6.5 Reductions

Algorithms, $4^{\text {th }}$ Edition

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'.

Suppose we could (could not) solve problem X efficiently.
What else could (could not) we solve efficiently?

[^0]
Bird's-eye view

Desiderata. Classify problems according to computational requirements.

complexity	order of growth	examples
linear	N	min, max, median, Burrows-Wheeler transform, \ldots
linearithmic	$\mathrm{N} \log \mathrm{N}$	sorting, convex hull, closest pair, farthest pair, \ldots
quadratic	N^{2}	$? ? ?$
exponential	c^{N}	$? ? ?$

Frustrating news. Huge number of problems have defied classification.

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Cost of solving $X=$ total cost of solving $Y+$ cost of reduction. perhaps many calls to Y preprocessing and postprocessing
on problems of different sizes

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Ex 1. [element distinctness reduces to sorting]
To solve element distinctness on N integers:

- Sort N integers.
- Check adjacent pairs for equality.
cost of sorting

Cost of solving element distinctness. $N \log N+N$.

$$
\swarrow \quad \swarrow^{\text {cost of reduction }}
$$.

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Ex 2. [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:

- For each point, sort other points by polar angle.
- check adjacent triples for collinearity

Cost of solving 3-collinear. $N^{2} \log N+N^{2}$.

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Design algorithm. Given algorithm for Y, can also solve X.

Ex.

- Element distinctness reduces to sorting.
- 3-collinear reduces to sorting.
- PERT reduces to topological sort. [see shortest paths lecture]
- h-v line intersection reduces to 1d range searching. [see geometry lecture]
- Burrows-Wheeler transform reduces to suffix sort. [see assignment 8]

Mentality. Since I know how to solve Y, can I use that algorithm to solve X ?
programmer's version: I have code for Y. Can I use it for X ?

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points of the convex hull (in counterclockwise order).

Proposition. Convex hull reduces to sorting.
Pf. Graham scan algorithm.

$$
\text { cost of sorting } \text { cost of reduction }
$$

Cost of convex hull. $N \log \mathrm{~N}+N$.

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) reduces to directed shortest path.

Cost of undirected shortest paths. $E \log V+E$.

$$
\begin{gathered}
\text { cost of shortest } \\
\text { paths in digraph }
\end{gathered}
$$

Proposition. Undirected shortest paths (with nonnegative weights) reduces to directed shortest path.

12

Caveat. Reduction is invalid for edge-weighted graphs with negative weights (even if no negative cycles).
\qquad
7 \qquad -- -4

 7

Remark. Can still solve shortest paths problem in undirected graphs (if no negative cycles), but need more sophisticated techniques.

> reduces to weighted non-bipartite matching (!)

Some reductions involving familiar problems

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. $\Omega(N \log N)$ lower bound for sorting.

> 1251432
> 2861534
> 3988818
> 4190745
> 13546464 89885444 43434213
argument must apply to all conceivable algorithms

Bad news. Very difficult to establish lower bounds from scratch.

Good news. Can spread $\Omega(N \log N)$ lower bound to Y by reducing sorting to Y.

$$
\begin{aligned}
& \text { assuming cost of reduction } \\
& \text { is not too high }
\end{aligned}
$$

Def. Problem X linear-time reduces to problem Y if X can be solved with

- Linear number of standard computational steps.
- Constant number of calls to Y.

Ex. Almost all of the reductions we've seen so far. [Which one wasn't?]

Establish lower bound:

- If X takes $\Omega(N \log N)$ steps, then so does Y.
- If X takes $\Omega\left(N^{2}\right)$ steps, then so does Y.

Mentality.

- If I could easily solve Y, then I could easily solve X.
- I can't easily solve X.
- Therefore, I can't easily solve Y.

Sorting linear-time reduces to convex hull

Proposition. Sorting linear-time reduces to convex hull.

- Sorting instance: $x_{1}, x_{2}, \ldots, x_{N}$.

[^1]- Convex hull instance: $\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}^{2}\right), \ldots,\left(x_{N}, x_{N}{ }^{2}\right)$.

Pf.

- Region $\left\{x: x^{2} \geq x\right\}$ is convex \Rightarrow all points are on hull.
- Starting at point with most negative x, counterclockwise order of hull points yields integers in ascending order.

Proposition. In quadratic decision tree model, any algorithm for sorting
N integers requires $\Omega(N \log N)$ steps.

$$
\begin{aligned}
& \text { allows quadratic tests of the form: } \\
& x_{i} \leq x_{i} \operatorname{or}\left(x_{i}-x_{i}\right)\left(x_{k}-x_{i}\right)-\left(x_{i}\right)\left(x_{i}\right.
\end{aligned}
$$

$$
\mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{j}} \text { or }\left(\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{i}}\right)\left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{i}}\right)-\left(\mathrm{x}_{\mathrm{j}}\right)\left(\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{i}}\right)<0
$$

Proposition. Sorting linear-time reduces to convex hull Pf. [see next slide]
lower-bound mentality: if I can solve convex hull efficiently, I can sort efficiently

sorting

convex hull

Implication. Any ccw-based convex hull algorithm requires $\Omega(N \log N) c c w ' s$.

