
COS 318: Operating Systems 

Introduction 

Margaret Martonosi and Vivek Pai 
Computer Science Department 
Princeton University 

http://www.cs.princeton.edu/courses/archive/fall11/cos318/ 



2 

Today 

  Course staff and logistics 
  What is an operating system? 
  Evolution of computing and operating systems 
  Why study operating systems? 



Course Staff and Logistics 

Instructor 
  Prof. Margaret 

Martonosi, 204 CS 
Building, 

mrm@cs.princeton.edu 
Office hours: Tue 3-5pm  

  Prof. Vivek Pai, CS322 
vivek@cs.princeton.edu 
Office hours: Thu 3-5pm 

Teaching Assistants 
  Mark Browning, 

mrbrowni@princeton.edu 
•  Office Hours: Mon 

12:30-2:30pm 

  Xianmin (Sam) Chen, 
xianminc@princeton.edu 

•  Office Hours: Fri 
10am-12pm 

  Srinivas Narayana, 
narayana@princeton.edu 

•  Office Hours: Fri 2-4pm. 

  All TA Office hours are in 
the “Fishbowl”:  Friend 010 

3 



What you will learn 

  What an OS does. What services are provided, what 
functions are performed, what resources are managed, 
and what interfaces and abstractions are supported. 

  How the OS is implemented. How the code is 
structured. What algorithms are used. 

  Techniques, skills, and "systems intuition"  
(e.g., concurrent programming). 

  Peeks at current research topics.  

4 



5 

COS318 in Systems Course Sequence 

  Prerequisites 
  COS 217: Introduction to Programming Systems 
  COS 226: Algorithms and Data Structures 

   300-400 courses in systems 
  COS318: Operating Systems 
  COS320: Compiler Techniques 
  COS333: Advanced Programming Techniques 
  COS425: Database Systems 
  COS471: Computer Architecture 

  Courses needing COS318 
  COS 461: Computer Networks  
  COS 518: Advanced Operating Systems 
  COS 561: Advanced Computer Networks 



Information & where to get it! 

  Website 
  http://www.cs.princeton.edu/courses/archive/fall11/

cos318/ 
  Materials will go here: projects, schedule, lecture/precept 

slides… 
  ~0 paper handouts! 

  Textbook: 
  Modern Operating Systems, 3rd Edition, Andrew S. 

Tanenbaum 
  Keep up with readings! 

  Questions about coursework, logistics, projects, etc: 
Enroll in Piazza 
 http://www.piazza.com/princeton/fall2011/cos318 6 



7 

Besides Lecture 

  Regular precept 
  Time: Tuesday 7:30pm – 8:30pm 
  Location: default is this room, CS 105 

  First precept: Tues Sep 20 
  Will cover a bit of x86 assembler review in addition to 

project-specific topics. 
  Project 1 Design review 

  Monday Sep. 26, 6pm -- 9pm  
  Sign up online (1 slot per team) 
  Project 1 deadline: Oct 5 



8 

Exams, Participation and Grading 

  Grading 
  First 5 projects:   45% with extra points 
  Midterm:    15% 
  Final Exam:    15% 
  Final project:    15% 
  Reading & participation:    10% 

  Midterm and Final Exam 
  Test lecture materials and projects 
  Midterm: Thursday of midterm week, Oct 27 

  Reading and participation 
  Do your reading BEFORE each lecture 
  Occasional quizzes just to  check on this. 



9 

The Projects 
  Projects 

1.  Bootup 
2.  Non-preemptive kernel 
3.  Preemptive kernel 
4.  Interprocess communication and driver 
5.  Virtual Memory 
6.  File Systems 

  How 
  Pair up with a partner for projects 1,2,3 
  Different partner for 4,5 
  On your own for #6 
  Each project takes 2-3 weeks 
  Design review at the end of week one 
  All projects due Wednesdays at NOON! 

  The Lab aka “The Fishbowl” 
  Linux cluster in 010 Friend Center, a good place to be 
  You can setup your own Linux PC to do projects 



10 

Project Grading 

  Design Review 
  Signup online for appointments 
  10 minutes with the TA in charge 
  0-5 points for each design review 
  10% deduction for missing the appointment 

  Project completion 
  10 points for each project 

  Late policy of grading projects 
  1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7% 
  3 days: 36.8%, 7 days: 9.7% 



Why Piazza? 

  Instructors’ Goal: Want to view this course as a 
learning community, where we all contribute to asking 
and answering questions.   
  Piazza helps provide a forum for this. 

  Easier for students to answer each other’s questions 
  Easier for one of us (2 profs + 3 TAs) to see and 

answer questions (or endorse your answers) in a 
timely manner.  

