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Today’s Topics 

  Virtual Memory 
  Virtualization 
  Protection 

  Address Translation 
  Base and bound 
  Segmentation 
  Paging 
  Translation look-ahead buffer 
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The Big Picture 

 DRAM is fast, but relatively expensive 
 Disk is ~100X cheaper, but slow 

 Virtual Memory can bridge this gap. 
 Furthermore, VM can help with isolation 

between processes, portability 
abstractions regarding the amount of 
memory in the system, etc. 

 Our goals 
  Run programs as efficiently as possible 
  Make the system as safe as possible 

CPU 

Memory 

Disk 
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Issues 

  Many processes 
  The more processes a system can handle, the better 

  Address space size 
  Many small processes whose total size may exceed memory 
  Even one process may exceed the physical memory size 

  Portability 
  Once I write a program, I want it to run on many platforms of 

the same ISA family.  I don’t want to need to know how much 
DRAM you have installed in order to compile/run it. 

  Protection 
  A user process should not crash the system 
  A user process should not do bad things to other processes 
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Consider A Simple System 

  Only physical memory 
  Applications use physical 

memory directly 
  Run three processes 

  emacs, pine, gcc 

  What if  
  gcc has an address error? 
  emacs writes at x7050? 
  pine needs to expand? 
  emacs needs more memory 

than is on the machine? 
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Protection Issue 

  Errors in one process should not affect others 
  For each process, check each load and store instruction 

to allow only legal memory references 
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Expansion or Transparency Issue 

  A process should be able to run regardless of its 
physical location or the physical memory size 

  Give each process a large, static “fake” address space 
  As a process runs, relocate each load and store to its 

actual memory 

CPU  Check & 
relocate 

Physical 
memory 

address 

data 

pine 



Virtual Memory 
“Any problem in computer science can be solved with 

another layer of indirection” 
  David Wheeler.  (World’s first PhD in CS. Worked on 

EDSAC; co-inventor of the subroutine aka “wheeler 
jump”.) 

  Rest of quote: “…But that usually will create another 
problem. 

  “Logical” or “virtual” address (visible to program) 
is distinct from “physical” address (how you 
actually access DRAM) 

  How to make this efficient? 
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Generic Address Translation 

  Memory Management Unit 
(MMU) translates virtual 
address into physical address 
for each load and store 

  Software (privileged) controls 
the translation 

  CPU view 
  Virtual addresses 

  Each process has its own 
memory space [0, high] 
  Address space 

  Memory or I/O device view 
  Physical addresses 
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Address Mapping and Granularity 
 Must have some “mapping” mechanism 

  Virtual addresses map to  
DRAM physical addresses or disk addresses 

 Mapping must have some granularity 
  Granularity determines flexibility 
  Finer granularity requires more mapping information 

 Extremes 
  Any byte to any byte: mapping equals program size 
  Map whole segments: larger segments problematic 
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Base and Bound 
  Built in Cray-1 
  Each process has a pair 

(base, bound) 
  Protection 

  A process can only access 
physical memory in  
[base, base+bound] 

  On a context switch 
  Save/restore base, bound 

registers 
  Pros 

  Simple 
  Flat and no paging 

  Cons 
  Fragmentation 
  Hard to share 
  Difficult to use disks 
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Segmentation 
  Each process has a table of 

(seg, size) 
  Treats (seg, size) has a 

fine-grained (base, bound) 
  Protection 

  Each entry has 
(nil, read, write, exec) 

  On a context switch 
  Save/restore the table and a 

pointer to the table in kernel 
memory  

  Pros 
  Efficient 
  Easy to share 

  Cons 
  Complex management 
  Fragmentation within a 

segment 
physical address 

+ 

segment offset 

Virtual address 

seg size 

. . . 

> 
error 
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Paging 

  Use a fixed size unit called 
page instead of segment 

  Use a page table to 
translate 

  Various bits in each entry 
  Context switch 

  Similar to segmentation 
  What should page size be? 
  Pros 

  Simple allocation 
  Easy to share 

  Cons 
  Big table 
  How to deal with holes? 

VPage # offset 

Virtual address 

. . . 

> 
error 
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Page table 

page table size 



Pages:  virtual memory blocks 



Virtual Memory: Page Table’s role 

Virtual page number 

Page Table (OS) 

Physical Memory 



Virtual to Physical Page Translation 

Virtual Address 

Virt Page Nbr Pg Offset 

Offset is unchanged. 
Just use VPN. 

OS Page Table Pg Offset Phys Page Nbr 

Use this as the address 
to access memory… 

If the VPN is mapped in memory, 
give back the corresponding PPN  

Disk If VPN ISN’T mapped in memory, it’s on 
disk. 
“Page Fault” 
Create a V-to-P map for it and fetch 
whole page 
from disk into main memory 



Page 
Table 
(OS 
Software) 



Efficiency? 

Virtual Address 

Virt Page Nbr Pg Offset 

Offset is unchanged. 
Just use VPN. 

OS Page Table Pg Offset Phys Page Nbr 

Use this as the address 
to access memory… 

If the VPN is mapped in memory, 
give back the corresponding PPN  

Disk How would you estimate overall 
performance of such a scheme? 



Page Faults are a real bummer… 

  Page faults:  No Page table mapping exists for this page 
=> the data is not in memory => retrieve it from disk 

  Huge time penalty: so… 
  pages should be fairly large (e.g., 4-8KB) 
  reducing page faults is important 
  Once memory is “full”, each page brought in from disk means 

another page currently in memory must be unmapped and 
sent back to disk. 

