5.3 Substring Search

- brute force
, Knuth-Morris-Pratt
- Boyer-Moore
- Rabin-Karp

Applications

- Parsers.

- Spam filters
- Digital libraries.
- Screen scrapers.
- Word processors.
- Web search engines
- Electronic surveillance.
- Natural language processing.
- Computational molecular biology.
- FBIs Digital Collection System 3000.
- Feature detection in digitized images.
- ...

Identify patterns indicative of spam.

- PROFITS
- LOSE WE1GHT
- herbal Viagra
- There is no catch.
- LOW MORTGAGE RATES
- This is a one-time mailing.
- This message is sent in compliance with

Goal. Extract relevant data from web page.

Ex. Find string delimited by and after first occurrence of pattern Last Trade:

Google Inc. (G00G)					
Weceonc					
	Google Inc. (Nastasas: 6 Cos)				
Ste	Lastrade:	256.44	Day Range:	25026-26995	
Chars	Trade Tne:	11:19amet	5 Senkrange	$247730 \cdot 72480$	
	Crange	+5999 $228 \%)$	volume:	3,500,004	
Basco Tean Analysis	Provclioer	262, 3	ArvVol (ma)	7.3342410	
Nenss a ino	open:	209.65	Makectap:	${ }^{80678}$	(i)6006
(109s	Blo	$28.3 .31 \times 100$	PEEmme	${ }^{15,48}$	
	Asc	256.57×100		NA(NA) $\begin{array}{r}16.56\end{array}$	

http://finance.yahoo.com/q?s=goog
<tr>

<td class= "yfnc_tablehead1" width= "48\%">
uast Trade:
</td>
<td class= "yfnc tabledata1"> <big>452.92</big> </td></tr>
<td class= "yfnc_tablehead1" width= "48\%">
Trade Time
</td>
<td class= "yfnc_tabledata1">

Screen scraping: Java implementation

Java library. The indexOf() method in Java's string library returns the index of the first occurrence of a given string, starting at a given offset

```
public class StockQuote
{
    public static void main(String[] args)
        {
        String name = "http://finance.yahoo.com/q?s="
        In in = new In(name + args[0])
```


Check for pattern starting at each text position.

$$
\begin{aligned}
& \begin{array}{rrrrrrrrrrrrr}
i & j \quad i+j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & \text { txt } \longrightarrow A & \text { B } & \text { A } & \text { C } & \text { A } & \text { D } & \text { A } & \text { B } & \text { R } & \text { A } & \text { C }
\end{array} \\
& \begin{array}{lllllll}
0 & 2 & 2 & A & B & R & A
\end{array} \\
& \begin{array}{llllllll}
1 & 0 & 1 & A & B & R & \text { entries in red are }
\end{array} \\
& \begin{array}{llllll}
1 & 1 & 3 & \text { A } & \text { B } & \text { mismatches } \\
2 & 0 & 3
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 50 \quad 5 \begin{array}{c}
\text { entries in black } \\
\text { match the text }
\end{array} \quad \mathrm{A} \quad \mathrm{~B} \quad \mathrm{R} \text { A } \\
& 6 \quad 4 \quad 10 \\
& \text { return } \mathrm{i} \text { when } \mathrm{j} \text { is } \mathrm{M} \\
& \begin{array}{l}
\text { A } \quad \mathrm{B} \quad \mathrm{R} \quad \mathrm{~A} \\
\text { match }
\end{array}
\end{aligned}
$$

Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

$$
\begin{array}{ccccccccccccc}
i & j & i+j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & & \text { txt } \longrightarrow & A & A & A & A & A & A & A & A & A & B \\
0 & 4 & 4 & A & A & A & A & \text { B } & \leftarrow & \text { pat } & & & \\
1 & 4 & 5 & & A & A & A & A & B & & & & \\
2 & 4 & 6 & & & A & A & A & A & B & & & \\
3 & 4 & 7 & & & & A & A & A & A & B & & \\
4 & 4 & 8 & & & & & A & A & A & A & B & \\
5 & 5 & 10 & & & & & & A & A & A & A & B
\end{array}
$$

Check for pattern starting at each text position.

$$
\begin{array}{llllllllllll}
i=4, j=3 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & A & B & A & C & A & D & A & B & R & A & C
\end{array}
$$

```
public static int search(String pat, String txt)
```

\{
int $M=$ pat.length();
int $N=$ txt. length();
for (int $i=0 ; i<=N-M$; $i++$)
\{
int j;
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{M}$; $\mathrm{j}++$)
if (txt.charAt(i+j) != pat.charAt(j))
break;
if ($\mathbf{j}==\mathrm{M}$) return \mathbf{i}; \longleftarrow index in text wher
\}
return $\mathbf{N} ; \longleftarrow$ not found
\}

Backup

In typical applications, we want to avoid backup in text stream.