  Please use it instead of email, unless the question is of 
a personal/private nature. 

11 



12 

Ethics and other issues 

 Do not put your code or designs or thoughts 
on the Web 
  Other schools are using similar projects 
  Not even on Facebook or the like 

  Follow Honor System: ask when unsure, cooperation 
OK but work is your own (or in pairs for projects) 



13 

Today 

  Course staff and logistics 
  What is an operating system? 
  Evolution of computing and operating systems 
  Why study operating systems? 



Let’s begin at the beginning… 

  When you write a program, what happens? 

14 



15 

Managing and Abstracting Hardware 
Resources 

  Hardware to manage: CPU, 
Primary memory, Secondary 
memory devices (disk, 
tapes), Networks, Input 
devices (keyboard, mouse, 
camera), Output devices 
(printers, display, speakers) 

Hardware 

Operating System 

sw apps 

Resources to manage: 
  CPU Cycles 
  Network and memory 

bandwidth 
  Energy / battery-life (mobile) 
  … 



What is an OS? 

  Resource Manager of physical (HW) devices ... 
  Abstract machine environment. The OS defines a set 

of logical resources (objects) and operations on those 
objects (an interface on the use of those objects). 

  Allows sharing of resources. Controls interactions 
among different users. 

  Privileged, protected software - the kernel. Different 
kind of relationship between OS and user code (entry 
via system calls, interrupts).  

  Birthplace of system design principles! 
e.g., Separation of Policy and Mechanism. 

16 



What Does an Operating System Do? 

  Provides a layer of abstraction for hardware resources 
  Allows user programs to deal with higher-level, simpler, 

and more portable concepts than the raw hardware 
•  E.g., files rather than disk blocks 

  Makes finite resources seem “infinite” 
  Manages the resources 

  Manage complex resources and their interactions for an 
application 

  Allow multiple applications to share resources without 
hurting one another 

  Allow multiple users to share resources without hurting 
one another 

17 



How to Mitigate Complexity? Abstraction! 

 Hide underlying details, 
and provide cleaner, 
easier-to-use, more 
elegant concepts and 
interfaces 
  Also provides 

standardized interfaces 
despite diversity of 
implementation 
underneath 

 Key CS principle 
 Key to understanding 

Operating Systems 

Examples 
 Threads or Processes 

(Fork) 
 Address spaces 

(Allocate) 
 Files (Open, Close, 

Read, Write) 
 Network Messages 

(Send, Receive) 

18 



One Abstraction Example:  
Disk 

Disk hw and operations 
are very complex 

  Multiple heads, cylinders, 
sectors, segments 

  Wait for physical movement 
before read or write 

  Data stored discontiguously 
  Sizes, speeds vary on 

different computers 
  IT WOULD BE HORRIBLE 

TO WRITE CODE 
SPECIALIZED FOR EACH 
DISK! 

 OS provides simple read
() and write() calls as the 
API 
  Manages the complexity 

transparently, in 
conjunction with the disk 
controller hardware 

  Such I/O abstractions 
have outlived several 
storage technologies! 

19 



Resource Management 

4 sub-issues: 
  Resource Allocation 
  Resource Virtualization 
  Resource Reclamation 
  Resource Protection 

20 



Resource Allocation 

  Computer has finite resources 
  Different applications and users compete for them 
  OS dynamically manages which applications get how 

many resources 
  Multiplex resources in space and time 

  Time multiplexing: CPU, network 
  Space multiplexing: disk, memory 

  E.g., what if an application runs an infinite loop? 
  while (1); 

21 



Resource Virtualization 

  OS gives each program the illusion of effectively 
infinite, private resources 
  “infinite” memory (by backing up to disk) 
  CPU (by time-sharing) 

22 



Resource Reclamation 

  The OS giveth, and the OS taketh away 
  Voluntary or involuntary at runtime 
  Implied at program termination 
  Cooperative 

23 



Protection 

  You can’t hurt me, I can’t hurt you 
  OS provides safety and security 
  Protects programs and their data from one another, as 

well as users from one another 
  E.g., what if I could modify your data, either on disk or 

while your program was running? 

24 



Mechanism vs. policy 

  Mechanisms are tools or vehicles to implement policies 
  Examples of policies: 

  All users should be treated equally 
  Preferred users should be treated better 

25 



26 

Today 

  Course staff and logistics 
  What is an operating system? 
  Evolution of computing and operating systems 
  Why study operating systems? 



