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Today’s Topics 

  Virtual Memory 
  Virtualization 
  Protection 

  Address Translation 
  Base and bound 
  Segmentation 
  Paging 
  Translation look-ahead buffer 
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The Big Picture 

 DRAM is fast, but relatively expensive 
 Disk is ~100X cheaper, but slow 

 Virtual Memory can bridge this gap. 
 Furthermore, VM can help with isolation 

between processes, portability 
abstractions regarding the amount of 
memory in the system, etc. 

 Our goals 
  Run programs as efficiently as possible 
  Make the system as safe as possible 
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Issues 

  Many processes 
  The more processes a system can handle, the better 

  Address space size 
  Many small processes whose total size may exceed memory 
  Even one process may exceed the physical memory size 

  Portability 
  Once I write a program, I want it to run on many platforms of 

the same ISA family.  I don’t want to need to know how much 
DRAM you have installed in order to compile/run it. 

  Protection 
  A user process should not crash the system 
  A user process should not do bad things to other processes 
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Consider A Simple System 

  Only physical memory 
  Applications use physical 

memory directly 
  Run three processes 

  emacs, pine, gcc 

  What if  
  gcc has an address error? 
  emacs writes at x7050? 
  pine needs to expand? 
  emacs needs more memory 

than is on the machine? 
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Protection Issue 

  Errors in one process should not affect others 
  For each process, check each load and store instruction 

to allow only legal memory references 
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Expansion or Transparency Issue 

  A process should be able to run regardless of its 
physical location or the physical memory size 

  Give each process a large, static “fake” address space 
  As a process runs, relocate each load and store to its 

actual memory 
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Virtual Memory 
“Any problem in computer science can be solved with 

another layer of indirection” 
  David Wheeler.  (World’s first PhD in CS. Worked on 

EDSAC; co-inventor of the subroutine aka “wheeler 
jump”.) 

  Rest of quote: “…But that usually will create another 
problem. 

  “Logical” or “virtual” address (visible to program) 
is distinct from “physical” address (how you 
actually access DRAM) 

  How to make this efficient? 



9 

Generic Address Translation 

  Memory Management Unit 
(MMU) translates virtual 
address into physical address 
for each load and store 

  Software (privileged) controls 
the translation 

  CPU view 
  Virtual addresses 

  Each process has its own 
memory space [0, high] 
  Address space 

  Memory or I/O device view 
  Physical addresses 
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Address Mapping and Granularity 
 Must have some “mapping” mechanism 

  Virtual addresses map to  
DRAM physical addresses or disk addresses 

 Mapping must have some granularity 
  Granularity determines flexibility 
  Finer granularity requires more mapping information 

 Extremes 
  Any byte to any byte: mapping equals program size 
  Map whole segments: larger segments problematic 
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Base and Bound 
  Built in Cray-1 
  Each process has a pair 

(base, bound) 
  Protection 

  A process can only access 
physical memory in  
[base, base+bound] 

  On a context switch 
  Save/restore base, bound 

registers 
  Pros 

  Simple 
  Flat and no paging 

  Cons 
  Fragmentation 
  Hard to share 
  Difficult to use disks 
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Segmentation 
  Each process has a table of 

(seg, size) 
  Treats (seg, size) has a 

fine-grained (base, bound) 
  Protection 

  Each entry has 
(nil, read, write, exec) 

  On a context switch 
  Save/restore the table and a 

pointer to the table in kernel 
memory  

  Pros 
  Efficient 
  Easy to share 

  Cons 
  Complex management 
  Fragmentation within a 

segment 
physical address 

+ 

segment offset 

Virtual address 

seg size 

. . . 

> 
error 
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Paging 

  Use a fixed size unit called 
page instead of segment 

  Use a page table to 
translate 

  Various bits in each entry 
  Context switch 

  Similar to segmentation 
  What should page size be? 
  Pros 

  Simple allocation 
  Easy to share 

  Cons 
  Big table 
  How to deal with holes? 

VPage # offset 

Virtual address 

. . . 

> 
error 

PPage# ... 
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PPage # offset 
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Page table 

page table size 



Pages:  virtual memory blocks 



Virtual Memory: Page Table’s role 

Virtual page number 

Page Table (OS) 

Physical Memory 



Virtual to Physical Page Translation 

Virtual Address 

Virt Page Nbr Pg Offset 

Offset is unchanged. 
Just use VPN. 

OS Page Table Pg Offset Phys Page Nbr 

Use this as the address 
to access memory… 

If the VPN is mapped in memory, 
give back the corresponding PPN  

Disk If VPN ISN’T mapped in memory, it’s on 
disk. 
“Page Fault” 
Create a V-to-P map for it and fetch 
whole page 
from disk into main memory 
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Efficiency? 

Virtual Address 

Virt Page Nbr Pg Offset 

Offset is unchanged. 
Just use VPN. 

OS Page Table Pg Offset Phys Page Nbr 

Use this as the address 
to access memory… 

If the VPN is mapped in memory, 
give back the corresponding PPN  

Disk How would you estimate overall 
performance of such a scheme? 



