COS 318: Operating Systems

File Performance and Reliability

Vivek Pai

Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

Topics

File buffer cache
Disk failure and file recovery tools

Consistent updates
Transactions and logging

File Buffer Cache for Performance

Cache files in main memory
e Check the buffer cache first
e Hit will read from or write to the
User

buffer cache User buffer
e Miss will read from the disk to

the buffer cache

: Kernel
Usual questions Buffer
cache

e \What to cache?

e How to size?

e What to prefetch? Q
e How and what to replace? Disk

e \Which write policies?

What to Cache?

Things to consider

e i-nodes and indirect blocks of directories
e Directory files

e |-nodes and indirect blocks of files

o Files

What is a good strategy?

e Cache i-nodes and indirect blocks if they are in use?

e Cache only the i-nodes and indirect blocks of the current
directory?

e Cache an entire file vs. referenced blocks of files

How to Size?

@
An important issue is how to partition memory between
the buffer cache and VM cache

Early systems use fixed-size buffer cache
e |t does not adapt to workloads

Later systems use variable size cache
e But, large files are common, how do we make adjustment?

Solution
e Basically, we solve the problem using the working set idea,
remember?
Buffer cache VM Buffer cache VM

(90MB) (110MB) | ™= | (120MB) | (80MB)

Challenges: Multiple User Processes

Kernel

e All processes share the same
buffer cache

e Global LRU may not be fair

Solution
e \Working set idea again

Questions

e Can each process use a
different replacement strategy? Buffer cache

e Can we move the buffer cache
to the user level?

e \What about duplications?

e Do we need to pin user
buffers?

User User User
process| |process| -+ |process

What to Prefetch?

Optimal
e The blocks are fetched in just enough time to use them
e But, life is hard

The good news is that files have locality

e Temporal locality
e Spatial locality

Common strategies
e Prefetch next k blocks together (typically > 64KB)
e Some discard unreferenced blocks

e Cluster blocks (to the same cylinder group and neighborhood)
make prefetching efficient, directory and i-nodes if possible

How and What to Replace?

®
Page replacement theory LRU

e Use past to predict future (front)
e LRU is good TN

Buffer cache with LRU
replacement mechanism

e If b is in buffer cache, move
it to front and return b

e Otherwise, replace the tail
block, get b from disk, insert
b to the front

_ _ _ Hash

e Use double linked list with a table
hash table

Questions

e \Why a hash table?
e \What if file >> the cache?

Which Write Policies?

Write through

e \Whenever modify cached
block, write block to disk

e Cache is always consistent User buffer
e Simple, but causes more I/Os

. Kernel
Write back Buffher
e \When modifying a block, mark Ca(j c
it as dirty & write to disk later
e Fast writes, absorbs writes, T
. ~N_ A
and enables batching
e So, what’s the problem? Disk

Write Back Complications

Fundamental tension
e On crash, all modified data in cache is lost.

e The longer you postpone write backs, the faster you are and
the worse the damage is

When to write back
e When a block is evicted
e \When a file is closed
e On an explicit flush
e \When a time interval elapses (30 seconds in Unix)

Issues
e These write back options have no guarantees
e A solution is consistent updates (later)

“
L Ery e

TR

10

File Recovery Tools

Physical backup (dump) and recovery
e Dump disk blocks by blocks to a backup system

e Backup only changed blocks since the last backup
as an incremental

e Recovery tool is made accordingly

Logical backup (dump) and recovery
e Traverse the logical structure from the root
e Selectively dump what you want to backup
e Verify logical structures as you backup
e Recovery tool selectively move files back

Consistency check (e.g. fsck)
e Start from the root i-node
e Traverse the whole tree and mark reachable files
e Verify the logical structure
e Figure out what blocks are free

cos318

man

11

Recovery from Disk Block Failures

Boot block

e Create a utility to replace the boot block

e Use flash memory to duplicate the boot
block and kernel

Super block

e If there is a duplicate, remake the file
system

e Otherwise, what would you do?

Free block data structure

e Search all reachable files from the root
e Unreachable blocks are free

I-node blocks
e How to recover?

