
COS 318: Operating Systems

Overview

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

Announcements

  Precepts:
  Tue (Tonight)! 7:30pm-8:30pm, 105 CS building

  Design review:
  Mon 9/26: 6-9pm, 010 Friend center. Sign up online.

  Project 1 due:
  10/5 at noon!

  Reminder:
  Find a project partner and email the pairing to mrm@cs

and vivek@cs.
  (Please cc your partner too, so we… uhhm.. know this is

a mutual decision!)

Today

  Overview of OS structure
  What does the OS need to do?
  What other support/functionality does it build on from

hardware?
  Overview of OS components

A view from user-level
software

Pipeline of Creating An Executable File

  gcc can compile, assemble, and link together
  Compiler (part of gcc) compiles a program into assembly
  Assembler compiles assembly code into relocatable object file
  Linker links object files into an executable
  For more information:

  Read man page of elf, ld, and nm
  Read the document of ELF

foo.c gcc as foo.s foo.o

ld bar.c gcc as bar.s bar.o

libc.a …

a.out

Execution (Run An Application)

  On Unix, “loader” does the job
  Read an executable file
  Layout the code, data, heap and stack
  Dynamically link to shared libraries
  Prepare for the OS kernel to run the application
  E.g., on Linux, “man ld-linux”

a.out loader *.o, *.a ld Application

Shared
library

What’s An Application?

  Four segments
  Code/Text – instructions
  Data – initialized global

variables
  Stack
  Heap

  Why?
  Separate code and data
  Stack and heap go

towards each other

Stack

Heap

Initialized data

Code

2n -1

0

In slightly more detail…

8

Responsibilities

  Stack
  Layout by compiler
  Allocate/deallocate by process creation (fork) and termination
  Names are relative to stack pointer and entirely local

  Heap
  Linker and loader say the starting address
  Allocate/deallocate by library calls such as malloc() and free()
  Application program use the library calls to manage

  Global data/code
  Compiler allocate statically
  Compiler emit names and symbolic references
  Linker translate references and relocate addresses
  Loader finally lay them out in memory

A view from hardware

I/O Bus

Memory Bus

Processor

Cache

Main
Memory

Disk
Controller

Disk Disk

Graphics
Controller

Network
Interface

Graphics Network

interrupts

System Organization

I/O Bridge

I/O Bus

Memory Bus

Processor

Cache

Main
Memory

Disk
Controller

Disk Disk

Graphics
Controller

Network
Interface

Graphics Network

interrupts

System Organization

I/O Bridge

Memory
hierarchy

I/O Bus

Memory Bus

Processor

Cache

Main
Memory

Disk
Controller

Disk Disk

Graphics
Controller

Network
Interface

Graphics Network

interrupts

System Organization

I/O Bridge I/O

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

User level

Kernel level
Portable OS Layer

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

User function calls
written by programmers and
compiled by programmers.

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Written by elves
•  Objects pre-compiled
•  Defined in headers
•  Input to linker
•  Invoked like functions
•  May be “resolved”
when program is loaded

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer “Guts” of system calls

Applications

Software “Onion” Layers

Libraries

OS Services
Device

Driver

Kernel

User and Kernel
boundary

HW

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Bootstrap
•  System initialization
•  Interrupt and exception
•  I/O device driver
•  Memory management
•  Mode switching
•  Processor management

OS’s need to:

  Manage and switch between processes
  Manage and protect memory resources
  Interface and provide safe correct access to I/O

devices
  …

  How?

OS’s need to: (one selected example)

  Manage and switch between processes
  What is needed for this?

  Hw/sw interface issues?

Interrupts and Exceptions

  Change in control flow caused by something other than
a jump or branch instruction

  Interrupt is external event
  devices: disk, network, keyboard, etc.
  clock for timeslicing
  These are useful events, must do something when they

occur.
  Exception is potential problem with program

  segmentation fault
  bus error
  divide by 0
  Don’t want my bug to crash the entire machine
  page fault (virtual memory…)

CPU Handling interrupt

  CPU stops current operation*, saves current program
counter and other processor state ** needed to continue
at interrupted instruction.

  Accessing vector table, in memory, it jumps to address
of appropriate interrupt service routine for this event.

  Handler does what needs to be done.

