinery 



Policy and Mechanism 

  Scheduling policy answers the question: 
Which process/thread, among all those ready to run, 
should be given the chance to run next? 

  Mechanisms are the tools for supporting the process/
thread abstractions and affect how the scheduling policy 
can be implemented. (this is review) 
  How the process or thread is represented to the system - process or 

thread control blocks. 
  What happens on a context switch. 
  When do we get the chance to make these scheduling decisions 

(timer interrupts, thread operations that yield or block, user program 
system calls) 



CPU Scheduling Policy 

  The CPU scheduler makes a sequence of “moves” 
that determines the interleaving of threads. 
  Programs use synchronization to prevent “bad moves”. 
  …but otherwise scheduling choices appear (to the 

program) to be nondeterministic. 
  The scheduler’s moves are dictated by a 

scheduling policy. 

Scheduler 
ready pool 

Wakeup or 
ReadyToRun GetNextToRun() 

SWITCH() 



Scheduler Policy:  
Goals & Metrics of Success 

  Response time or latency (to minimize the average time 
between arrival to completion of requests) 

•  How long does it take to do what I asked? (R) Arrival -> done. 
  Throughput (to maximize productivity) 

•  How many operations complete per unit of time? (X) 
  Utilization (to maximize use of some device)  

•  What percentage of time does the CPU (and each device) spend 
doing useful work? (U)  
time-in-use / elapsed time 

  Fairness 
•  What does this mean?  Divide the pie evenly?  Guarantee low 

variance in response times?  Freedom from starvation? 
  Meet deadlines and guarantee jitter-free periodic tasks 

•  real time systems (e.g. process control, continuous media) 



Articulating Policies 

  Given some of the goals just mentioned, what kind of 
policies can you imagine? 

  What information would you need to know in order to 
implement such a policy? 

  How would you get the information? 



Multiprogramming and Utilization 

  Early motivation: Overlap of computation and I/O 
  Determine mix and multiprogramming level with the goal 

of “covering” the idle times caused by waiting on I/O. 

Time -> 

CPU I/O Gantt Chart 



Multiprogramming and Utilization 

  Early motivation: Overlap of computation and I/O 
  Determine mix and multiprogramming level with the goal 

of “covering” the idle times caused by waiting on I/O. 

Time -> 

CPU I/O Gantt Chart 

Context switch overheads 



Flavors 

  Long-term scheduling - which jobs get resources (e.g. 
get allocated memory) and the chance to compete for 
cycles (be on the ready queue). 

  Short-term scheduling or process scheduling - 
which of those gets the next slice of CPU time 

  Non-preemptive - the running process/thread has to 
explicitly give up control 

  Preemptive - interrupts cause scheduling opportunities 
to reevaluate who should be running now (is there a 
more “valuable” ready task?) 



Scheduling Algorithms 

  FIFO, FCFS 
  SJF - Shortest Job First (provably optimal in 

minimizing average response time, assuming we know 
service times in advance) 

  Round Robin 
  Multilevel Feedback Queuing 
  Priority Scheduling 



A Simple Policy: FCFS 

  The most basic scheduling policy is first-come-
first-served, also called first-in-first-out (FIFO). 
  FCFS is just like the checkout line at the QuickiMart. 

•  Maintain a queue ordered by time of arrival. 
•  GetNextToRun selects from the front of the queue. 

  FCFS with preemptive timeslicing is called round robin. 

Wakeup or 
ReadyToRun GetNextToRun() 

ready list 

List::Append 

RemoveFromHead 

 CPU 



First-Come-First-Serve (FCFS) Policy 

  What does it mean? 
  Run to completion (old days) 
  Run until blocked or yields 

  Example 1 
  P1 = 24sec, P2 = 3sec, and P3 = 3sec, submitted together 
  Average response time = (24 + 27 + 30) / 3 = 27 

  Example 2 
  Same jobs but come in different order: P2, P3 and P1 
  Average response time = (3 + 6 + 30) / 3 = 13 

P1 P2 P3 

P2 P3 P1 

(Gantt Graph) 



Behavior of FCFS Queues 
Assume: stream of normal task arrivals with mean arrival rate λ. 
Tasks have normally distributed service demands with mean D. 

