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Geometric Search

‣ range search
‣ space partitioning trees
‣ intersection search



Geometric objects.  Points, lines, intervals, circles, rectangles, polygons, ...
This lecture.  Intersections among objects.

Example problems.

• 1d range search in set of N numbers.

• 2d orthogonal range search in set of N points.

• Find all intersections among N orthogonal line segments.

• Find all intersections among N orthogonal rectangles.
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Overview

2d orthogonal range search orthogonal rectangle intersection



‣ range search
‣ space partitioning trees
‣ intersection search
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1d range search

Extension of ordered symbol table.

• Insert key-value pair.

• Search for key k.

• Range search:  find all keys between k1 and k2.

• Range count:  number of keys between k1 and k2.

Application.  Database queries.

Geometric interpretation.

• Keys are point on a line.

• Find/count points in a given interval.

insert B  B

insert D  B D

insert A  A B D

insert I  A B D I

insert H  A B D H I

insert F  A B D F H I

insert P  A B D F H I P

count G to K  2

search G to K  H I
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1d range search:  implementations

Ordered array.  Slow insert, binary search for k1 and k2 to find range.
Hash table.  No reasonable algorithm (key order lost in hash).
Red-black BST.  All operations fast.

Parameters.  N  = number of keys; R  = number of keys that match.

data structure insert range count range search

ordered array N log N R + log N

hash table 1 N N

red-black BST log N log N R + log N

running time is output sensitive
(number of matching keys can be N)

order of growth of running time for 1d range search



Range search.  Find all keys between k1 and k2.

• Recursively find all keys in left subtree (if any could fall in range).

• Check key in current node.

• Recursively find all keys in right subtree (if any could fall in range).

Proposition.  Running time is proportional to R + log N (assuming BST is balanced).
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1d range search:  BST implementation

black keys are
in the range

red keys are used in compares
but are not in the range

A
C

E

H

L
M

P

R

S
X

searching in the range [F..T]

Range search in a BST



7

2d orthogonal range search

Extension of ordered symbol-table to 2d keys.

• Insert a 2d key.

• Search for a 2d key.

• Range search:  find all keys that lie in a 2d range.

• Range count:  number of keys that lie in a 2d range.

Applications.  Networking, circuit design, databases.

Geometric interpretation.

• Keys are point in the plane.

• Find/count points in a given h-v rectangle.

rectangle is axis-aligned
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2d orthogonal range search:  grid implementation

Grid implementation.

• Divide space into M-by-M grid of squares.

• Create list of points contained in each square.

• Use 2d array to directly index relevant square. 

• Insert:  add (x, y) to list for corresponding square.

• Range search:  examine only those squares that intersect 2d range query.

LB

RT
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2d orthogonal range search:  grid implementation costs

Space-time tradeoff.

• Space:  M 2 + N.

• Time:  1  +  N / M 2 per square examined, on average.

Choose grid square size to tune performance.

• Too small:  wastes space.

• Too large:  too many points per square.

• Rule of thumb:  √N-by-√N grid.

Running time.  [if points are evenly distributed]

• Initialize data structure:  N.

• Insert point:  1.

• Range search:  1 per point in range.

choose M ~ √N 

LB

RT



Grid implementation.  Fast, simple solution for well-distributed points.

Problem.  Clustering a well-known phenomenon in geometric data.

• Lists are too long, even though average length is short.

• Need data structure that gracefully adapts to data.
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Clustering



Grid implementation.  Fast, simple solution for well-distributed points.

Problem.  Clustering a well-known phenomenon in geometric data.
Ex.  USA map data.
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Clustering

half the squares are empty half the points are
in 10% of the squares

13,000 points, 1000 grid squares



‣ range search
‣ space partitioning trees
‣ intersection search
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Use a tree to represent a recursive subdivision of 2d space.

Grid.  Divide space uniformly into squares.
Quadtree.  Recursively divide space into four quadrants.
2d tree.  Recursively divide space into two halfplanes. 
BSP tree.  Recursively divide space into two regions.
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Space-partitioning trees

Grid 2d treeQuadtree BSP tree
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Space-partitioning trees:  applications

Applications.

• Ray tracing.

• 2d range search.

• Flight simulators.

• N-body simulation.

• Collision detection.

• Astronomical databases. 

• Nearest neighbor search. 

• Adaptive mesh generation.

• Accelerate rendering in Doom.

• Hidden surface removal and shadow casting. 