  Restores saved state at interrupted instruction

* At what point in the execution
 cycle does this make sense?

** Need someplace to save it!
 Data structures in OS kernel.

OS Handling an Interrupt/Exception

ld
add
st

mul
beq
ld

sub
bne

RETT

User Program

Interrupt Handler
  Invoke specific kernel routine

based on type of interrupt
  interrupt/exception handler

  Must determine what caused
interrupt
  could use software to examine each

device
  PC = interrupt_handler

  Vectored Interrupts
  PC = interrupt_table[i]
  kernel initializes table at boot time

  Clear the interrupt
  May return from interrupt (RETT)

to different process (e.g, context
switch)

A "Typical" RISC Processor

  32-bit fixed format instruction
  32 (32,64)-bit GPR (general purpose registers)
  Status registers (condition codes)
  Load/Store Architecture

  Only accesses to memory are with load/store instructions
  All other operations use registers
  addressing mode: base register + 16-bit offset

  Not Intel x86 architecture!

x86 Architecture Registers

General-purpose registers

Segment registers

EFLAGS register EIP (Instruction Pointer register)

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

31 0 0 15
CS
DS
SS
ES
FS
GS

AX
BX
CX
DX

16-bit 32-bit

DI
SI
BP

SP

AL AH
BL
CL
DL

BH
CH
DH

8 7 15

Program Stack
  Well defined register is stack

pointer
  Stack is used for

  passing parameters (function,
method, procedure, subroutine)

  storing local variables

Local variables

Return results

Return Address
Old frame ptr

arg1
arg2

A stack frame (Activation Record)

Frame 0

Frame 1

Frame 2

Frame ptr

stack ptr

First few return results and arguments can be mapped to specific registers
(calling conventions)

An Execution Context

  The state of the CPU associated with a thread of
control (process)
  general purpose registers (integer and floating point)
  status registers (e.g., condition codes)
  program counter, stack pointer

  Need to be able to switch between contexts
  better utilization of machine (overlap I/O of one process

with computation of another)
  timeslicing: sharing the machine among many

processes
  different modes (Kernel v.s. user)

 Context Switches

  Save current execution context
  Save registers and program counter
  information about the context (e.g., ready, blocked)

  Restore other context
  Need data structures in kernel to support this

  process control block
  Why do we context switch?

  Timeslicing: HW clock tick
  I/O begin and/or end

  How do we know these events occur?
  Interrupts...

User / Kernel Modes

  Hardware support to differentiate between what we'll
allow user code to do by itself
(user mode) and what we'll have the OS do
(kernel mode).

  Mode indicated by status bit in protected processor
register.

  Privileged instructions can only be executed in kernel
mode (I/O instructions).

Execution Mode
  What if interrupt occurs while in interrupt handler?

  Problem: Could lose information for one interrupt
clear of interrupt #1, clears both #1 and #2

  Solution: disable interrupts
  Disabling interrupts is a protected operation

  Only the kernel can execute it
  user v.s. kernel mode
  mode bit in CPU status register

  Other protected operations
  installing interrupt handlers
  manipulating CPU state (saving/restoring status registers)

  Changing modes
  interrupts
  system calls (trap instruction)

Crossing Protection Boundaries

  For a user to do something
"privileged", it must invoke an
OS procedure providing that
service. How?

  System Calls
  special trap instruction that causes

an exception which vectors to a
kernel handler

  parameters indicate which system
routine called

A System Call

Trap
Handler
RETT

User Program   Special Instruction to
change modes and invoke
service
  read/write I/O device
  create new process

  Invokes specific kernel
routine based on argument

  kernel defined interface
  May return from trap to

different process (e.g,
context switch)

  RETT, instruction to return
to user process

Service
Routines

Kernel
ld

add
st

TA 6
beq
ld

sub
bne

CPU Handles Interrupt (with User Code)

  CPU stops current operation, goes into kernel mode,
saves current program counter and other processor
state needed to continue at interrupted instruction.

  Accessing vector table, in memory, jump to address of
appropriate interrupt service routine for this event.

  Handler does what needs to be done.

  Restores saved state at interrupted instruction.
Returns to user mode.