Then: Utilization U = λD  (Note: 0 <= U <= 1) 
           Probability that service center is idle is 1-U. 
           “Intuitively”, R = D/(1-U) 

λ=1/60 (i.e. 1 task every 60s) 
D = 30 (service time of 30s) 
U=50% 

R 

U   1(100%) 

Service center saturates as 
1/ λ approaches D: small 
increases in λ cause large 
increases in the expected 
response time R.  

service 
center 



Little’s Law 

For an unsaturated queue in steady state, queue length N and response 
time R are governed by: 

Little’s Law: N = λR. 

While task T is in the system for R time units, λR new tasks arrive. 
During that time, N tasks depart (all tasks ahead of T). 
But in steady state, the flow in must balance the flow out. 
                  (Note: this means that throughput X =  λ). 

Little’s Law gives response time R = D/(1 - U). 

Intuitively, each task T’s response time R = D + DN. 
Substituting λR for N:  R = D + D λR  
Substituting U for λD:  R = D + UR 
R  - UR = D  --> R(1 - U) = D  --> R = D/(1 - U) 



Why Little’s Law Is Important 

  1. Intuitive understanding of FCFS queue behavior. 
•  Compute response time from demand parameters (λ, D). 
•  Compute N: tells you how much storage is needed for the 

queue. 

  2. Notion of a saturated service center.       If D=1: R = 1/(1- λ) 
•  Response times rise rapidly with load and are unbounded. 
•  At 50% utilization, a 10% increase in load increases R by 10%. 
•  At 90% utilization, a 10% increase in load increases R by 10x. 

  3. Basis for predicting performance of queuing 
networks. 

•  Cheap and easy “back of napkin” estimates of system 
performance based on observed behavior and proposed 
changes, e.g., capacity planning, “what if” questions. 



Scheduler Policy:  
Goals & Metrics of Success 

  Response time or latency (to minimize the average time 
between arrival to completion of requests) 

•  How long does it take to do what I asked? (R) Arrival -> done. 
  Throughput (to maximize productivity) 

•  How many operations complete per unit of time? (X) 
  Utilization (to maximize use of some device)  

•  What percentage of time does the CPU (and each device) spend 
doing useful work? (U)  
time-in-use / elapsed time 

  Fairness 
•  What does this mean?  Divide the pie evenly?  Guarantee low 

variance in response times?  Freedom from starvation? 
  Meet deadlines and guarantee jitter-free periodic tasks 

•  real time systems (e.g. process control, continuous media) 



Evaluating FCFS 

  How well does FCFS achieve the goals of a scheduler? 
  throughput. FCFS is as good as any non-preemptive policy. 

•  ….if the CPU is the only schedulable resource in the system. 
  fairness.  FCFS is intuitively fair…sort of. 

•  “The early bird gets the worm”…and everyone else is fed 
eventually. 

  response time.  Long jobs keep everyone else waiting. 

3 5 6 
D=3 D=2 D=1 

Time 
R = (3 + 5 + 6)/3 = 4.67 



Preemptive FCFS: Round Robin 

  Preemptive timeslicing is one way to improve fairness of FCFS. 
•  If job does not block or exit, force an involuntary context switch 

after each quantum Q of CPU time. 
•  Preempted job goes back to the tail of the ready list. 
•  With infinitesimal Q round robin is called processor sharing. 

D=3 D=2 D=1 

3+ε 5 6 

R = (3 + 5 + 6 + ε)/3 = 4.67 + ε 

In this case, R is unchanged by timeslicing. 
Is this always true? 

quantum Q=1 

preemption 
overhead = ε 

FCFS 

round robin 



Evaluating Round Robin 

  Response time.  RR reduces response time for short jobs. 
•  For a given load, a job’s wait time is proportional to its D. 

  Fairness.  RR reduces variance in wait times. 
•  But: RR forces jobs to wait for other jobs that arrived later. 

  Throughput.  RR imposes extra context switch overhead. 
•  CPU is only Q/(Q+ε) as fast as it was before. 
•  Degrades to FCFS with large Q. 