Indirect or data blocks
e How to recover?

bitmap

nods
L

Indirect Indirect

D

Data Data

Data

12

Persistency and Crashes

File system promise: Persistency

e File system will hold a file until its owner
explicitly deletes it

e Backups can recover your file even
beyond the deletion point

Why is this hard?
e A crash will destroy memory content
e Cache more = better performance
e Cache more = lose more on a crash
o

A file operation often requires modifying
multiple blocks, but the system can only
atomically modify one at a time

e Systems can crash anytime

13

What Is A Crash?

Crash is like a context switch

e Think about a file system as a
thread before the context switch
and another after the context
switch

e Two threads read or write same
shared state?
Crash is like time travel

e Current volatile state lost; suddenly
go back to old state

e Example: move a file
« Place it in a directory
» Delete it from old

« Crash happens and both
directories have problems

Before Crash After

B

Crash

14

Approaches

¢ Throw everything away and start over
e Done for most things (e.g., make again)
e Not what you want to happen to your email

¢ Reconstruction

e Figure out where you are and make the file system consistent
and go from there

e Try to fix things after a crash (“fsck”)

+ Make consistent updates
e Either new data or old data, but not garbage data

+ Make multiple updates appear atomic

e Build arbitrary sized atomic units from smaller atomic ones

e Similar to how we built critical sections from locks, and locks
from atomic instructions

15

Write Metadata First

¢ Modify /u/cos318/foo

e Traverse to /u/cos318/ i-node
[[[Crash > Consistent

e Allocate data block
|lLcrash > Consistent

e \Write pointer into i-node il dir i-node

HD@ Inconsistent cos3181 | file foo

e \Write new data to foo
[l L.crash > Consistent

Old
data

Writing metadata first can cause inconsistency

16

Write Data First

+ Modify /u/cos318/foo /\ f\ f\

e Traverse to /u/cos318/ i-node| | dir | |i-node| | dir

_ / file u file
[[[Crash > Consistent
e Allocate data block K f\

|[lLcrash > Consistent

e \Write new data to foo | i-node” dir i‘:nod,g
[I[Crash > Consistent cos318] | file | | foo
e \Write pointer into i-node

[l L.crash > Consistent

17

Consistent Updates: Bottom-Up Order

The general approach is to use a “bottom up” order
e File data blocks, file i-node, directory file, directory i-node, ...

What about file buffer cache
e \Write back all data blocks
e Update file i-node and write it to disk
e Update directory file and write it to disk
e Update directory i-node and write it to disk (if necessary)
e Continue until no directory update exists

Does this solve the write back problem?
e Updates are consistent but leave garbage blocks around
e May need to run fsck to clean up once a while

e |deal approach: consistent update without leaving garbage

18

“
L Ery e

TR

Transaction Properties

Group multiple operations together so that they have
“ACID” property:
e Atomicity
* |t either happens or doesn’t (no partial operations)
e Consistency
A transaction is a correct transformation of the state
e Isolation (serializability)
* Transactions appear to happen one after the other
e Durability (persistency)
* Once it happens, stays happened

Question
e Do critical sections have ACID property?

19

Transactions

Bundle many operations into a transaction

e One of the first transaction systems is Sabre American Airline
reservation system, made by IBM

Primitives
e BeginTransaction
« Mark the beginning of the transaction

e Commit (End transaction)
 When transaction is done

e Rollback (Abort transaction)
« Undo all the actions since “Begin transaction.”
Rules
e Transactions can run concurrently
e Rollback can execute anytime
e Sophisticated transaction systems allow nested transactions

[Ery (IGET)

TR

Implementation

BeginTransaction
e Start using a “write-ahead” log on disk
e Log all updates

Commit

e Write “commit” at the end of the log
e Then “write-behind” to disk by writing updates to disk
e Clear the log

Rollback
e Clear the log

Crash recovery
e If there is no “commit” in the log, do nothing
e If there is “commit,” replay the log and clear the log

Assumptions

e \Writing to disk is correct (recall the error detection and correction)
e Disk is in a good state before we start

[Ery (IGET)

A G

®

Use Transactions in File Systems

Make a file operation a transaction
e Create afile

e Move a file

e Write a chunk of data

o

o

Would this eliminate any need to run fsck after a crash?

