
COS 318: Operating Systems

Introduction

Margaret Martonosi and Vivek Pai
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

2

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?

Course Staff and Logistics

Instructor
  Prof. Margaret

Martonosi, 204 CS
Building,

mrm@cs.princeton.edu
Office hours: Tue 3-5pm

  Prof. Vivek Pai, CS322
vivek@cs.princeton.edu
Office hours: Thu 3-5pm

Teaching Assistants
  Mark Browning,

mrbrowni@princeton.edu
•  Office Hours: Mon

12:30-2:30pm

  Xianmin (Sam) Chen,
xianminc@princeton.edu

•  Office Hours: Fri
10am-12pm

  Srinivas Narayana,
narayana@princeton.edu

•  Office Hours: Fri 2-4pm.

  All TA Office hours are in
the “Fishbowl”: Friend 010

3

What you will learn

  What an OS does. What services are provided, what
functions are performed, what resources are managed,
and what interfaces and abstractions are supported.

  How the OS is implemented. How the code is
structured. What algorithms are used.

  Techniques, skills, and "systems intuition"
(e.g., concurrent programming).

  Peeks at current research topics.

4

5

COS318 in Systems Course Sequence

  Prerequisites
  COS 217: Introduction to Programming Systems
  COS 226: Algorithms and Data Structures

  300-400 courses in systems
  COS318: Operating Systems
  COS320: Compiler Techniques
  COS333: Advanced Programming Techniques
  COS425: Database Systems
  COS471: Computer Architecture

  Courses needing COS318
  COS 461: Computer Networks
  COS 518: Advanced Operating Systems
  COS 561: Advanced Computer Networks

Information & where to get it!

  Website
  http://www.cs.princeton.edu/courses/archive/fall11/

cos318/
  Materials will go here: projects, schedule, lecture/precept

slides…
  ~0 paper handouts!

  Textbook:
  Modern Operating Systems, 3rd Edition, Andrew S.

Tanenbaum
  Keep up with readings!

  Questions about coursework, logistics, projects, etc:
Enroll in Piazza
 http://www.piazza.com/princeton/fall2011/cos318 6

7

Besides Lecture

  Regular precept
  Time: Tuesday 7:30pm – 8:30pm
  Location: default is this room, CS 105

  First precept: Tues Sep 20
  Will cover a bit of x86 assembler review in addition to

project-specific topics.
  Project 1 Design review

  Monday Sep. 26, 6pm -- 9pm
  Sign up online (1 slot per team)
  Project 1 deadline: Oct 5

8

Exams, Participation and Grading

  Grading
  First 5 projects: 45% with extra points
  Midterm: 15%
  Final Exam: 15%
  Final project: 15%
  Reading & participation: 10%

  Midterm and Final Exam
  Test lecture materials and projects
  Midterm: Thursday of midterm week, Oct 27

  Reading and participation
  Do your reading BEFORE each lecture
  Occasional quizzes just to check on this.

9

The Projects
  Projects

1.  Bootup
2.  Non-preemptive kernel
3.  Preemptive kernel
4.  Interprocess communication and driver
5.  Virtual Memory
6.  File Systems

  How
  Pair up with a partner for projects 1,2,3
  Different partner for 4,5
  On your own for #6
  Each project takes 2-3 weeks
  Design review at the end of week one
  All projects due Wednesdays at NOON!

  The Lab aka “The Fishbowl”
  Linux cluster in 010 Friend Center, a good place to be
  You can setup your own Linux PC to do projects

10

Project Grading

  Design Review
  Signup online for appointments
  10 minutes with the TA in charge
  0-5 points for each design review
  10% deduction for missing the appointment

  Project completion
  10 points for each project

  Late policy of grading projects
  1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7%
  3 days: 36.8%, 7 days: 9.7%

Why Piazza?

  Instructors’ Goal: Want to view this course as a
learning community, where we all contribute to asking
and answering questions.
  Piazza helps provide a forum for this.

  Easier for students to answer each other’s questions
  Easier for one of us (2 profs + 3 TAs) to see and

answer questions (or endorse your answers) in a
timely manner.