Multiple User Programs

  Sharing system resources requires that we protect
programs from other incorrect programs.
  protect from a bad user program walking all over the

memory space of the OS and other user programs
(memory protection).

  protect from runaway user programs never relinquishing
the CPU (e.g., infinite loops) (timers).

  preserving the illusion of non-interruptable instruction
sequences (synchronization mechanisms - ability to
disable/enable interrupts, special "atomic" instructions).

CPU Handles Interrupt (Multiple Users)

  CPU stops current operation, goes into kernel mode,
saves current program counter and other processor
state needed to continue at interrupted instruction.

  Accessing vector table, in memory, jump to address of
appropriate interrupt service routine for this event.

  Handler does what needs to be done.

  Restores saved state at interrupted instruction (with
multiple processes, it is the saved state of the process
that the scheduler selects to run next). Returns to user
mode.

Today

  Overview of OS structure
  Overview of OS components

Processor Management

  Goals
  Overlap between I/O and

computation
  Time sharing
  Multiple CPU allocations

  Issues
  Do not waste CPU resources
  Synchronization and mutual

exclusion
  Fairness and deadlock free

CPU I/O CPU

CPU

CPU

CPU I/O

CPU

CPU

CPU

I/O

Memory Management

  Goals
  Support programs to run
  Allocation and management
  Transfers from and to

secondary storage
  Issues

  Efficiency & convenience
  Fairness
  Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Archive storage: >1000M x

I/O Device Management

  Goals
  Interactions between

devices and applications
  Ability to plug in new

devices
  Issues

  Efficiency
  Fairness
  Protection and sharing

User 1 User n . . .

Library support

I/O
device

I/O
device . . .

Driver Driver

File System
  Goals:

  Manage disk blocks
  Map between files and disk

blocks
  A typical file system

  Open a file with
authentication

  Read/write data in files
  Close a file

  Issues
  Reliability
  Safety
  Efficiency
  Manageability

User 1 User n . . .

File system services

File File . . .

Window Systems

  Goals
  Interacting with a user
  Interfaces to examine and

manage apps and the system
  Issues

  Direct inputs from keyboard and
mouse

  Display output from applications
and systems

  Labor of division
•  All in the kernel (Windows)
•  All at user level
•  Split between user and kernel (Unix)

Bootstrap

  Power up a computer
  Processor reset

  Set to known state
  Jump to ROM code (BIOS is

in ROM)
  Load in the boot loader from

stable storage
  Jump to the boot loader
  Load the rest of the operating

system
  Initialize and run
  Question: Why is BIOS in ROM?

Can BIOS be on disk?

Boot
loader

OS
sector 1

OS
sector 2

OS
sector n

. . .

Boot
loader

COS318 Lec 2

System Boot

 Power on (processor waits until Power Good
Signal)

 Processor jumps on a PC (“Intel Inside”) to address
FFFF0h

•  1M= 1,048,576= 220 =FFFFFh+1
•  FFFFFh=FFFF0h+16 is the end of the (first 1MB of) system

memory
•  The original PC using Intel 8088 had 20 address lines :-)

  (FFFFFFF0h) is a JMP instruction to the ROM
BIOS startup program

Maps to FFFFFFF0h= 232-16

COS318 Lec 2

ROM BIOS startup program (1)

 POST (Power-On Self-Test)
•  If pass then AX:=0; DH:=5 (586: Pentium);
•  Stop booting if fatal errors, and report

  Look for video card and execute built-in ROM
BIOS code (normally at C000h)

  Look for other devices ROM BIOS code
•  IDE/ATA disk ROM BIOS at C8000h (=819,200d)

 Display startup screen
•  BIOS information

 Execute more tests
•  memory
•  system inventory

SCSI disks: must often
provide their own BIOS

COS318 Lec 2

ROM BIOS startup program (2)

  Look for logical devices
  Label them

•  Serial ports
•  COM 1, 2, 3, 4

•  Parallel ports
•  LPT 1, 2, 3

  Assign each an I/O address and IRQ
 Detect and configure PnP devices
 Display configuration information on screen

ROM BIOS startup program (3)

 Search for a drive to BOOT from
  Floppy or Hard disk

•  Boot at cylinder 0, head 0, sector 1

  Load code in boot sector
 Execute boot loader
 Boot loader loads program to be booted

•  If no OS: "Non-system disk or disk error - Replace and press
any key when ready"

 Transfer control to loaded program

Summary & Key Ideas

48

