
COS 318: Operating Systems

Virtual Memory and Address
Translation

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

2

Today’s Topics

  Virtual Memory
  Virtualization
  Protection

  Address Translation
  Base and bound
  Segmentation
  Paging
  Translation look-ahead buffer

3

The Big Picture

 DRAM is fast, but relatively expensive
 Disk is ~100X cheaper, but slow

 Virtual Memory can bridge this gap.
 Furthermore, VM can help with isolation

between processes, portability
abstractions regarding the amount of
memory in the system, etc.

 Our goals
  Run programs as efficiently as possible
  Make the system as safe as possible

CPU

Memory

Disk

4

Issues

  Many processes
  The more processes a system can handle, the better

  Address space size
  Many small processes whose total size may exceed memory
  Even one process may exceed the physical memory size

  Portability
  Once I write a program, I want it to run on many platforms of

the same ISA family. I don’t want to need to know how much
DRAM you have installed in order to compile/run it.

  Protection
  A user process should not crash the system
  A user process should not do bad things to other processes

5

Consider A Simple System

  Only physical memory
  Applications use physical

memory directly
  Run three processes

  emacs, pine, gcc

  What if
  gcc has an address error?
  emacs writes at x7050?
  pine needs to expand?
  emacs needs more memory

than is on the machine?

OS

pine

emacs

gcc

Free x0000

x2500

x5000

x7000

x9000

6

Protection Issue

  Errors in one process should not affect others
  For each process, check each load and store instruction

to allow only legal memory references

CPU Check Physical
memory

address

error

data

gcc

7

Expansion or Transparency Issue

  A process should be able to run regardless of its
physical location or the physical memory size

  Give each process a large, static “fake” address space
  As a process runs, relocate each load and store to its

actual memory

CPU Check &
relocate

Physical
memory

address

data

pine

Virtual Memory
“Any problem in computer science can be solved with

another layer of indirection”
  David Wheeler. (World’s first PhD in CS. Worked on

EDSAC; co-inventor of the subroutine aka “wheeler
jump”.)

  Rest of quote: “…But that usually will create another
problem.

  “Logical” or “virtual” address (visible to program)
is distinct from “physical” address (how you
actually access DRAM)

  How to make this efficient?

9

Generic Address Translation

  Memory Management Unit
(MMU) translates virtual
address into physical address
for each load and store

  Software (privileged) controls
the translation

  CPU view
  Virtual addresses

  Each process has its own
memory space [0, high]
  Address space

  Memory or I/O device view
  Physical addresses

CPU

MMU

Physical
memory

I/O
device

Virtual address

Physical address

10

Address Mapping and Granularity
 Must have some “mapping” mechanism

  Virtual addresses map to
DRAM physical addresses or disk addresses

 Mapping must have some granularity
  Granularity determines flexibility
  Finer granularity requires more mapping information

 Extremes
  Any byte to any byte: mapping equals program size
  Map whole segments: larger segments problematic

11

Base and Bound
  Built in Cray-1
  Each process has a pair

(base, bound)
  Protection

  A process can only access
physical memory in
[base, base+bound]

  On a context switch
  Save/restore base, bound

registers
  Pros

  Simple
  Flat and no paging

  Cons
  Fragmentation
  Hard to share
  Difficult to use disks

virtual address

base

bound

error

+

>

physical address

12

Segmentation
  Each process has a table of

(seg, size)
  Treats (seg, size) has a

fine-grained (base, bound)
  Protection

  Each entry has
(nil, read, write, exec)

  On a context switch
  Save/restore the table and a

pointer to the table in kernel
memory

  Pros
  Efficient
  Easy to share

  Cons
  Complex management
  Fragmentation within a

segment
physical address

+

segment offset

Virtual address

seg size

. . .

>
error

13

Paging

  Use a fixed size unit called
page instead of segment

  Use a page table to
translate

  Various bits in each entry
  Context switch

  Similar to segmentation
  What should page size be?
  Pros

  Simple allocation
  Easy to share

  Cons
  Big table
  How to deal with holes?

VPage # offset

Virtual address

. . .

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

Pages: virtual memory blocks

Virtual Memory: Page Table’s role

Virtual page number

Page Table (OS)

Physical Memory

Virtual to Physical Page Translation

Virtual Address

Virt Page Nbr Pg Offset

Offset is unchanged.
Just use VPN.

OS Page Table Pg Offset Phys Page Nbr

Use this as the address
to access memory…

If the VPN is mapped in memory,
give back the corresponding PPN

Disk If VPN ISN’T mapped in memory, it’s on
disk.
“Page Fault”
Create a V-to-P map for it and fetch
whole page
from disk into main memory

Page
Table
(OS
Software)

Efficiency?

Virtual Address

Virt Page Nbr Pg Offset

Offset is unchanged.
Just use VPN.

OS Page Table Pg Offset Phys Page Nbr

Use this as the address
to access memory…

If the VPN is mapped in memory,
give back the corresponding PPN

Disk How would you estimate overall
performance of such a scheme?