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0 ?

3-COLLINEAR. Given N distinct points in the plane, \qquad recall Assignment 3 are there 3 that all lie on the same line?

3-SUM. Given N distinct integers, are there three that sum to 0 ?

3-COLLINEAR. Given N distinct points in the plane

are there 3 that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
Pf. [see next 2 slide]

Conjecture. Any algorithm for 3-SUM requires $\Omega\left(N^{2}\right)$ steps Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.
your $\mathrm{N}^{2} \log \mathrm{~N}$ algorithm was pretty good

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

- 3-SUM instance: $x_{1}, x_{2}, \ldots, x_{N}$.
- 3-COLLINEAR instance: $\left(x_{1}, x_{1}{ }^{3}\right),\left(x_{2}, x_{2}{ }^{3}\right), \ldots,\left(x_{N}, x_{N}{ }^{3}\right)$

Lemma. If a, b, and c are distinct, then $a+b+c=0$ if and only if $\left(a, a^{3}\right),\left(b, b^{3}\right)$, and $\left(c, c^{3}\right)$ are collinear.

Pf. Three distinct points $\left(a, a^{3}\right),\left(b, b^{3}\right)$, and $\left(c, c^{3}\right)$ are collinear iff:

$$
\begin{aligned}
0 & =\left|\begin{array}{lll}
a & a^{3} & 1 \\
b & b^{3} & 1 \\
c & c^{3} & 1
\end{array}\right| \\
& =a\left(b^{3}-c^{3}\right)-b\left(a^{3}-c^{3}\right)+c\left(a^{3}-b^{3}\right) \\
& =(a-b)(b-c)(c-a)(a+b+c)
\end{aligned}
$$

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

- 3-SUM instance: $x_{1}, x_{2}, \ldots, x_{N}$
- 3-COLLINEAR instance: $\left(x_{1}, x_{1}{ }^{3}\right),\left(x_{2}, x_{2}{ }^{3}\right), \ldots,\left(x_{N}, x_{N}{ }^{3}\right)$

Lemma. If a, b, and c are distinct, then $a+b+c=0$ if and only if $\left(a, a^{3}\right),\left(b, b^{3}\right)$, and $\left(c, c^{3}\right)$ are collinear.

22

More linear-time reductions and lower bounds

3-sum
(conjectured N^{2} lower bound)

Establishing lower bounds: summary

Establishing lower bounds through reduction is an important tool in guiding algorithm design efforts.
Q. How to convince yourself no linear-time convex hull algorithm exists?

A1. [hard way] Long futile search for a linear-time algorithm.
A2. [easy way] Linear-time reduction from sorting.
Q. How to convince yourself no sub-quadratic 3-COLLINEAR algorithm likely.

A1. [hard way] Long futile search for a sub-quadratic algorithm.
A2. [easy way] Linear-time reduction from 3-SUM.

Classifying problems: summary

Desiderata. Problem with algorithm that matches lower bound.
Ex. Sorting, convex hull, and closest pair have complexity $N \log N$.

Desiderata'. Prove that two problems X and Y have the same complexity.

- First, show that problem X linear-time reduces to Y.
- Second, show that Y linear-time reduces to X.

Conclude that X and Y have the same complexity.
even if we don't know what it is!

Primality testing

PRIME. Given an integer x (represented in binary), is x prime?
COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. PRIME linear-time reduces to COMPOSITE.

```
public static boolean isPrime(BigInteger x)
{
    if (isComposite(x)) return false;
    else
}
```


Caveat

PRIME. Given an integer x (represented in binary), is x prime? COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. COMPOSITE linear-time reduces to PRIME.

```
public static boolean isComposite(BigInteger x)
{
    if (isPrime(x)) return false;
    else return true;
}
```


147573952589676412931

prime

147573952589676412927
composite

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.

Brute force. N^{2} bit operations.

$$
\begin{array}{llllll|l|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline
\end{array}
$$

PRIME. Given an integer x (represented in binary), is x prime?
COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. PRIME linear-time reduces to COMPOSITE.
Proposition. COMPOSITE linear-time reduces to PRIME
Conclusion. PRIME and COMPOSITE have the same complexity.
best known deterministic algorith
is about N^{6} for N -bit integer
A possible real-world scenario.

- System designer specs the APIs for project.
- Alice implements isComposite() using isPrime ()
- Bob implements isPrime () using isComposite().
- Infinite reduction loop!
-Who's fault?