Make arbitrary number of file operations a transaction

e Just keep logging but make sure that things are idempotent:
making a very long transaction

e Recovery by replaying the log and correct the file system
e This is called logging file system or journaling file system

e Almost all new file systems are journaling (Windows NTFS,
Veritas file system, file systems on Linux)

22

Issue with Logging: Performance

@
For every disk write, we now have two disk writes (on
different parts of the disk)?

e |t is not so bad because once written to the log, it is safe to do
real writes later
Performance tricks

e Changes made in memory and then logged to disk

e Log writes are sequential (synchronous writes can be fast if on
a separate disk)

e Merge multiple writes to the log with one write
e Use NVRAM (Non-Volatile RAM) to keep the log

23

Log Management

How big is the log? Same size as the file system?

Observation
e Log what’'s needed for crash recovery

Management method
e Checkpoint operation: flush the buffer cache to disk
e After a checkpoint, we can truncate log and start again
e Log needs to be big enough to hold changes in memory

Some logging file systems log only metadata (file
descriptors and directories) and not file data to keep log
size down

e \Would this be a problem?

24

What to Log?

Physical blocks (directory blocks and inode blocks)
e Easy to implement but takes more space
e Which block image”?
» Before operation: Easy to go backward during recovery
 After operation: Easy to go forward during recovery.
« Both: Can go either way.
Logical operations
e Example: Add name “foo” to directory #41
e More compact
e But more work at recovery time

25

Log-structured File System (LFS)
®
Structure the entire file system as a log with segments

A segment has i-nodes, indirect blocks, and data blocks
All writes are sequential (no seeks)
There will be holes when deleting files

Questions
e \What about read performance?
e How would you clean (garbage collection)?

Used Unused

— _
——

Log structured

—>

26

Summary

File buffer cache
e True LRU is possible
e Simple write back is vulnerable to crashes
Disk block failures and file system recovery tools
e Individual recovery tools
e Top down traversal tools
Consistent updates
e Transactions and ACID properties
e Logging or Journaling file systems

27

An Example: Atomic Money Transfer

Move $100 from account S to C (1 thread):

BeginTransaction
S =S - $8100;
C =C + $100;
Commit
Steps:
1: Write new value of S to log
2: Write new value of C to log
3: Write commit
4: Write S to disk
5: Write C to disk
6: Clear the log

Possible crashes
o After 1

o After 2
e After 3 before 4 and 5

Questions
e Can we swap 3 with 4?

@ e Can we swap 4 and 5?

C=110
S =700

C=110
S =700

S=700

C=110

Commit

28

Revisit The Implementation

BeginTransaction
e Start using a “write-ahead” log on disk
e Log all updates

Commit
e Write “commit” at the end of the log
e Then “write-behind” to disk by writing updates to disk
e Clear the log

Rollback
e Clear the log

Crash recovery
e If there is no “commit” in the log, do nothing
e If there is “commit,” replay the log and clear the log

Questions
e Whatis “commit?”
e \What if there is a crash during the recovery?

[Ery (IGET)

A G

®

Two Threads Run Transactions

Apply to the mid-term AtomicTransfer program
1: BeginTransaction
2: 1f (al->1d < az2->id) {
Acquire(al->lock); Acquire(aZ2->lock);
} else {

Acquire(a2->lock); Acquire(al->lock);
}
3: 1f ((al->balance - $100) < 0) {
Release (aZ2->lock); Release(al->lock);
goto 7;

}
: al->balance -= $100;
: a2->balance += $100;
: Release(a2->lock); Release(al->lock);
: Commit

~ O U1 &

What happens if
e Thread A performs 1-6; context switch
e Thread B performs 1-7; crash!

[Ery (IGET)

A G

®

Two-Phase Locking for Transactions

First phase
e Acquire all locks

Second phase

e Commit operation release all locks
(no individual release operations)

e Rollback operation always undo the changes first and then
release all locks

31