D=5 D=1 
R = (5+6)/2 = 5.5 

R = (2+6 + ε)/2 = 4 + ε 



FCFS vs. Round Robin 
  Example 

  10 jobs and each takes 100 seconds 
  What is the average response time for FCFS and RR? 

  FCFS: non-preemptive 
  RR: time slice 1sec and no overhead 

  FCFS (non-preemptive scheduling) 
  job 1: 100s, job2: 200s, ... , job10: 1000s 

  Round Robin (preemptive scheduling) 
  time slice 1sec and no overhead 
  job1: 991s, job2: 992s, ... , job10: 1000s 

  Comparisons 
  Round robin is much worse (turnaround time) for jobs about 

the same length 
  Round robin is better for short jobs (relative to slice) 
  What is *good* about round robin? 



CPU + I/O: Resource Utilization Example 

  A, B, and C run forever (in this order) 
  A and B each uses 100% CPU forever 
  C is a CPU plus I/O job (1ms CPU + 10ms disk I/O) 

  Time slice 100ms 
  A (100ms CPU), B (100ms CPU), C (1ms CPU + 10ms I/O),  

  Time slice 1ms 
  A (1ms CPU), B (1ms CPU), C (1ms CPU),  

A (1ms CPU), B (1ms CPU), C(10ms I/O) || A, B, …, A, B 

  100ms time slice: 
  CPU Util=201ms of CPU / (201 + I/O syscall) = ~99.9% 
  Disk Util: 10ms of disk usage over ~201 ms = ~5% 

  1ms time slice: 
  CPU Util = ~99.9% 
  Disk Util: 10ms disk usage over 15ms 

  What do we learn from this example? 
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Virtual Round Robin 

  Aux queue is FIFO 
  I/O bound processes go 

to aux queue (instead 
of ready queue) to get 
scheduled 

  Aux queue has 
preference over ready 
queue 

CPU Admit 

Timeout 

Dispatch 

I/O wait 

I/O wait 

I/O wait 

Aux queue 

I/O
 c

om
pl

et
io

n 



Shortest Job First/STCF 

  Shortest Job First (SJF) aka Shortest Time to 
Completion First (Shortest Job First) 
  Non-preemptive 

   is provably optimal if the goal is to minimize R. 
•  Example: express lanes at the MegaMart 

  Idea: get short jobs out of the way quickly to minimize 
the number of jobs waiting while a long job runs. 

•  Intuition: longest jobs do the least possible damage to the wait 
times of their competitors. 

1 3 6 
D=3 D=2 D=1 

R = (1 + 3 + 6)/3 = 3.33 



SRTCF/SRPT 

 Shortest Remaining Time to Completion First (Shortest 
Remaining Processing Time) 
  Preemptive version 

 Example 
  P1 = 6sec, P2 = 8sec, P3 = 7sec, P4 = 3sec 
  All arrive at the same time 

 Can you do better than SRTCF in terms of average 
response time? 

  Issues with this approach? 

P1 P2 P3 P4 
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Priority Scheduling 

 Obvious 
  Not all processes are equal, so rank them 

 The method 
  Assign each process a priority 
  Run the process with highest priority in the ready queue first 
  Adjust priority dynamically (I/O wait raises the priority, reduce 

priority as process runs) 
 Why adjusting priorities dynamically 

  T1 at priority 4, T2 at priority 1 and T2 holds lock L  
  Scenario 

•  T1 tries to acquire L, fails, blocks.  
•  T3 enters system at priority 3.   
•  T2 never gets to run! 



Multiple Queues: One Approach 

  Jobs start at priority=4 queue (high priority, but short time slice) 
  If timeout expires, decrement to priority 3, and double time slice 
  If timeout doesn’t expires, stay or pushup one level 

  What does this method do? 