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.

Brute force. N^{2} bit operations.
Karatsuba-Ofman (1962) $N^{1.585}$ bit operations.
Toom (1963) $N^{1+\varepsilon}$ bit operations.
Schönhage-Strassen (1971). $N \log N \log \log N$ bit operations.
Fürer (2007). $N \log N 2^{\log ^{*} N}$ bit operations.

problem	arithmetic	order of growth
integer multiplication	$a \times b$	$M(N)$
integer division	$a / b, a \bmod b$	$M(N)$
integer square	a^{2}	$M(N)$
integer square root	$\lfloor\sqrt{ } a\rfloor$	$M(N)$

Q. Is brute-force algorithm optimal?

Linear algebra reductions

Matrix multiplication. Given two N-by- N matrices, compute their product.

Brute force. N^{3} flops.

Q. Is brute-force algorithm optimal?

Matrix multiplication. Given two N-by- N matrices, compute their product. Brute force. N^{3} flops.
Strassen (1969). $N^{2.81}$ flops.
Coppersmith-Winograd (1987). $N^{2.376}$ flops.

problem	linear algebra	order of growth		
matrix multiplication	$\mathrm{A} \times \mathrm{B}$	$\mathrm{MM}(\mathrm{N})$		
matrix inversion	A^{-1}	$\mathrm{MM}(\mathrm{N})$		
determinant	$\|\mathrm{A}\|$	$\mathrm{MM}(\mathrm{N})$		
system of linear equations	$\mathrm{Ax}=\mathrm{b}$	$\mathrm{MM}(\mathrm{N})$		
LU decomposition	$\mathrm{A}=\mathrm{LU}$	$\mathrm{MM}(\mathrm{N})$		
least squares	$\min \\|A x-b\\|_{2}$	$\mathrm{MM}(\mathrm{N})$		

numerical linear algebra problems with the same complexity

Bird's-eye view

Def. A problem is intractable if it can't be solved in polynomial time.
Desiderata. Prove that a problem is intractable.

Two problems that provably require exponential time. \downarrow

- Given a constant-size program, does it halt in at most K steps?
- Given N-by- N checkers board position, can the first player force a win?

Frustrating news. Few successes.

Literal. A boolean variable or its negation.

x_{i} or $\neg x_{i}$

Clause. An or of 3 distinct literals.

$$
C_{1}=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

Conjunctive normal form. An and of clauses. $\Phi=\left(C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{5}\right)$

3-SAT. Given a CNF formula Φ consisting of k clauses over n literals, does it have a satisfying truth assignment?
$\Phi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee x_{4}\right)$ yes instance

$$
\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T}
\end{array}
$$

$$
(\neg T \vee T \vee F) \wedge(T \vee \neg T \vee F) \wedge(\neg T \vee \neg T \vee \neg F) \wedge(\neg T \vee \neg T \vee T) \wedge(\neg T \vee F \vee T)
$$

Applications. Circuit design, program correctness, ...

Polynomial-time reductions

Problem X poly-time (Cook) reduces to problem Y if X can be solved with:

- Polynomial number of standard computational steps.
- Polynomial number of calls to Y.

Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable. (assuming 3-SAT is intractable)

Mentality.

- If I could solve Y in poly-time, then I could also solve 3-SAT in poly-time.
- 3-SAT is believed to be intractable.
- Therefore, so is Y.
Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2^{n} truth assignments.
Q. Can we do anything substantially more clever?

Conjecture $(P \neq N P)$. 3-SAT is intractable (no poly-time algorithm).

Independent set

An independent set is a set of vertices, no two of which are adjacent.

IND-SET. Given a graph G and an integer k, find an independent set of size k.

Applications. Scheduling, computer vision, clustering, ...

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance Φ of 3-SAT, create an instance G of IND-SET:

- For each clause in Φ, create 3 vertices in a triangle.
- Add an edge between each literal and its negation.

3-satisfiability reduces to independent set

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance Φ of 3-SAT, create an instance G of IND-SET:

- For each clause in Φ, create 3 vertices in a triangle.
- Add an edge between each literal and its negation.

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance Φ of 3-SAT, create an instance G of IND-SET:

- For each clause in Φ, create 3 vertices in a triangle.
- Add an edge between each literal and its negation.
$\mathrm{k}=4$

$\Phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)$
- G has independent set of size $k \Rightarrow \Phi$ satisfiable.
set literals corresponding to vertices in independent set to true; set remaining literals in consistent manner

3-satisfiability reduces to independent set
Proposition. 3-SAT poly-time reduces to IND-SET. $\longleftarrow \quad$ lower-bound mentality: I could solve IND-SET efficiently, I could solve 3-SAT efficiently

Implication. Assuming 3-SAT is intractable, so is IND-SET.