•  how to decide what to evict? 

   



But the PT lookups need to be fast also… 

  Even if we DON”T have a page fault, just reading a plain 
software page table on every reference would be a huge 
time penalty 
  We need a wait to make the common case (V-to-P mapping is 

present) as fast as possible. 
  Hardware: Translation Lookaside Buffer 
  HW/SW: Efficient Page Table designs and support to “walk” 

them fast 



Translation Lookaside Buffer (hardware) 

Virtual Address 

Virt Page Nbr Pg Offset 

Offset is unchanged. 
Just use VPN. 

OS Page Table 

Pg Offset Phys Page Nbr 

Use this as the address 
to access memory… 

Hardware TLB 

TLB Hit 

TLB Miss 

TLB Miss but Mapped 

Unmapped 
=> Page Fault 

Disk 

  Store most common V->P mappings in hardware table 
  Typical size: 100’s – 1000’s of entries. 
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Translation Look-aside Buffer (TLB) 

offset 

Virtual address 

. . . 

PPage# ... 

PPage# ... 

PPage# ... 

PPage # offset 

Physical address 

VPage # 

TLB 
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Miss 

Real 
page 
table 

VPage# 
VPage# 

VPage# 
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Bits in a TLB Entry 

  Common (necessary) bits 
  Virtual page number: match with the virtual address 
  Physical page number: translated address 
  Valid 
  Access bits: kernel and user (nil, read, write) 

  Optional (useful) bits 
  Process tag 
  Reference 
  Modify 
  Cacheable 
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How Many PTEs Do We Need? 

  Assume 4KB page 
  Equals “low order” 12 bits 

  Worst case for 32-bit address machine 
  # of processes × 220 

  220 PTEs per page table (~4Mbytes), but there might be 10K 
processes.  They won’t fit in memory together 

  What about 64-bit address machine? 
  # of processes × 252  
  A page table cannot fit in a disk (252 PTEs = 16PBytes)! 
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Segmentation with Paging 

VPage # offset 

Virtual address 

. . . 

> 

PPage# ... 

PPage# ... 

... 

PPage # offset 

Physical address 

Page table 
seg size 

. . . 

Vseg # 

error 
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Multiple-Level Page Tables 

Directory . . . 

pte 

. . . 

. . . 

. . . 

dir table offset 
Virtual address 

What does this buy us?  
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Inverted Page Tables 

  Main idea 
  One PTE for each 

physical page frame 
  Hash (Vpage, pid) to 

Ppage# 
  Pros 

  Small page table for 
large address space 

  Cons 
  Lookup is difficult  
  Overhead of managing 

hash chains, etc 

pid vpage offset 

pid vpage 

0 

k 

n-1 

k offset 

Virtual  
address 

Physical  
address 

Inverted page table 
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Hardware-Controlled TLB 

  On a TLB miss 
  Hardware loads the PTE into the TLB 

•  Write back and replace an entry if there is no free entry 
  Generate a fault if the page containing the PTE is invalid 
  VM software performs fault handling 
  Restart the CPU 

  On a TLB hit, hardware checks the valid bit 
  If valid, pointer to page frame in memory 
  If invalid, treat as TLB miss 
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Software-Controlled TLB 

  On a miss in TLB 
  Write back if there is no free entry 
  Check if the page containing the PTE is in memory 
  If not, perform page fault handling 
  Load the PTE into the TLB 
  Restart the faulting instruction 

  On a hit in TLB, the hardware checks valid bit 
  If valid, pointer to page frame in memory 
  If invalid, treat as TLB miss 
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Hardware vs. Software Controlled 

  Hardware approach 
  Efficient 
  Inflexible 

  Software approach 
  Flexible 
  Software can do mappings by hashing 

•  PP# → (Pid, VP#) 
•  (Pid, VP#) → PP# 

  Can deal with large virtual address space 
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Cache vs. TLB 

  Similarities 
  Cache a portion of memory 
  Write back on a miss 

  Differences 
  Associativity 
  Consistency 

Vpage # offset 

TLB 

ppage # offset 

Memory 

Hit 

Miss 

Cache 

Address Data 

Hit 

Memory 

Miss 
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TLB Related Issues 

  What TLB entry to be replaced? 
  Random 
  Pseudo LRU 

  What happens on a context switch? 
  Process tag: change TLB registers and process register 
  No process tag: Invalidate the entire TLB contents 

  What happens when changing a page table entry? 
  Change the entry in memory 
  Invalidate the TLB entry 
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Consistency Issues 

  “Snoopy” cache protocols (hardware) 
  Maintain consistency with DRAM, even when DMA happens 

  Consistency between DRAM and TLBs (software) 
  You need to flush related TLBs whenever changing a page 

table entry in memory 
  TLB “shoot-down” 

  On multiprocessors, when you modify a page table entry, you 
need to flush all related TLB entries on all processors 
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Summary 

  Virtual Memory 
  Virtualization makes software development easier and 

enables memory resource utilization better 
  Separate address spaces provide protection and isolate faults 

  Address translation 
  Base and bound: very simple but limited 
  Segmentation: useful but complex 

  Paging 
  TLB: fast translation for paging 
  VM needs to take care of TLB consistency issues 



Midterm Grading 

  Problems 1-2: Srinivas Narayan 
  Problem 3: Xianmin Chen 
  Problem 4: MRM 
  Problem 5: Vivek Pai 
  Problem 6: Mark Browning 
  Problem 7: Vivek Pai 

  Suggested solution online 
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