  Please use it instead of email, unless the question is of
a personal/private nature.

11

12

Ethics and other issues

 Do not put your code or designs or thoughts
on the Web
  Other schools are using similar projects
  Not even on Facebook or the like

  Follow Honor System: ask when unsure, cooperation
OK but work is your own (or in pairs for projects)

13

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?

Let’s begin at the beginning…

  When you write a program, what happens?

14

15

Managing and Abstracting Hardware
Resources

  Hardware to manage: CPU,
Primary memory, Secondary
memory devices (disk,
tapes), Networks, Input
devices (keyboard, mouse,
camera), Output devices
(printers, display, speakers)

Hardware

Operating System

sw apps

Resources to manage:
  CPU Cycles
  Network and memory

bandwidth
  Energy / battery-life (mobile)
  …

What is an OS?

  Resource Manager of physical (HW) devices ...
  Abstract machine environment. The OS defines a set

of logical resources (objects) and operations on those
objects (an interface on the use of those objects).

  Allows sharing of resources. Controls interactions
among different users.

  Privileged, protected software - the kernel. Different
kind of relationship between OS and user code (entry
via system calls, interrupts).

  Birthplace of system design principles!
e.g., Separation of Policy and Mechanism.

16

What Does an Operating System Do?

  Provides a layer of abstraction for hardware resources
  Allows user programs to deal with higher-level, simpler,

and more portable concepts than the raw hardware
•  E.g., files rather than disk blocks

  Makes finite resources seem “infinite”
  Manages the resources

  Manage complex resources and their interactions for an
application

  Allow multiple applications to share resources without
hurting one another

  Allow multiple users to share resources without hurting
one another

17

How to Mitigate Complexity? Abstraction!

 Hide underlying details,
and provide cleaner,
easier-to-use, more
elegant concepts and
interfaces
  Also provides

standardized interfaces
despite diversity of
implementation
underneath

 Key CS principle
 Key to understanding

Operating Systems

Examples
 Threads or Processes

(Fork)
 Address spaces

(Allocate)
 Files (Open, Close,

Read, Write)
 Network Messages

(Send, Receive)

18

One Abstraction Example:
Disk

Disk hw and operations
are very complex

  Multiple heads, cylinders,
sectors, segments

  Wait for physical movement
before read or write

  Data stored discontiguously
  Sizes, speeds vary on

different computers
  IT WOULD BE HORRIBLE

TO WRITE CODE
SPECIALIZED FOR EACH
DISK!

 OS provides simple read
() and write() calls as the
API
  Manages the complexity

transparently, in
conjunction with the disk
controller hardware

  Such I/O abstractions
have outlived several
storage technologies!

19

Resource Management

4 sub-issues:
  Resource Allocation
  Resource Virtualization
  Resource Reclamation
  Resource Protection

20

Resource Allocation

  Computer has finite resources
  Different applications and users compete for them
  OS dynamically manages which applications get how

many resources
  Multiplex resources in space and time

  Time multiplexing: CPU, network
  Space multiplexing: disk, memory

  E.g., what if an application runs an infinite loop?
 while (1);

21

Resource Virtualization

  OS gives each program the illusion of effectively
infinite, private resources
  “infinite” memory (by backing up to disk)
  CPU (by time-sharing)

22

Resource Reclamation

  The OS giveth, and the OS taketh away
  Voluntary or involuntary at runtime
  Implied at program termination
  Cooperative

23

Protection

  You can’t hurt me, I can’t hurt you
  OS provides safety and security
  Protects programs and their data from one another, as

well as users from one another
  E.g., what if I could modify your data, either on disk or

while your program was running?

24

Mechanism vs. policy

  Mechanisms are tools or vehicles to implement policies
  Examples of policies:

  All users should be treated equally
  Preferred users should be treated better

25

26

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?