Grid 2d treeQuadtree BSP tree



Idea.  Recursively divide space into 4 quadrants. 
Implementation.  4-way tree (actually a trie).

Benefit.  Good performance in the presence of clustering.
Drawback.  Arbitrary depth!
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Quadtree

a

b

c

e

f g h

d

public class QuadTree
{
   private Quad quad;
   private Value val;
   private QuadTree NW, NE, SW, SE;
}

(01.., 00..)

(0..., 1...)
a

b c

d e f g

h

SENW SWNE
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Quadtree:  larger example

http://en.wikipedia.org/wiki/Image:Point_quadtree.svg
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Quadtree:  2d orthogonal range search

Range search.  Find all keys in a given 2d range.

• Recursively find all keys in NE quadrant (if any could fall in range).

• Recursively find all keys in NW quadrant (if any could fall in range).

• Recursively find all keys in SE quadrant (if any could fall in range).

• Recursively find all keys in SW quadrant (if any could fall in range).

Typical running time.  R + log N.

a

b

c

e

f g h

d a

b c

d e f g

h

SENW SWNE



Goal.  Simulate the motion of N particles, mutually affected by gravity. 

Brute force.  For each pair of particles, compute force.
18

N-body simulation

F =
G m1 m2

r2

http://www.youtube.com/watch?v=ua7YlN4eL_w
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Barnes-Hut algorithm for N-body simulation

Key idea.  Suppose particle is far, far away from cluster of particles.

• Treat cluster of particles as a single aggregate particle.

• Compute force between particle and center of mass of aggregate particle.
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Barnes-Hut algorithm for N-body simulation

• Build quadtree with N particles as external nodes.

• Store center-of-mass of subtree in each internal node.

• To compute total force acting on a particle, traverse tree, but stop as soon 
as distance from particle to quad is sufficiently large.
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Curse of dimensionality

kd range search.  Orthogonal range search in k-dimensions.
Main application.  Multi-dimensional databases.

3d space.  Octrees:  recursively subdivide 3d space into 8 octants.
100d space.  Centrees:  recursively subdivide 100d space into 2100 centrants???

Raytracing with octrees

http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html



Recursively partition plane into two halfplanes.
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2d tree

1
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Data structure.  BST, but alternate using x- and y-coordinates as key.

• Search gives rectangle containing point.

• Insert further subdivides the plane.
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2d tree implementation

even levels

p

points
left of p

points
right of p

p

q

points
below q

points
above q

odd levels

q

1

2

87

10 9

3

4 6

5

1
2

3

4

6

7

8

9

10

5



1

2

87

10 9

3

4 6

5

Range search.  Find all points in a query axis-aligned rectangle.

• Check if point in node lies in given rectangle.

• Recursively search left/top subdivision (if any could fall in rectangle).

• Recursively search right/bottom subdivision (if any could fall in rectangle).

Typical case.  R + log N.

Worst case (assuming tree is balanced).  R + √N.
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2d tree:  2d orthogonal range search
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2d tree:  nearest neighbor search

Nearest neighbor search.  Given a query point, find the closest point.

• Check distance from point in node to query point.

• Recursively search left/top subdivision (if it could contain a closer point).

• Recursively search right/bottom subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

Typical case.  log N. 
Worst case (even if tree is balanced).  N.

query point

1

2

87

10 9

3

4 6

5

1

3

4

6

5

1

3

4 6

5

2

7

8

9

10

closest point = 1closest point = 3closest point = 5
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Kd tree

Kd tree.  Recursively partition k-dimensional space into 2 halfspaces. 

Implementation.  BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

• Widely used.

• Adapts well to high-dimensional and clustered data. 

• Discovered by an undergrad (Jon Bentley) in an algorithms class!

level ≡ i (mod k)

points
whose ith
coordinate

is less than p’s

points
whose ith
coordinate

is greater than p’s

p



‣ range search
‣ space partitioning trees
‣ intersection search
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Search for intersections

Problem.  Find all intersecting pairs among N geometric objects.
Applications.  CAD, games, movies, virtual reality, ....

Simple version.  2d, all objects are horizontal or vertical line segments.

Brute force.  Test all Θ(N 2) pairs of line segments for intersection.



Sweep vertical line from left to right.

• x-coordinates define events.

• h-segment (left endpoint):  insert y-coordinate into ST.
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Orthogonal line segment intersection search:  sweep-line algorithm

y-coordinates

0

1

2

3

0

1

3

2

4



Sweep vertical line from left to right.

• x-coordinates define events.