- Treat input as stream of data.
- Abstract model: standard input.

Brute-force algorithm needs backup for every mismatch.

shift pattern right one position
Approach 1. Maintain buffer of size M (build backup into standard input). Approach 2. Stay tuned.

Same sequence of char compares as previous implementation.

- i points to end of sequence of already-matched chars in text.

- j stores number of already-matched chars (end of sequence in pattern).

$$
i=6, j=3 \quad \begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \text { A } & \text { B } & \text { A } & \text { C } & \text { A } & \text { D } & \text { A } & \text { B } & R & A & C \\
& & & & A & D & A & C & R & &
\end{array}
$$

public static int search(String pat, String txt)
\{

```
    int i, N = txt.length();
    int j, M = pat.length();
    for (i = 0, j = 0; i<N&& j < M; i++)
    {
        if (txt.charAt(i) == pat.charAt(j)) j++;
        else { i -= j; j = 0; }
}
    if (j == M) return i - M;
    else return N;
```

\}
\longleftarrow

Brute-force is often not good enough.

Theoretical challenge. Linear-time guarantee. - fundamental algorithmic problem

Practical challenge. Avoid backup in text stream. \longleftarrow often no room or time to save text

Now is the time for all people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many good people to come to the aid of their party. people to come to the aid of their party. Now is the time for all of the good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for each good person to come to the aid of their party. Now is the time for all good people to come to the a of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many or all good people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good Democrats to come to the aid of their party. Now is the time for all people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good people to come to the aid of their party. Now is the time for all of the good people to come to the aid of their party. Now is the time for
all good people to come to the aid of their attack at dawn party. Now is the time for each person to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many or all good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party.

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern baAAAAAAAA.

- Suppose we match 5 chars in pattern, with mismatch on $6^{\text {th }}$ char.
- We know previous 6 chars in text are baAaAB.
- Don't need to back up text pointer!
assuming $\{A, B\}$ alphabet

Knuth-Moris-Pratt algorithm. Clever method to always avoid backup. (!)

DFA is abstract string-searching machine.

- Finite number of states (including start and halt).
- Exactly one transition for each char in alphabet.
- Accept if sequence of transitions leads to halt state.
internal representation

j	0	1	2	3	4	5	If in state \boldsymbol{j} reading char c : if j is 6 halt and accept else move to state dfa[c][j]
pat.charAt(j)	A	B	A	B	A	C	
${ }^{\text {A }}$	1	1	3	1	5	1	
dfa[][j] ${ }^{\text {B }}$	0	2	0	4	0	4	
c	0	0	0	0	0	6	

18

KMP search: Java implementation

Key differences from brute-force implementation.

- Text pointer i never decrements.
- Need to precompute dfa[][] from pattern.

```
public int search(String txt)
i
    int i, j, N = txt.length()
    for (i = 0, j = 0; i < N && j < M; i++)
        j = dfa[txt.charAt(i)][j];
        if (j == M) return i - M;
        else
}
```

Running time.

- Simulate DFA on text: at most N character accesses.
- Build DFA: how to do efficiently? [warning: tricky algorithm ahead]

Key differences from brute-force implementation.

- Text pointer i never decrements.
- Need to precompute dfa[][] from pattern.
- Could use input stream.
public int search(In in)
public int search(In in)
{
{
int $i, j ;$
for ($i=0, j=0$; !in.isEmpty () \&\& $j<M$; $i++$)
$j=$ dfa[in.readChar()][j];
if ($j==M$) return $i-M$;
else return NOT_FOUND;
\}

How to build DFA from pattern?

Mismatch transition. If in state j and next char c != pat.charAt (j), then the last j characters of input are pat [1..j-1], followed by c.

To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c. Running time. Seems to require j steps.

> still under construction (!)