Priority 
4 
3 
2 
1 

Time slices 
1 
2 
4 
8 



Lottery Scheduling 

  Motivations 
  SRTCF does well with average response time, but unfair 

  Lottery method 
  Give each job a number of tickets 
  Randomly pick a winning tickets 
  To approximate SRTCF, give short jobs more tickets 
  To avoid starvation, give each job at least one ticket 
  Cooperative processes can exchange tickets 

  Question 
  How do you compare this method with priority scheduling? 
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Multiprocessor and Cluster 

Multiprocessor architecture 
  Cache coherence 
  Single OS 

Cluster or multicomputer 
  Distributed memory 
  An OS in each box 

… 
CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 

… 

Memory Network 
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Multiprocessor/Cluster Scheduling 

 Design issue 
  Process/thread to processor assignment 

 Gang scheduling (co-scheduling) 
  Threads of the same process will run together 
  Processes of the same application run together 

 Dedicated processor assignment 
  Threads will be running on specific processors to completion 
  Is this a good idea? 
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Real-Time Scheduling 

 Two types of real-time 
  Hard deadline 

•  Must meet, otherwise can cause fatal error 
  Soft Deadline 

•  Meet most of the time, but not mandatory 

 Admission control 
  Take a real-time process only if the system can guarantee the 

“real-time” behavior of all processes 
  The jobs are schedulable, if the following holds: 

 where Ci = computation time, and Ti = period 

∑ Ci 
Ti 

≤ 1 
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Rate Monotonic Scheduling (Liu & Layland 73) 

  Assumptions 
  Each periodic process must complete within its period 
  No process is dependent on any other process 
  Each process needs the same amount of CPU time on each 

burst 
  Non-periodic processes have no deadlines 
  Process preemption occurs instantaneously (no overhead) 

  Main ideas of RMS 
  Assign each process a fixed priority = frequency of occurrence 
  Run the process with highest priority 
  Only works if CPU utilization is not too high 

  Example 
  P1 runs every 30ms gets priority 33 (33 times/sec) 
  P2 runs every 50ms gets priority 20 (20 times/sec) 
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Earliest Deadline First Scheduling 

 Assumptions 
  When a process needs CPU time, it announces its deadline 
  No need to be periodic process 
  CPU time needed may vary  

 Main idea of EDF 
  Sort ready processes by their deadlines 
  Run the first process on the list (earliest deadline first) 
  When a new process is ready, it preempts the current one if its 

deadline is closer 
  Provably optimal 

 Example 
  P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec 
  P1 goes first 
  More in MOS 7.5.3-7.5.4 
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4.3 BSD Scheduling with Multi-Queue 

  “1 sec” preemption 
  Preempt if a process doesn’t block or complete within 1 

second 
  Priority is recomputed every second 

  Pi = base + (CPUi-1) / 2 + nice, where CPUi = (Ui + CPUi-1) / 2 
  Base is the base priority of the process 
  Ui is process utilization in interval i 

  Priorities 
  Swapper 
  Block I/O device control 
  File operations 
  Character I/O device control 
  User processes 
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Linux Scheduling 

  Time-sharing scheduling 
  Two priority arrays: active and expired 
  40 priority levels, lower number = higher priority 
  Priority = base (user-set) priority + “bonus” 

•  Bonus between -5 and +5, derived from sleep_avg 
•  Bonus decremented when task sleeps, incremented when it runs 
•  Higher priority gets longer timeslice 

  Move process with expired quantum from active to expired 
  When active array empty, swap active and expired arrays 

  Real-time scheduling 
  100 static priorities, higher than time sharing priorities 
  Soft real-time  
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Windows Scheduling 

 Classes and priorities 
  Real time: 16 static priorities 
  User:  16 variable priorities, start at a base priority 

•  If a process has used up its quantum, lower its priority 
•  If a process waits for an I/O event, raise its priority 

 Priority-driven scheduler 
  For real-time class, do round robin within each priority 
  For user class, do multiple queue 

 Multiprocessor scheduling 
  For N processors, normally run N highest priority threads 
  Threads have hard or soft affinity for specific processors 
  A thread will wait for processors in its affinity set, if there are 

other threads available (for variable priorities) 
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Summary 

  Different scheduling goals 
  Depend on what systems you build 

  Scheduling algorithms 
  Small time slice is important for improving I/O utilization 
  STCF and SRTCF give the minimal average response time 
  Priority and its variations are in most systems 
  Lottery is flexible 
  Real-time depends on admission control 