• h-segment (left endpoint):  insert y-coordinate into ST.

• h-segment (right endpoint):  remove y-coordinate from ST.
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Orthogonal line segment intersection search:  sweep-line algorithm

0

1

2

3

y-coordinates

0

1

3

4



Sweep vertical line from left to right.

• x-coordinates define events.

• h-segment (left endpoint):  insert y-coordinate into ST.

• h-segment (right endpoint):  remove y-coordinate from ST.

• v-segment:  range search for interval of y-endpoints.
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Orthogonal line segment intersection search:  sweep-line algorithm

1d range
search

4

0

1

2

3

y-coordinates

0

1

3
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Orthogonal line segment intersection search:  sweep-line algorithm

Sweep line reduces 2d orthogonal line segment intersection to 1d range search.

Proposition. The sweep-line algorithm takes time proportional to N log N + R

to find all R intersections among N orthogonal segments.

• Put x-coordinates on a PQ (or sort). N log N

• Insert y-coordinates into ST.  N log N

• Delete y-coordinates from ST.  N log N

• Range searches.   N log N  + R

Efficiency relies on judicious use of data structures.

Remark.  Sweep-line solution extends to 3d and more general shapes.
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General line segment intersection search

Extend sweep-line algorithm.

• Maintain segments that intersect sweep line ordered by y-coordinate.

• Intersections can only occur between adjacent segments.

• Add/delete line segment  ⇒  one new pair of adjacent segments.

• Intersection  ⇒  swap adjacent segments.

order of segments that intersect sweep line

A

C

B

ABC ACB

D

ACD CADA AB

insert segment

delete segment

intersectionACBD CA A



34

Line segment intersection:  implementation

Efficient implementation of sweep line algorithm.

• Maintain PQ of important x-coordinates:  endpoints and intersections.

• Maintain set of segments intersecting sweep line, sorted by x.

• Time proportional to R log N + N log N.

Implementation issues.

• Degeneracy.

• Floating-point precision.

• Must use PQ, not presort (intersection events are unknown ahead of time).

to support "next largest"
and "next smallest" queries
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Orthogonal rectangle intersection search

Goal.  Find all intersections among a set of N orthogonal rectangles.
Non-degeneracy assumption.  All x- and y-coordinates are distinct.

Application.  Design-rule checking in VLSI circuits.
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Microprocessors and geometry

Early 1970s.  microprocessor design became a geometric problem.

• Very Large Scale Integration (VLSI).

• Computer-Aided Design (CAD).

Design-rule checking.

• Certain wires cannot intersect.

• Certain spacing needed between different types of wires.

• Debugging = orthogonal rectangle intersection search.
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Algorithms and Moore's law

"Moore’s law."  Processing power doubles every 18 months.

• 197x:  need to check N rectangles.

• 197(x+1.5):  need to check 2 N rectangles on a 2x-faster computer.

Bootstrapping.  We get to use the faster computer for bigger circuits.

But bootstrapping is not enough if using a quadratic algorithm:

• 197x: takes M days.

• 197(x+1.5): takes (4 M) / 2 = 2 M days. (!)

 Bottom line.  Linearithmic CAD algorithm is necessary to sustain Moore’s Law.

2x-faster
computer

quadratic
algorithm



Move a vertical "sweep line" from left to right.

• Sweep line:  sort rectangles by x-coordinates and process in this order,
stopping on left and right endpoints. 

• Maintain set of y-intervals intersecting sweep line.

• Left endpoint:  search set for intersecting y-intervals; insert y-interval.

• Right endpoint:  delete y-interval.
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Orthogonal rectangle intersection search

y-coordinates

0

1

2

3

0

1

23
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Interval search trees

      public class IntervalST<Key extends Comparable<Key>, Value>      public class IntervalST<Key extends Comparable<Key>, Value>      public class IntervalST<Key extends Comparable<Key>, Value>

IntervalST() create interval search tree

void put(Key lo, Key hi, Value val) put interval-value pair into ST

Value get(Key lo, Key hi) return value paired with
given interval

void remove(Key lo, Key hi) remove the given interval

Iterable<Value> intersects(Key lo, Key hi)
return all intervals that intersect

the given interval

(7, 10)

(5, 11)

(4, 8) (15, 18)

(17, 19)

(20, 22)
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Non-degeneracy assumption.  No two intervals have the same left endpoint.

