
COS 318: Operating Systems

Virtual Memory and Address
Translation

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

2

Today’s Topics

  Virtual Memory
  Virtualization
  Protection

  Address Translation
  Base and bound
  Segmentation
  Paging
  Translation look-ahead buffer

3

The Big Picture

 DRAM is fast, but relatively expensive
 Disk is ~100X cheaper, but slow

 Virtual Memory can bridge this gap.
 Furthermore, VM can help with isolation

between processes, portability
abstractions regarding the amount of
memory in the system, etc.

 Our goals
  Run programs as efficiently as possible
  Make the system as safe as possible

CPU

Memory

Disk

4

Issues

  Many processes
  The more processes a system can handle, the better

  Address space size
  Many small processes whose total size may exceed memory
  Even one process may exceed the physical memory size

  Portability
  Once I write a program, I want it to run on many platforms of

the same ISA family. I don’t want to need to know how much
DRAM you have installed in order to compile/run it.

  Protection
  A user process should not crash the system
  A user process should not do bad things to other processes

5

Consider A Simple System

  Only physical memory
  Applications use physical

memory directly
  Run three processes

  emacs, pine, gcc

  What if
  gcc has an address error?
  emacs writes at x7050?
  pine needs to expand?
  emacs needs more memory

than is on the machine?

OS

pine

emacs

gcc

Free x0000

x2500

x5000

x7000

x9000

6

Protection Issue

  Errors in one process should not affect others
  For each process, check each load and store instruction

to allow only legal memory references

CPU Check Physical
memory

address

error

data

gcc

7

Expansion or Transparency Issue

  A process should be able to run regardless of its
physical location or the physical memory size

  Give each process a large, static “fake” address space
  As a process runs, relocate each load and store to its

actual memory

CPU Check &
relocate

Physical
memory

address

data

pine

Virtual Memory
“Any problem in computer science can be solved with

another layer of indirection”
  David Wheeler. (World’s first PhD in CS. Worked on

EDSAC; co-inventor of the subroutine aka “wheeler
jump”.)

  Rest of quote: “…But that usually will create another
problem.

  “Logical” or “virtual” address (visible to program)
is distinct from “physical” address (how you
actually access DRAM)

  How to make this efficient?

9

Generic Address Translation

  Memory Management Unit
(MMU) translates virtual
address into physical address
for each load and store

  Software (privileged) controls
the translation

  CPU view
  Virtual addresses

  Each process has its own
memory space [0, high]
  Address space

  Memory or I/O device view
  Physical addresses

CPU

MMU

Physical
memory

I/O
device

Virtual address

Physical address

10

Address Mapping and Granularity
 Must have some “mapping” mechanism

  Virtual addresses map to
DRAM physical addresses or disk addresses

 Mapping must have some granularity
  Granularity determines flexibility
  Finer granularity requires more mapping information

 Extremes
  Any byte to any byte: mapping equals program size
  Map whole segments: larger segments problematic

11

Base and Bound
  Built in Cray-1
  Each process has a pair

(base, bound)
  Protection

  A process can only access
physical memory in
[base, base+bound]

  On a context switch
  Save/restore base, bound

registers
  Pros

  Simple
  Flat and no paging

  Cons
  Fragmentation
  Hard to share
  Difficult to use disks

virtual address

base

bound

error

+

>

physical address

12

Segmentation
  Each process has a table of

(seg, size)
  Treats (seg, size) has a

fine-grained (base, bound)
  Protection

  Each entry has
(nil, read, write, exec)

  On a context switch
  Save/restore the table and a

pointer to the table in kernel
memory

  Pros
  Efficient
  Easy to share

  Cons
  Complex management
  Fragmentation within a

segment
physical address

+

segment offset

Virtual address

seg size

. . .

>
error

13

Paging

  Use a fixed size unit called
page instead of segment

  Use a page table to
translate

  Various bits in each entry
  Context switch

  Similar to segmentation
  What should page size be?
  Pros

  Simple allocation
  Easy to share

  Cons
  Big table
  How to deal with holes?

VPage # offset

Virtual address

. . .

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

Pages: virtual memory blocks

Virtual Memory: Page Table’s role

Virtual page number

Page Table (OS)

Physical Memory

Virtual to Physical Page Translation

Virtual Address

Virt Page Nbr Pg Offset

Offset is unchanged.
Just use VPN.

OS Page Table Pg Offset Phys Page Nbr

Use this as the address
to access memory…

If the VPN is mapped in memory,
give back the corresponding PPN

Disk If VPN ISN’T mapped in memory, it’s on
disk.
“Page Fault”
Create a V-to-P map for it and fetch
whole page
from disk into main memory

Page
Table
(OS
Software)

Efficiency?

Virtual Address

Virt Page Nbr Pg Offset

Offset is unchanged.
Just use VPN.

OS Page Table Pg Offset Phys Page Nbr

Use this as the address
to access memory…

If the VPN is mapped in memory,
give back the corresponding PPN

Disk How would you estimate overall
performance of such a scheme?

