
COS 402: Artificial Intelligence
— written exercises for R&N third edition —

Homework #7 Fall 2010
Machine learning Due: Tuesday, January 11

Part I: Written Exercises
Important note: This version of the written exercises was prepared for those using the third

edition of R&N, and all references below are therefore to that edition. (If you are using the other
edition, you need to obtain the other version of these written exercises.)

See instructions on the assignments webpage on how to turn these in. Each part below is worth 8
points. Be sure to show your work and justify all of your answers.

Consider the following dataset consisting of five training examples followed by three test exam-
ples:

x1 x2 x3 y

training
− + + −
+ + + +
− + − +
− − + −
+ + − +

test
+ − − ?
− − − ?
+ − + ?

There are three attributes (or features or dimensions), x1, x2 and x3, taking the values + and −.
The label (or class) is given in the last column denoted y; it also takes the two values + and −.

Simulate each of the following four learning algorithms on this dataset. In each case, show the
final hypothesis that is induced, and show how it was computed. Also, say what its prediction would
be on the three test examples.

For parts b, c and d, be sure to see the errata for R&N Chapter 18 below.

a. The decision tree algorithm discussed in class and R&N. For this algorithm, use the informa-
tion gain (entropy) impurity measure as a criterion for choosing an attribute to split on. Grow
your tree until all nodes are pure, but do not attempt to prune the tree.

b. AdaBoost. For this algorithm, you should interpret label values of + and − as the real num-
bers +1 and −1. Use decision stumps as weak hypotheses, and assume that the weak learner
always computes the decision stump with minimum error on the training set weighted by Dt.
(Recall that a decision stump is a one-level decision tree; see R&N p. 750.) Run your boosting
algorithm for three rounds.

c. Support vector machines. For this algorithm, you should interpret both label and attribute val-
ues of + and − as the real numbers +1 and −1. Also, you can use the additional information
that the first three examples are support vectors, but the others are not, so that α4 and α5 are



both zero in R&N Eq. (18.13). This means that you can maximize this equation over α1, α2

and α3 using calculus. (Note that if any of these variables turn out to be negative, there’s a
problem.) When you have found a solution vector w, check it by showing that yi(w ·xi) ≥ 1,
and that equality holds for the support vectors, i.e., the first three examples. (The notation
here is as in class and R&N.) You do not need to use a “kernel,” just a regular inner product,
as in Eqs. (18.13) and (18.14).

d. Neural networks. For this algorithm, use a single-layer neural net consisting of just a single
perceptron at the output, no hidden layers, and the three features at the input level. Attribute
values of + and − should be interpreted as the real numbers +1 and −1, while label values
of + and − should be interpreted as 1 and 0. You can disregard the “bias weight” (denoted
w0,j in R&N Figure 18.19), i.e., assume it is fixed to be zero. Assume that the neural net is
trained for a single “epoch” that runs through the training data once in the order given. Use
a learning rate of α = 0.1, and start with all weights equal to zero. For g, use the standard
sigmoid function given in Figure 18.17(b).

Part II: Programming

The programming part of this assignment is described at:
http://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/learning

Errata for R&N Chapter 18

There are a few important errors in R&N.
First of all, in Figure 18.34, the second to last line is written ambiguously. It should read:

z[k]← log[(1− error)/error ].

(Actually, however, I would encourage you to use the pseudocode and notation for AdaBoost given
in class and as a handout on the “Schedule & Readings” webpage.)

Also, the paragraph describing SVM’s at the very bottom of page 745 continuing at the top
of 746 differs from what we did in class, and also contains a few typos. In class, we implicitly
required the hyperplane sought by the SVM algorithm to pass through the origin. This resulted in a
hypothesis of the form

sign(w · x).

In the treatment of SVM’s in R&N, however, the hyperplane is not required to pass through the
origin. Thus, the computed hypothesis has the form

sign(w · x + b),

so that the hyperplane is defined both by the vector w and the scalar b.
The treatment in R&N is almost correct for this latter case, but contains some small errors. First,

the equation for w should instead be: w =
∑

j αjyjxj . Also, Eq. (18.14) should instead read:

h(x) = sign

(∑
i

αiyi(x · xi) + b

)
.

2



Finally, note that R&N does not explain how to find b.
The through-the-origin case discussed in class differs from what appears in R&N as follows:

(1) the constraint
∑

i αiyi = 0 is omitted; (2) the equation for w needs to be corrected (as just
explained); and (3) b is set to zero in Eq. (18.14).

For this class (including part c above), we will only consider the through-the-origin case.

3


