
COS 318: Operating Systems

I/O Device and Drivers

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

2

Announcements

  Project 2 due Tomorrow Oct 19 at noon
  Precept today is open questions

  Thur Oct 20: I’m out of town: Program Committee
meeting for ASPLOS.
  Translation: All-day meeting in which researchers who have

peer-reviewed about 150 paper submissions discuss in person
which ~30 should be accepted for publication at the 17th
International Conference on Architectural Support for
Programming Languages and Operating Systems

  Prof. Vivek Pai will teach

  Midterm Thursday, Oct. 27 during normal class time

Today’s Topics

  Device controllers
  Device driver design
  Synchronous and asynchronous I/O

3

Speaking of I/O:
We’ve got no time to watch it all here, but check out the
“Mother of All Demos”:
http://www.youtube.com/watch?v=JfIgzSoTMOs
(and others)
Douglas Engelbart
First demo of a mouse. December 9, 1968

4

Input and Output

  A computer’s job is to process data
  Computation (CPU, cache, and memory)
  Move data into and out of a system (between I/O devices

and memory)
  Challenges with I/O devices

  Different categories: storage, networking, displays, etc.
  Large number of device drivers to support
  Device drivers run in kernel mode and can crash systems

  Goals of the OS
  Provide a generic, consistent, convenient and reliable way to

access I/O devices
  Achieve potential I/O performance in a system

5

Revisit Hardware

  Compute hardware
  CPU and caches
  Chipset
  Memory

  I/O Hardware
  I/O bus or interconnect
  I/O controller or adaptor
  I/O device

  Two types of I/O devices
  Programmed I/O (PIO)
  Direct Memory Access (DMA)

CPU

Memory
I/O bus

CPU CPU CPU

Network

I/O Devices

  Figure 5-2. (a) Separate I/O and memory space.
(b) Memory-mapped I/O. (c) Hybrid.

Memory-Mapped I/O (1)

8

Definitions and General Method

  Overhead
  CPU time to initiate an operation

  Latency
  Time to transfer one byte
  Overhead + 1 byte reaches

destination
  Bandwidth

  Rate of I/O transfer, once initiated
  Mbytes/sec

  General method
  Abstraction of byte transfers
  Batch transfers into block I/O for

efficiency to prorate overhead and
latency over a large unit

Initiate Data transfer

9

Programmed Input Device

  Device controller
  Status register

ready: if the host is done
busy: if the controller is done
int: interrupt
…

  Data registers
  A simple mouse design

  Put (X, Y) in data registers on a
move

  Interrupt

  Input on an interrupt
  Read values in X, Y registers
  Set ready bit
  Wake up a process/thread or

execute a piece of code

10

Programmed Output Device

  Device
  Status registers (ready, busy, …)
  Data registers

  Example
  A serial output device

  Perform an output
  Wait until ready bit is clear
  Poll the busy bit
  Writes the data to register(s)
  Set ready bit
  Controller sets busy bit and

transfers data
  Controller clears the ready bit and

busy bit

Figure 5-4. Operation of a DMA transfer.

Direct Memory Access (DMA)

12

Direct Memory Access (DMA)
  DMA controller or adaptor

  Status register
(ready, busy, interrupt, …)

  DMA command register
  DMA register (address, size)
  DMA buffer

  Host CPU initiates DMA
  Device driver call (kernel mode)
  Wait until DMA device is free
  Initiate a DMA transaction

(command, memory address, size)
  Block

  Controller performs DMA
  DMA data to device

(size--; address++)
  Interrupt on completion

(size == 0)
  Interrupt handler (on completion)

  Wakeup the blocked process

Today’s Topics

  Device controllers
  Device driver design
  Synchronous and asynchronous I/O

13

14

I/O Software Stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware

  Distinct devices may have classes of similar behavior
  (a) Without vs. (b) with a standard driver interface.

Uniform Interfacing for Device
Drivers

16

Recall Interrupt Handling

  Save context
  Mask interrupts if needed
  Set up a context for interrupt service
  Set up a stack for interrupt service
  Acknowledge the interrupt controller, enable it if needed
  Save entire context to PCB
  Run the interrupt service
  Unmask interrupts if needed
  Possibly change the priority of the process
  Run the scheduler

17

I/O System

Device Drivers

Rest of the
operating
system

Device
driver

Device
driver

. . .