Page Faults are a real bummer…

  Page faults: No Page table mapping exists for this page
=> the data is not in memory => retrieve it from disk

  Huge time penalty: so…
  pages should be fairly large (e.g., 4-8KB)
  reducing page faults is important
  Once memory is “full”, each page brought in from disk means

another page currently in memory must be unmapped and
sent back to disk.

•  how to decide what to evict?

 

But the PT lookups need to be fast also…

  Even if we DON”T have a page fault, just reading a plain
software page table on every reference would be a huge
time penalty
  We need a wait to make the common case (V-to-P mapping is

present) as fast as possible.
  Hardware: Translation Lookaside Buffer
  HW/SW: Efficient Page Table designs and support to “walk”

them fast

Translation Lookaside Buffer (hardware)

Virtual Address

Virt Page Nbr Pg Offset

Offset is unchanged.
Just use VPN.

OS Page Table

Pg Offset Phys Page Nbr

Use this as the address
to access memory…

Hardware TLB

TLB Hit

TLB Miss

TLB Miss but Mapped

Unmapped
=> Page Fault

Disk

  Store most common V->P mappings in hardware table
  Typical size: 100’s – 1000’s of entries.

22

Translation Look-aside Buffer (TLB)

offset

Virtual address

. . .

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real
page
table

VPage#
VPage#

VPage#

23

Bits in a TLB Entry

  Common (necessary) bits
  Virtual page number: match with the virtual address
  Physical page number: translated address
  Valid
  Access bits: kernel and user (nil, read, write)

  Optional (useful) bits
  Process tag
  Reference
  Modify
  Cacheable

24

How Many PTEs Do We Need?

  Assume 4KB page
  Equals “low order” 12 bits

  Worst case for 32-bit address machine
  # of processes × 220

  220 PTEs per page table (~4Mbytes), but there might be 10K
processes. They won’t fit in memory together

  What about 64-bit address machine?
  # of processes × 252
  A page table cannot fit in a disk (252 PTEs = 16PBytes)!

25

Segmentation with Paging

VPage # offset

Virtual address

. . .

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

. . .

Vseg #

error

26

Multiple-Level Page Tables

Directory . . .

pte

. . .

. . .

. . .

dir table offset
Virtual address

What does this buy us?

27

Inverted Page Tables

  Main idea
  One PTE for each

physical page frame
  Hash (Vpage, pid) to

Ppage#
  Pros

  Small page table for
large address space

  Cons
  Lookup is difficult
  Overhead of managing

hash chains, etc

pid vpage offset

pid vpage

0

k

n-1

k offset

Virtual
address

Physical
address

Inverted page table

28

Hardware-Controlled TLB

  On a TLB miss
  Hardware loads the PTE into the TLB

•  Write back and replace an entry if there is no free entry
  Generate a fault if the page containing the PTE is invalid
  VM software performs fault handling
  Restart the CPU

  On a TLB hit, hardware checks the valid bit
  If valid, pointer to page frame in memory
  If invalid, treat as TLB miss

29

Software-Controlled TLB

  On a miss in TLB
  Write back if there is no free entry
  Check if the page containing the PTE is in memory
  If not, perform page fault handling
  Load the PTE into the TLB
  Restart the faulting instruction

  On a hit in TLB, the hardware checks valid bit
  If valid, pointer to page frame in memory
  If invalid, treat as TLB miss

30

Hardware vs. Software Controlled

  Hardware approach
  Efficient
  Inflexible

  Software approach
  Flexible
  Software can do mappings by hashing

•  PP# → (Pid, VP#)
•  (Pid, VP#) → PP#

  Can deal with large virtual address space

31

Cache vs. TLB

  Similarities
  Cache a portion of memory
  Write back on a miss

  Differences
  Associativity
  Consistency

Vpage # offset

TLB

ppage # offset

Memory

Hit

Miss

Cache

Address Data

Hit

Memory

Miss

32

TLB Related Issues

  What TLB entry to be replaced?
  Random
  Pseudo LRU

  What happens on a context switch?
  Process tag: change TLB registers and process register
  No process tag: Invalidate the entire TLB contents

  What happens when changing a page table entry?
  Change the entry in memory
  Invalidate the TLB entry

33

Consistency Issues

  “Snoopy” cache protocols (hardware)
  Maintain consistency with DRAM, even when DMA happens

  Consistency between DRAM and TLBs (software)
  You need to flush related TLBs whenever changing a page

table entry in memory
  TLB “shoot-down”

  On multiprocessors, when you modify a page table entry, you
need to flush all related TLB entries on all processors

34

Summary

  Virtual Memory
  Virtualization makes software development easier and

enables memory resource utilization better
  Separate address spaces provide protection and isolate faults

  Address translation
  Base and bound: very simple but limited
  Segmentation: useful but complex

  Paging
  TLB: fast translation for paging
  VM needs to take care of TLB consistency issues

Midterm Grading

  Problems 1-2: Srinivas Narayan
  Problem 3: Xianmin Chen
  Problem 4: MRM
  Problem 5: Vivek Pai
  Problem 6: Mark Browning
  Problem 7: Vivek Pai

  Suggested solution online

35

