
COS 318: Operating Systems

Virtual Memory Design Issues

Vivek Pai
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

2

Design Issues

u  Thrashing and working set
u  Backing store
u  Simulate certain PTE bits
u  Pin/lock pages
u  Zero pages
u  Shared pages
u  Copy-on-write
u  Distributed shared memory
u  Virtual memory in Unix and Linux
u  Virtual memory in Windows 2000

3

Virtual Memory Design Implications

u  Revisit Design goals
l  Protection

•  Isolate faults among processes
l  Virtualization

•  Use disk to extend physical memory
•  Make virtualized memory user friendly (from 0 to high address)

u  Implications
l  TLB overhead and TLB entry management
l  Paging between DRAM and disk

u  VM access time
Access time = h × memory access time + (1 - h) × disk access time

l  E.g. Suppose memory access time = 100ns, disk access time = 10ms

•  If h = 90%, VM access time is 1ms!

4

Thrashing

u  Thrashing
l  Paging in and paging out all the time, I/O devices fully utilized
l  Processes block, waiting for pages to be fetched from disk

u  Reasons
l  Processes require more physical memory than it has
l  Does not reuse memory well
l  Too many processes, even though they individually fit

u  Solution: working set (last lecture)

l  Pages referenced by a process in the last T seconds
l  Two design questions

•  Which working set should be in memory?
•  How to allocate pages?

5

Working Set: Fit in Memory

u  Maintain two groups
l  Active: working set loaded
l  Inactive: working set intentionally not loaded

u  Two schedulers
l  A short-term scheduler schedules processes
l  A long-term scheduler decides which one active and which

one inactive, such that active working sets fits in memory
u  A key design point

l  How to decide which processes should be inactive
l  Typical method is to use a threshold on waiting time

Working Set: Global vs. Local Page Allocation

u  The simplest is global allocation only
l  Pros: Pool sizes are adaptable
l  Cons: Too adaptable, little isolation

u  A balanced allocation strategy
l  Each process has its own pool of pages
l  Paging allocates from its own pool and

replaces from its own working set
l  Use a “slow” mechanism to change the

allocations to each pool while providing
isolation

u  Design questions:
l  What is “slow?”
l  How big is each pool?
l  When to migrate?

User 1 User 2

?

Backing Store

u  Swap space
l  When process is created, allocate a swap space for it (?)
l  Need to load or copy processes to the swap space
l  Need to consider process space growth

u  Page creation
l  Allocate a disk address?
l  What if the page never swaps out?
l  What if the page never gets modified?

u  Swap out
l  Use the same disk address?
l  Allocate a new disk address?
l  Swap out one or multiple pages?

u  Text pages
l  They are read only in most cases. Treat them differently?

8

Revisit Address Translation

u  Map to page frame and disk
l  If valid bit = 1, map to pp#

physical page number
l  If valid bit = 0, map to dp# disk

page number

u  Page out
l  Invalidate page table entry and

TLB entry
l  Copy page to disk
l  Set disk page number in PTE

u  Page in
l  Find an empty page frame (may

trigger replacement)
l  Copy page from disk
l  Set page number in PTE and TLB

entry and make them valid

. . .
subl $20 %esp

movl 8(%esp), %eax
. . .

vp#
v vp#
i vp#
v vp#

v vp#

Process

TLB

pp#
pp#
dp#
pp#

pp#

. . .

v

9

Example: x86 Paging Options
u  Flags

l  PG flag (Bit 31 of CR0): enable page translation
l  PSE flag (Bit 4 of CR4): 0 for 4KB page size and 1 for large page size
l  PAE flag (Bit 5 of CR4): 0 for 2MB pages when PSE = 1 and 1 for 4MB pages when PSE = 1

extending physical address space to 36 bit
u  2MB and 4MB pages are mapped directly from directory entries
u  4KB and 4MB pages can be mixed

10

Example: x86 Directory Entry

Simulating PTE Bits

u  Simulating modify bit using read/write bit
l  Set pages read-only if they are read-write
l  Use a reserved bit to remember if the page is really read-only
l  On a write fault

•  If it is not really read-only, then record a modify in the data
structure and change it to read-write

•  Restart the instruction
u  Simulating access (reference) bit using valid bit

l  Invalidate all valid bits (even they are valid)
l  Use a reserved bit to remember if a page is really valid
l  On a page fault

•  If it is a valid reference, set the valid bit and place the page in
the LRU list

•  If it is a invalid reference, do the page replacement
•  Restart the faulting instruction

12

Pin (or Lock) Page Frames

u  When do you need it?
l  When DMA is in progress, you don’t want to page the pages

out to avoid CPU from overwriting the pages
u  How to design the mechanism?

l  A data structure to remember all pinned pages
l  Paging algorithm checks the data structure to decide on page

replacement
l  Special calls to pin and unpin certain pages

u  How would you implement the pin/unpin calls?
l  If the entire kernel is in physical memory, do we still need

these calls?

13

Zero Pages

u  Zeroing pages
l  Initialize pages with 0’s
l  Heap and static data are initialized

u  How to implement?
l  On the first page fault on a data page or stack page, zero it
l  Have a special thread zeroing pages

u  Can you get away without zeroing pages?