Page Faults are a real bummer…

  Page faults: No Page table mapping exists for this page
=> the data is not in memory => retrieve it from disk

  Huge time penalty: so…
  pages should be fairly large (e.g., 4-8KB)
  reducing page faults is important
  Once memory is “full”, each page brought in from disk means

another page currently in memory must be unmapped and
sent back to disk.

•  how to decide what to evict?

 

But the PT lookups need to be fast also…

  Even if we DON”T have a page fault, just reading a plain
software page table on every reference would be a huge
time penalty
  We need a wait to make the common case (V-to-P mapping is

present) as fast as possible.
  Hardware: Translation Lookaside Buffer
  HW/SW: Efficient Page Table designs and support to “walk”

them fast

Translation Lookaside Buffer (hardware)

Virtual Address

Virt Page Nbr Pg Offset

Offset is unchanged.
Just use VPN.

OS Page Table

Pg Offset Phys Page Nbr

Use this as the address
to access memory…

Hardware TLB

TLB Hit

TLB Miss

TLB Miss but Mapped

Unmapped
=> Page Fault

Disk

  Store most common V->P mappings in hardware table
  Typical size: 100’s – 1000’s of entries.

22

Translation Look-aside Buffer (TLB)

offset

Virtual address

. . .

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real
page
table

VPage#
VPage#

VPage#

23

Bits in a TLB Entry

  Common (necessary) bits
  Virtual page number: match with the virtual address
  Physical page number: translated address
  Valid
  Access bits: kernel and user (nil, read, write)

  Optional (useful) bits
  Process tag
  Reference
  Modify
  Cacheable

24

How Many PTEs Do We Need?

  Assume 4KB page
  Equals “low order” 12 bits

  Worst case for 32-bit address machine
  # of processes × 220

  220 PTEs per page table (~4Mbytes), but there might be 10K
processes. They won’t fit in memory together

  What about 64-bit address machine?
  # of processes × 252
  A page table cannot fit in a disk (252 PTEs = 16PBytes)!

25

Segmentation with Paging

VPage # offset

Virtual address

. . .

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

. . .

Vseg #

error

26

Multiple-Level Page Tables

Directory . . .

pte

. . .

. . .

. . .

dir table offset
Virtual address

What does this buy us?

27

Inverted Page Tables

  Main idea
  One PTE for each

physical page frame
  Hash (Vpage, pid) to

Ppage#
  Pros

  Small page table for
large address space

  Cons
  Lookup is difficult
  Overhead of managing

hash chains, etc

pid vpage offset

pid vpage

0

k

n-1

k offset

Virtual
address

Physical
address

Inverted page table

28

Hardware-Controlled TLB

  On a TLB miss
  Hardware loads the PTE into the TLB

•  Write back and replace an entry if there is no free entry
  Generate a fault if the page containing the PTE is invalid
  VM software performs fault handling
  Restart the CPU

  On a TLB hit, hardware checks the valid bit
  If valid, pointer to page frame in memory
  If invalid, treat as TLB miss

29

Software-Controlled TLB

  On a miss in TLB
  Write back if there is no free entry
  Check if the page containing the PTE is in memory
  If not, perform page fault handling
  Load the PTE into the TLB
  Restart the faulting instruction

  On a hit in TLB, the hardware checks valid bit
  If valid, pointer to page frame in memory
  If invalid, treat as TLB miss

30

Hardware vs. Software Controlled

  Hardware approach
  Efficient
  Inflexible

  Software approach
  Flexible
  Software can do mappings by hashing

•  PP# → (Pid, VP#)
•  (Pid, VP#) → PP#

  Can deal with large virtual address space

31

Cache vs. TLB

  Similarities
  Cache a portion of memory
  Write back on a miss

  Differences
  Associativity
  Consistency

Vpage # offset

TLB

ppage # offset

Memory

Hit

Miss

Cache

Address Data

Hit

Memory

Miss

32

TLB Related Issues

  What TLB entry to be replaced?
  Random
  Pseudo LRU

  What happens on a context switch?
  Process tag: change TLB registers and process register
  No process tag: Invalidate the entire TLB contents

  What happens when changing a page table entry?
  Change the entry in memory
  Invalidate the TLB entry

33

Consistency Issues

  “Snoopy” cache protocols (hardware)
  Maintain consistency with DRAM, even when DMA happens

  Consistency between DRAM and TLBs (software)
  You need to flush related TLBs whenever changing a page

table entry in memory
  TLB “shoot-down”

  On multiprocessors, when you modify a page table entry, you
need to flush all related TLB entries on all processors

34

Summary

  Virtual Memory
  Virtualization makes software development easier and

enables memory resource utilization better
  Separate address spaces provide protection and isolate faults

  Address translation
  Base and bound: very simple but limited
  Segmentation: useful but complex

  Paging
  TLB: fast translation for paging
  VM needs to take care of TLB consistency issues

Midterm Grading

  Problems 1-2: Srinivas Narayan
  Problem 3: Xianmin Chen
  Problem 4: MRM
  Problem 5: Vivek Pai
  Problem 6: Mark Browning
  Problem 7: Vivek Pai

  Suggested solution online

35