- G has independent set of size $k \Rightarrow \Phi$ satisfiable.
- Φ satisfiable $\Rightarrow G$ has independent set of size k.

ILP. Given a system of linear inequalities, find an integral solution.

$$
\begin{gathered}
3 x_{1}+5 x_{2}+2 x_{3}+x_{4}+4 x_{5} \geq 10 \\
5 x_{1}+2 x_{2}+4 x_{4}+1 x_{5} \leq 7 \\
x_{1}+x_{3}+2 x_{4} \leq 2 \\
3 x_{1}+4 x_{3}+7 x_{4} \leq 7 \\
x_{1}+x_{4} \leq 1 \\
x_{1}+x_{3}+x_{5} \leq 1 \\
\text { all } x_{i}=\{0,1\}
\end{gathered}
$$

Context. Cornerstone problem in operations research.
Remark. Finding a real-valued solution is tractable (linear programming).

3-satisfiability reduces to integer linear programming

Proposition. 3-SAT poly-time reduces to IND-SET.
Proposition. IND-SET poly-time reduces to ILP.

Transitivity. If X poly-time reduces to Y and Y poly-time reduces to Z,
then X poly-time reduces to Z.

Implication. Assuming 3-SAT is intractable, so is ILP.
lower-bound mentality:
if I could solve ILP efficiently, I could solve IND-SET efficiently;
if I could solve IND-SET efficiently, I could solve 3-SAT efficiently

Proposition. IND-SET poly-time reduces to ILP.
Pf. Given an instance G, k of IND-SET, create an instance of ILP as follows:

Intuition. $x_{i}=1$ if and only if vertex v_{i} is in independent set.

is there an independent set of size 3 ?
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=3$
$x_{1}+x_{2} \leq 1$
$x_{2}+x_{3} \leq 1$
$x_{1}+x_{3} \leq 1$
$x_{1}+x_{4} \leq 1$
$x_{3}+x_{5} \leq 1$
all $x_{i}=\{0,1\}$
is there a feasible solution?

More poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool in guiding algorithm design efforts.
Q. How to convince yourself that a new problem is (probably) intractable?

A1. [hard way] Long futile search for an efficient algorithm (as for 3-SAT).
A2. [easy way] Reduction from 3-SAT.

Caveat. Intricate reductions are common.

Pvs. NP

P. Set of search problems solvable in poly-time.

Importance. What scientists and engineers can compute feasibly.

NP. Set of search problems.

Importance. What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion. No.

Search problem. Problem where you can check a solution in poly-time.

Ex 1. 3-SAT.

$\Phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)$
$x_{1}=$ true, $x_{2}=$ true, $x_{3}=$ true, $x_{4}=$ true

Ex 2. IND-SET.

$\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$

Cook's theorem

An $N P$ problem is $N P$-complete if all problems in $N P$ poly-time to reduce to it.

Cook's theorem. 3-SAT is NP-complete.
Corollary. 3 -SAT is tractable if and only if $P=N P$.

Two worlds.

Implications of NP-completeness
${ }_{53}$

"I can't find an efficient algorithm, but neither can all these famous people."

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

complexity	order of growth	examples
linear	N	min, max, median, Burrows-Wheeler transform, \ldots sorting, convex hull,
linearithmic	$\mathrm{N} \log \mathrm{N}$?? ${ }^{\text {closest pair, farthest pair, } \ldots}$

Frustrating news. Huge number of problems have defied classification.

Desiderata. Classify problems according to computational requirements.

complexity	order of growth	examples
linear	N	min, max, median, Burrows-Wheeler transform, \ldots sorting, convex hull,
linearithmic	$\mathrm{N} \log \mathrm{N}$	closest pair, farthest pair, \ldots
M(N)	$?$	integer multiplication, division, square root, \ldots
3-SUM complete	probably N^{2}	3-SUM, 3-COLLINEAR, 3-CONCURRENT, \ldots
MM(N)	$?$	matrix multiplication, Ax $=\mathrm{b}$, least square, determinant, \ldots
NP-complete	probably not N^{b}	3-SAT, IND-SET, ILP, \ldots

Good news. Can put many problems into equivalence classes.

Reductions are important in theory to:

- Establish tractability.
- Establish intractability.
- Classify problems according to their computational requirements.

Reductions are important in practice to:

- Design algorithms.
- Design reusable software modules.
- stacks, queues, priority queues, symbol tables, sets, graphs
- sorting, regular expressions, Delaunay triangulation
- minimum spanning tree, shortest path, max flow, linear programming
- Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems
- use heuristics for intractable problems

[^0]: " Give me a lever long enough and a fulcrum on which to place it, and I shall move the world." - Archimedes

[^1]: lower-bound mentality: if I can solve convex hull efficiently, I can sort efficiently