27

A Typical Academic Computer (1988 vs. 2008)

1988 2008 Ratio

Intel CPU transistors 0.5M 1.9B ~4000x

Intel CPU core x clock 10Mhz 4×2.66Ghz ~1000x

DRAM 2MB 16GB 8000x

Disk 40MB 1TB 25,000x

Network BW 10Mbits/sec 10GBits/sec 1000x

Address bits 32 64 2x

Users/machine 10s < 1 >10x

$/machine $30K $3K 1/10x

$/Mhz $30,000/10 $3,000/10,000 1/10,000x

Moore’s Law! ++

Phase 1: Batch Systems
  Hardware very expensive, only one user at a time
  Batch processing: load, run, print

  OS linked in as a subroutine library
  Problem: better system utilization

  System idle when job waiting for I/O
  Development: multiprogramming

  Multiple jobs resident in computer’s memory
  Hardware switches between them (interrupts)
  Memory protection: keep bugs to individual programs

28

hardware Hardware

Application
OS

29

Phase 2: Time Sharing

  Problem: batch jobs hard to debug
  Use cheap terminals to share a computer interactively
  MULTICS: designed in 1963, run in 1969
  Shortly after, Unix enters the mainstream
  Issue: thrashing as the number of users increases

hardware
Hardware

App1

Time-sharing OS
App2 App2 . . .

30

Phase 3: Personal Computer

  Personal computer
  Altos OS, Ethernet, Bitmap display, laser printer
  Pop-menu window interface, email, publishing SW,

spreadsheet, FTP, Telnet
  Eventually >100M units per year

  PC operating system
  Memory protection
  Multiprogramming
  Networking

31

Now: > 1 Machines per User

  Pervasive computers
  Wearable computers
  Communication devices
  Entertainment equipment
  Computerized vehicle

  OS are specialized
  Embedded OS
  Specially configured general-

purpose OS

32

Now: Multiple Processors per Machine
  Clusters

  A network of PCs
  Commodity OS

  Multicomputers
  Supercomputer with many CPUs and high-

speed communication
  Specialized OS with special message-

passing support
  Multiprocessors

  SMP: Symmetric MultiProcessor
  ccNUMA: Cache-Coherent Non-Uniform

Memory Access
  General-purpose, single-image OS with

multiproccesor support
  Chip Multiprocessors

  2+ cores per chip COMMON

33

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?

34

Why Study OS?

  OS is a key part of a computer system
  It makes our life better (or worse)
  It is “magic” to realize what we want
  It gives us “power”

  Learn about concurrency
  Parallel programs run on OS
  OS runs on parallel hardware
  Best way to learn concurrent programming

  Understand how a system works
  How many procedures does a key stroke invoke?
  What happens when your application references 0 as a pointer?
  Building a small OS will go a long way…

Why Study OS?

  Important for studying other areas
  Networking, distributed systems, …

  Full employment
  New hardware capabilities and organizations
  New features
  New approaches
  Engineering tradeoffs keep shifting as the hardware

changes below and the apps change above

35

36

Influences in OS Design

Metrics

Workload

Hardware Resources

Services & API

Internal Structure

Policies / Mechanisms

37

Influences in OS Design

Metrics

Workload

Hardware Resources

Services & API

Internal Structure

Policies / Mechanisms Performance as
Bandwidth
and Latency.

Scientific computations
Database operations
 Multi-user

Processor, Memory, Disks, Network,
Keyboard, Display , Multiprocessors

38

Influences in OS Design

Metrics

Workload

Hardware Resources

Services & API

Internal Structure

Policies / Mechanisms Accessibility,
Reliability,
No-futz-ness
Energy efficiency,
Security

Processor, Memory, Disks (?), Wireless & IR,
Keyboard(?), Display(?), Mic & Speaker,
Motors & Sensors, GPS, Camera, Batteries

Productivity applications
 Games, Multimedia, Web
 Process control
 Personal (PDAs),
 Embedded
 E-Commerce

39

Things To Do

  For today’s material: Read MOS 1.1-1.3
  For next time: Read MOS 1.4-1.5
  Make “tent”, leave with me, pick up and use every class.
  Choose a partner for first 3 projects and email vivek/me

with your choice.
  Use Piazza to help find available partners!