14

Shared Pages

u PTEs from two processes
share the same physical pages
l  What use cases?

u APIs
l  Shared memory calls
l  Shared libraries

u  Implementation issues
l  Destroying a process with shared

pages
l  Page in, page out shared pages
l  Pin and unpin shared pages
l  Derive the working set for a

process with shared pages

Page table 2

vp#
v vp#

v vp#

pp#
pp#

pp#

. . .

v

Page table 1

vp#
v vp#

v vp#

pp#
pp#

pp#

. . .

v

Physical
pages

15

Copy-On-Write
u  A technique to avoid preparing all

pages to run a large process
u  Method

l  Child’s address space uses the same
mapping as parent’s

l  Make all pages read-only
l  Make child process ready
l  On a read, nothing happens
l  On a write, generates a fault

•  map to a new page frame
•  copy the page over
•  restart the instruction

u  Issues
l  How to destroy an address space?
l  How to page in and page out?
l  How to pin and unpin?

Child
Page table

v vp# pp#

. . .

r pp# v

Parent
Page table

. . .
Physical
pages

r pp# v

r pp# v

r pp# v

r pp# v

r pp# v

Write
fault

w

16

Distributed Shared Memory
u  Run shared memory program

on a cluster of computers
u  Method

l  Multiple address space mapped
to “shared virtual memory”

l  Page access bits are set
according to coherence rules

•  Exclusive writer
•  N readers

l  A read fault will invalidate the
writer, make read only and copy
the page

l  A write fault will invalidate
another writer or all readers and
copy page

u  Issues
l  Thrashing
l  Page copy overhead

Virtual
Address
space

Virtual
Address
space

. . .

Shared
Virtual

Memory

17

Address Space in Unix

u  Stack
u  Data

l  Un-initialized: BSS (Block Started by
Symbol)

l  Initialized
l  brk(addr) to grow or shrink

u  Text: read-only
u  Mapped files

l  Map a file in memory
l  mmap(addr, len, prot, flags, fd, offset)
l  unmap(addr, len)

Stack

BSS
Data

Text

Address space

Mapped
file

Heap

18

Virtual Memory in BSD4

u  Physical memory partition
l  Core map (pinned): everything about page frames
l  Kernel (pinned): the rest of the kernel memory
l  Frames: for user processes

u  Page replacement
l  Run page daemon until there are enough free pages
l  Early BSD used the basic Clock (FIFO with 2nd chance)
l  Later BSD used Two-handed Clock algorithm
l  Swapper runs if page daemon can’t get enough free pages

•  Looks for processes idling for 20 seconds or more
•  Check when a process should be swapped in

19

Virtual Memory in Linux
u  Linux address space for 32-bit machines

l  3GB user space
l  1GB kernel (invisible at user level)

u  Backing store
l  Text segment uses executable binary file as backing storage
l  Other segments get backing storage on demand

u  Copy-on-write for forking off processes
u  Multi-level paging

l  Directory, upper, middle, page, offset
l  Kernel is pinned
l  Buddy algorithm with carving slabs for page frame allocation

u  Replacement
l  Keep certain number of pages free
l  Clock algorithm on paging cache and file buffer cache
l  Clock algorithm on unused shared pages
l  Modified Clock on memory of user processes

20

Address Space in Windows 2K/XP

u  Win2k user address space
l  Upper 2GB for kernel (shared)
l  Lower 2GB – 256MB are for user code and

data (Advanced server uses 3GB instead)
l  The 256MB contains for system data

(counters and stats) for user to read
l  64KB guard at both ends

u  Virtual pages
l  Page size

•  4KB for x86
•  8 or 16KB for IA64

l  States
•  Free: not in use and cause a fault
•  Committed: mapped and in use
•  Reserved: not mapped but allocated

guard

guard

System data 2GB

4GB

0

Page table

21

 Backing Store in Windows 2K/XP

u  Backing store allocation
l  Win2k delays backing store page assignments until paging out
l  There are up to 16 paging files, each with an initial and max

sizes
u  Memory mapped files

l  Delayed write back
l  Multiple processes can share mapped files w/ different

accesses
l  Implement copy-on-write

22

Paging in Windows 2K/XP

u  Each process has a working set with
l  Min size with initial value of 20-50 pages
l  Max size with initial value of 45-345 pages

u  On a page fault
l  If working set < min, add a page to the working set
l  If working set > max, replace a page from the working set

u  If a process has a lot of paging activities, increase its max
u  Working set manager maintains a large number of free pages

l  Lots of memory available: just age pages based on reference bits
l  Memory getting tight: for process with unused pages, stop adding pages to

process working set and start replacing the oldest pages
l  Memory is tight: trim working sets to below max by removing oldest pages

23

More Paging in Windows 2K/XP

Modified
page
list

Bad
page
list

Working
Sets

Process exit Replaced

Soft fault

Page in

Zero paging

Modified
page
writer Standby

page
list

Free
page
list

Zeroed
page
list

Dealloc

Zero
page

thread

24

Summary

u  Must consider many issues
l  Global and local replacement strategies
l  Management of backing store
l  Primitive operations

•  Pin/lock pages
•  Zero pages
•  Shared pages
•  Copy-on-write

u  Distributed shared memory can be implemented using
access bits

u  Real system designs are complex
l  Linux memory management: MOS 10.4
l  Windows memory management: MOS 11.5