Page Faults are a real bummer… 

  Page faults:  No Page table mapping exists for this page 
=> the data is not in memory => retrieve it from disk 

  Huge time penalty: so… 
  pages should be fairly large (e.g., 4-8KB) 
  reducing page faults is important 
  Once memory is “full”, each page brought in from disk means 

another page currently in memory must be unmapped and 
sent back to disk. 

•  how to decide what to evict? 

   



But the PT lookups need to be fast also… 

  Even if we DON”T have a page fault, just reading a plain 
software page table on every reference would be a huge 
time penalty 
  We need a wait to make the common case (V-to-P mapping is 

present) as fast as possible. 
  Hardware: Translation Lookaside Buffer 
  HW/SW: Efficient Page Table designs and support to “walk” 

them fast 



Translation Lookaside Buffer (hardware) 

Virtual Address 

Virt Page Nbr Pg Offset 

Offset is unchanged. 
Just use VPN. 

OS Page Table 

Pg Offset Phys Page Nbr 

Use this as the address 
to access memory… 

Hardware TLB 

TLB Hit 

TLB Miss 

TLB Miss but Mapped 

Unmapped 
=> Page Fault 

Disk 

  Store most common V->P mappings in hardware table 
  Typical size: 100’s – 1000’s of entries. 
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Translation Look-aside Buffer (TLB) 

offset 
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. . . 
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Bits in a TLB Entry 

  Common (necessary) bits 
  Virtual page number: match with the virtual address 
  Physical page number: translated address 
  Valid 
  Access bits: kernel and user (nil, read, write) 

  Optional (useful) bits 
  Process tag 
  Reference 
  Modify 
  Cacheable 
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How Many PTEs Do We Need? 

  Assume 4KB page 
  Equals “low order” 12 bits 

  Worst case for 32-bit address machine 
  # of processes × 220 

  220 PTEs per page table (~4Mbytes), but there might be 10K 
processes.  They won’t fit in memory together 

  What about 64-bit address machine? 
  # of processes × 252  
  A page table cannot fit in a disk (252 PTEs = 16PBytes)! 
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Segmentation with Paging 

VPage # offset 
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. . . 
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Multiple-Level Page Tables 

Directory . . . 

pte 

. . . 

. . . 

. . . 

dir table offset 
Virtual address 

What does this buy us?  
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Inverted Page Tables 

  Main idea 
  One PTE for each 

physical page frame 
  Hash (Vpage, pid) to 

Ppage# 
  Pros 

  Small page table for 
large address space 

  Cons 
  Lookup is difficult  
  Overhead of managing 

hash chains, etc 

pid vpage offset 
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Hardware-Controlled TLB 

  On a TLB miss 
  Hardware loads the PTE into the TLB 

•  Write back and replace an entry if there is no free entry 
  Generate a fault if the page containing the PTE is invalid 
  VM software performs fault handling 
  Restart the CPU 

  On a TLB hit, hardware checks the valid bit 
  If valid, pointer to page frame in memory 
  If invalid, treat as TLB miss 
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Software-Controlled TLB 

  On a miss in TLB 
  Write back if there is no free entry 
  Check if the page containing the PTE is in memory 
  If not, perform page fault handling 
  Load the PTE into the TLB 
  Restart the faulting instruction 

  On a hit in TLB, the hardware checks valid bit 
  If valid, pointer to page frame in memory 
  If invalid, treat as TLB miss 
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Hardware vs. Software Controlled 

  Hardware approach 
  Efficient 
  Inflexible 

  Software approach 
  Flexible 
  Software can do mappings by hashing 

•  PP# → (Pid, VP#) 
•  (Pid, VP#) → PP# 

  Can deal with large virtual address space 
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Cache vs. TLB 

  Similarities 
  Cache a portion of memory 
  Write back on a miss 

  Differences 
  Associativity 
  Consistency 

Vpage # offset 
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TLB Related Issues 

  What TLB entry to be replaced? 
  Random 
  Pseudo LRU 

  What happens on a context switch? 
  Process tag: change TLB registers and process register 
  No process tag: Invalidate the entire TLB contents 

  What happens when changing a page table entry? 
  Change the entry in memory 
  Invalidate the TLB entry 
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Consistency Issues 

  “Snoopy” cache protocols (hardware) 
  Maintain consistency with DRAM, even when DMA happens 

  Consistency between DRAM and TLBs (software) 
  You need to flush related TLBs whenever changing a page 

table entry in memory 
  TLB “shoot-down” 

  On multiprocessors, when you modify a page table entry, you 
need to flush all related TLB entries on all processors 
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Summary 

  Virtual Memory 
  Virtualization makes software development easier and 

enables memory resource utilization better 
  Separate address spaces provide protection and isolate faults 

  Address translation 
  Base and bound: very simple but limited 
  Segmentation: useful but complex 

  Paging 
  TLB: fast translation for paging 
  VM needs to take care of TLB consistency issues 



Midterm Grading 

  Problems 1-2: Srinivas Narayan 
  Problem 3: Xianmin Chen 
  Problem 4: MRM 
  Problem 5: Vivek Pai 
  Problem 6: Mark Browning 
  Problem 7: Vivek Pai 

  Suggested solution online 
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