Interval search trees

      public class IntervalST<Key extends Comparable<Key>, Value>      public class IntervalST<Key extends Comparable<Key>, Value>      public class IntervalST<Key extends Comparable<Key>, Value>

IntervalST() create interval search tree

void put(Key lo, Key hi, Value val) put interval-value pair into ST

Value get(Key lo, Key hi) return value paired with
given interval

void remove(Key lo, Key hi) remove the given interval

Iterable<Value> intersects(Key lo, Key hi)
return all intervals that intersect

the given interval
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Interval search trees

Create BST, where each node stores an interval (lo, hi).

• Use left endpoint as BST key. 

• Store max endpoint in subtree rooted at node.

Suffices to implement all ops efficiently!

(4, 8)

(17, 19)

(5, 11) (20, 22)

(15, 18)

(7, 10)

22

18 22

18

10

8

(7, 10)

(5, 11)

(4, 8) (15, 18)

(17, 19)

(20, 22)



42

Finding an intersecting interval

To search for any interval that intersects query interval (lo, hi) :

Ex.  Search for (9, 10).

 Node x = root;
 while (x != null)
 {
    if (x.interval.intersects(lo, hi))
       return x.interval;
    else if (x.left == null)  x = x.right;
    else if (x.left.max < lo) x = x.right;
    else                      x = x.left;
 }
 return null;

(4, 8)

(17, 19)

(5, 8) (20, 22)

(15, 18)

(7, 10)

22

18 22

18

10

8
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Finding an intersecting interval

To search for any interval that intersects query interval (lo, hi) :

Case 1. If search goes right, then no intersection in left.
Pf. 

•  (x.left == null)  ⇒  trivial.

•  (x.left.max < lo) ⇒  for any interval (a, b) in left subtree of x,
we have b  ≤  max  <  lo.

left subtree of x

(lo, hi)

max

(a, b)

definition of max reason for going right

 Node x = root;
 while (x != null)
 {
    if (x.interval.intersects(lo, hi))
       return x.interval;
    else if (x.left == null)  x = x.right;
    else if (x.left.max < lo) x = x.right;
    else                      x = x.left;
 }
 return null;

right subtree of x

(c, max)
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Finding an intersecting interval

To search for any interval that intersects query interval (lo, hi) :

Case 2.  If search goes left, then there is either an intersection in left 
subtree or no intersections in either.

Pf.  Suppose no intersection in left.  Then for any interval (a, b) in
right subtree of x,  hi  < c  ≤  a  ⇒  no intersection in right.

 Node x = root;
 while (x != null)
 {
    if (x.interval.intersects(lo, hi))
       return x.interval;
    else if (x.left == null)  x = x.right;
    else if (x.left.max < lo) x = x.right;
    else                      x = x.left;
 }
 return null;

no intersections in left subtree intervals sorted by left endpoint

left subtree of x

(a, b)

right subtree of x

(c, max)

(lo, hi)

max
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Interval search tree:  analysis

Implementation.  Use a red-black BST to guarantee performance.

can maintain auxiliary information
using log N extra work per op

operation brute
interval

search tree
best

in theory

insert interval 1 log N log N

find interval N log N log N

delete interval N log N log N

find any interval that 
intersects (lo, hi)

N log N log N

find all intervals that 
intersects (lo, hi)

N R log N R + log N

order of growth of running time for N intervals



Move a vertical "sweep line" from left to right.

• Sweep line:  sort rectangles by x-coordinates and process in this order,
stopping on left and right endpoints.

• Maintain set of rectangles that intersect the sweep line in an interval 
search tree (using y-intervals of rectangle).

• Left endpoint:  interval search for y-interval of rectangle; insert y-interval.

• Right endpoint:  delete y-interval.
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Rectangle intersection sweep-line algorithm:  review
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Rectangle intersection search:  costs summary

Sweep line reduces 2d orthogonal rectangle intersection search to
1d interval search.

Proposition. Sweep line algorithm takes time proportional to N log N + R

to find R intersections among a set of N rectangles. 

• Put x-coordinates on a PQ (or sort). N log N

• Insert y-intervals into ST.  N log N

• Delete y-intervals from ST.  N log N

• Interval searches for y-intervals.  N log N + R 

Efficiency relies on judicious use of data structures.



problem example solution

1d range search BST

kd orthogonal
range search

kd tree      

1d interval search interval search tree

2d orthogonal
line segment intersection

sweep line reduces to
1D range search

2d orthogonal
rectangle intersection

sweep line reduces to
1D interval search

Geometric search summary:  algorithms of the day
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