Device
driver

Device
controller

Device
controller

. . .
Device

controller

Device

Device

Device

Device

In
te

rr
up

t H
an

dl
in

g

18

A Typical Device Driver Design

  Operating system and driver communication
  Commands and data between OS and device drivers

  Driver and hardware communication
  Commands and data between driver and hardware

  Driver operations
  Initialize devices
  Interpreting commands from OS
  Schedule multiple outstanding requests
  Manage data transfers
  Accept and process interrupts
  Maintain the integrity of driver and kernel data structures

19

Device Driver Interface

  Open(deviceNumber)
  Initialization and allocate resources (buffers)

  Close(deviceNumber)
  Cleanup, deallocate, and possibly turnoff

  Device driver types
  Block: fixed sized block data transfer
  Character: variable sized data transfer
  Terminal: character driver with terminal control
  Network: streams for networking

20

Character and Block Device Interfaces

  Character device interface
  read(deviceNumber, bufferAddr, size)

•  Reads “size” bytes from a byte stream device to “bufferAddr”
  write(deviceNumber, bufferAddr, size)

•  Write “size” bytes from “bufferAddr” to a byte stream device

  Block device interface
  read(deviceNumber, deviceAddr, bufferAddr)

•  Transfer a block of data from “deviceAddr” to “bufferAddr”
  write(deviceNumber, deviceAddr, bufferAddr)

•  Transfer a block of data from “bufferAddr” to “deviceAddr”
  seek(deviceNumber, deviceAddress)

•  Move the head to the correct position
•  Usually not necessary

21

Unix Device Driver Interface Entry Points
  init()

  Initialize hardware
  start()

  Boot time initialization (require system services)
  open(dev, flag, id) and close(dev, flag, id)

  Initialization resources for read or write, and release afterwards
  halt()

  Call before the system is shutdown
  intr(vector)

  Called by the kernel on a hardware interrupt
  read(…) and write() calls

  Data transfer
  poll(pri)

  Called by the kernel 25 to 100 times a second
  ioctl(dev, cmd, arg, mode)

  special request processing

Today’s Topics

  Device controllers
  Device driver design
  Synchronous and asynchronous I/O

22

23

Synchronous vs. Asynchronous I/O

  Synchronous I/O
  read() or write() will block a user process until its completion
  OS overlaps synchronous I/O with another process

  Asynchronous I/O
  read() or write() will not block a user process
  the user process can do other things before I/O completion
  I/O completion will notify the user process

24

Detailed Steps of Blocked Read

  A process issues a read call which executes a system call
  System call code checks for correctness and buffer cache
  If it needs to perform I/O, it will issues a device driver call
  Device driver allocates a buffer for read and schedules I/O
  Controller performs DMA data transfer
  Block the current process and schedule a ready process
  Device generates an interrupt on completion
  Interrupt handler stores any data and notifies completion
  Move data from kernel buffer to user buffer
  Wakeup blocked process (make it ready)
  User process continues when it is scheduled to run

25

Asynchronous I/O

  API
  Non-blocking read() and write()
  Status checking call
  Notification call
  Different form the synchronous I/O API

  Implementation
  On a write

•  Copy to a system buffer, initiate the write and return
•  Interrupt on completion or check status

  On a read
•  Copy data from a system buffer if the data is there
•  Otherwise, return with a special status

26

Why Buffering?

  Speed mismatch between the producer and consumer
  Character device and block device, for example
  Adapt different data transfer sizes (packets vs. streams)

  Deal with address translation
  I/O devices see physical memory
  User programs use virtual memory

  Spooling
  Avoid deadlock problems

  Caching
  Avoid I/O operations

27

Think About Performance

  A terminal connects to computer via a serial line
  Type character and get characters back to display
  RS-232 is bit serial: start bit, character code, stop bit (9600

baud)
  Do we have any cycles left?

  10 users or 10 modems
  900 interrupts/sec per user
  What should the overhead of an interrupt be

  Technique to minimize interrupt overhead
  Interrupt coalescing

28

Other Design Issues

 Build device drivers
  Statically

•  A new device driver requires reboot OS
  Dynamically

•  Download a device driver without rebooting OS
•  Almost every modern OS has this capability

 How to down load device driver dynamically?
  Load drivers into kernel memory
  Install entry points and maintain related data structures
  Initialize the device drivers

29

Dynamic Binding: Indirection

Open(1, …);

D
riv

er
-k

er
ne

l i
nt

er
fa

ce

Driver for device 0

…

open(…) {
}

read(…) {
} Driver for device 1

…

open(…) {
}

read(…) {
}

Indirect table

Other
Kernel

services

Interrupt
handlers

30

Issues with Device Drivers

  Flexible for users, ISVs and IHVs
  Users can download and install device drivers
  Vendors can work with open hardware platforms

  Dangerous methods
  Device drivers run in kernel mode
  Bad device drivers can cause kernel crashes and introduce

security holes

  Progress on making device driver more secure
  Checking device driver codes
  Build state machines for device drivers

31

Summary

  Device controllers
  Programmed I/O is simple but inefficient
  DMA is efficient (asynchronous) and complex

  Device drivers
  Dominate the code size of OS
  Dynamic binding is desirable for desktops or laptops
  Device drivers can introduce security holes
  Progress on secure code for device drivers but completely

removing device driver security is still an open problem