27 

A Typical Academic Computer (1988 vs. 2008) 

1988 2008 Ratio 

Intel CPU transistors 0.5M 1.9B ~4000x 

Intel CPU core x clock 10Mhz 4×2.66Ghz ~1000x 

DRAM 2MB 16GB 8000x 

Disk 40MB 1TB 25,000x 

Network BW 10Mbits/sec 10GBits/sec 1000x 

Address bits 32 64 2x 

Users/machine 10s < 1 >10x 

$/machine $30K $3K 1/10x 

$/Mhz $30,000/10 $3,000/10,000 1/10,000x 

Moore’s Law! ++ 



Phase 1: Batch Systems 
  Hardware very expensive, only one user at a time 
  Batch processing: load, run, print 

  OS linked in as a subroutine library 
  Problem: better system utilization 

  System idle when job waiting for I/O 
  Development: multiprogramming 

  Multiple jobs resident in computer’s memory 
  Hardware switches between them (interrupts) 
  Memory protection: keep bugs to individual programs 

28 

hardware Hardware 

Application 
OS 



29 

Phase 2: Time Sharing 

  Problem: batch jobs hard to debug 
  Use cheap terminals to share a computer interactively 
  MULTICS: designed in 1963, run in 1969 
  Shortly after, Unix enters the mainstream 
  Issue: thrashing as the number of users increases 

hardware 
Hardware 

App1 

Time-sharing OS 
App2 App2 . . . 



30 

Phase 3: Personal Computer 

  Personal computer 
  Altos OS, Ethernet, Bitmap display, laser printer 
  Pop-menu window interface, email, publishing SW, 

spreadsheet, FTP, Telnet 
  Eventually >100M units per year 

  PC operating system 
  Memory protection 
  Multiprogramming 
  Networking 



31 

Now: > 1 Machines per User 

  Pervasive computers 
  Wearable computers 
  Communication devices 
  Entertainment equipment 
  Computerized vehicle 

  OS are specialized 
  Embedded OS 
  Specially configured general-

purpose OS 



32 

Now: Multiple Processors per Machine 
  Clusters 

  A network of PCs 
  Commodity OS 

  Multicomputers 
  Supercomputer with many CPUs and high-

speed communication 
  Specialized OS with special message-

passing support 
  Multiprocessors 

  SMP: Symmetric MultiProcessor 
  ccNUMA: Cache-Coherent Non-Uniform 

Memory Access  
  General-purpose, single-image OS with 

multiproccesor support 
  Chip Multiprocessors 

  2+ cores per chip COMMON 



33 

Today 

  Course staff and logistics 
  What is an operating system? 
  Evolution of computing and operating systems 
  Why study operating systems? 



34 

Why Study OS? 

  OS is a key part of a computer system 
  It makes our life better (or worse)  
  It is “magic” to realize what we want 
  It gives us “power” 

  Learn about concurrency 
  Parallel programs run on OS 
  OS runs on parallel hardware 
  Best way to learn concurrent programming  

  Understand how a system works 
  How many procedures does a key stroke invoke? 
  What happens when your application references 0 as a pointer? 
  Building a small OS will go a long way… 



Why Study OS? 

  Important for studying other areas 
  Networking, distributed systems, … 

  Full employment 
  New hardware capabilities and organizations 
  New features 
  New approaches 
  Engineering tradeoffs keep shifting as the hardware 

changes below and the apps change above 

35 



36 

Influences in OS Design 

Metrics 

Workload 

Hardware Resources 

Services & API 

Internal Structure 

Policies / Mechanisms 



37 

Influences in OS Design 

Metrics 

Workload 

Hardware Resources 

Services & API 

Internal Structure 

Policies / Mechanisms Performance as 
Bandwidth 
and Latency. 

Scientific computations 
Database operations 
      Multi-user 

Processor, Memory, Disks, Network, 
Keyboard, Display ,  Multiprocessors 



38 

Influences in OS Design 

Metrics 

Workload 

Hardware Resources 

Services & API 

Internal Structure 

Policies / Mechanisms Accessibility, 
Reliability, 
No-futz-ness 
Energy efficiency, 
Security 

Processor, Memory, Disks (?), Wireless & IR, 
Keyboard(?), Display(?), Mic & Speaker, 
Motors & Sensors, GPS, Camera, Batteries 

Productivity applications 
    Games, Multimedia, Web 
       Process control 
              Personal (PDAs),  
                    Embedded 
                      E-Commerce 



39 

Things To Do 

  For today’s material: Read MOS 1.1-1.3 
  For next time: Read MOS 1.4-1.5 
  Make “tent”, leave with me, pick up and use every class. 
  Choose a partner for first 3 projects and email vivek/me 

with your choice. 
  Use Piazza to help find available partners! 