Ex. dfa['A'][5] = 1; dfa['B'][5] = 4

simulate BABA (state X); simulate BABA (state X);
take transition 'A' take transition ' B '

$$
\begin{array}{ccccccc}
\text { j } & 0 & 1 & 2 & 3 & 4 & 5 \\
\cline { 2 - 6 } & & & &
\end{array}
$$

then go to state $j+1$
\uparrow

$$
\text { first } j \text { characters of pattern }
$$

now first $\mathrm{j}+1$ characters of
have already been matched pattern have been matched

Mismatch transition. If in state j and next char c != pat.charAt(j), then the last j characters of input are pat [1..j-1], followed by c.
\measuredangle state X
To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c. Running time. Takes only constant time if we know state X. (!)

```
\begin{tabular}{ccc} 
from state \(X\), & from state \(X\), & from state \(X\), \\
take transition 'A' & take transition 'B' & take transition 'C' \\
\(=d f a[' A '][X]\) & \(=d f a[B '][X]\) & \(=d f a[' C][X]\)
\end{tabular}
```


copy dfa[][X] to dfa[][j] dfa[pat.charAt(j)][j] = $j+1$; $X=\operatorname{dfa}[$ pat. $\operatorname{charAt(j)][X]];~}$

Constructing the DFA for KMP substring search for A B A B A C

For each state j:

- Copy dfa[][x] to dfa[][j] for mismatch case.
- Set dfa[pat.charAt(j)][j] to $j+1$ for match case.
- Update x .

```
public KMP(String pat)
{
    this.pat = pat;
    M = pat.length();
    dfa = new int[R][M];
    dfa[pat.charAt(0)][0] = 1;
    for (int X = 0, j = 1; j < M; j++)
    {
        for (int c = 0; c < R; c++)
            dfa[c][j] = dfa[c][x];
        dfa[pat.charAt(j)][j] = j+1;
        x = dfa[pat.charAt(j)][x] ;
    }
}
```

Running time. M character accesses (but space proportional to $R M$).

26

Proposition. KMP substring search accesses no more than $M+N$ chars to search for a pattern of length M in a text of length N.

Pf. Each pattern char accessed once when constructing the DFA; each text char accessed once (in the worst case) when simulating the DFA.

Proposition. KMP constructs dfa[][] in time and space proportional to $R M$.

Larger alphabets. Improved version of KMP constructs nfa[] in time and space proportional to M.

- Independently discovered by two theoreticians and a hacker.
- Knuth: inspired by esoteric theorem, discovered linear-time algorithm
- Pratt: made running time independent of alphabet size
- Morris: built a text editor for the CDC 6400 computer
- Theory meets practice.


```
fast pattern matching in string
donald e. knutht, james h. morris, Jr.f and vaughan r. pratt
Abstract. An algorithm is presented which finds all occurrences of one given string within another, in running time proportional to the sum of the lenths of the strings. The constant of
proportionality is ow enought to make this algorithm of practical use, and the recoedure can also be extended to deal with some more enerara patern-matching problems. Atheoretical application of the
algorithm shows that the set of concatenations of even palindromes,, .e., the language \(\{\alpha \alpha \beta\} ;\), can be recognized in linear time. Other algorithms which run even faster on the average are also considered.
```


Don Knuth

Jim Morris

Vaughan Pratt

Boyer-Moore: mismatched character heuristic

Intuition.

- Scan characters in pattern from right to left
- Can skip M text chars when finding one not in the pattern.

$$
\begin{aligned}
& \begin{array}{rlllllllllllllllllllllllll}
\mathrm{i} & \mathrm{j} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
\hline \text { text } \longrightarrow & \mathrm{F} & \mathrm{I} & \mathrm{~N} & \mathrm{D} & \mathrm{I} & \mathrm{~N} & \mathrm{~A} & \mathrm{H} & \mathrm{~A} & \mathrm{Y} & \mathrm{~S} & \mathrm{~T} & \mathrm{~A} & \mathrm{C} & \mathrm{~K} & \mathrm{~N} & \mathrm{E} & \mathrm{E} & \mathrm{D} & \mathrm{~L} & \mathrm{E} & \mathrm{I} & \mathrm{~N} & \mathrm{~A}
\end{array} \\
& 05 N \text { E D L E ~pattern } \\
& 55 \quad N E E D \quad L E \\
& 114 \\
& 15 \quad 0 \\
& \text { N E E D L E } \\
& 15 \quad 0 \\
& \text { N E E D L E } \\
& \text { return } \mathrm{i}=15
\end{aligned}
$$

, Boyer-Moore

Robert Boyer J. Strother Moore

Boyer-Moore: mismatched character heuristic
Q. How much to skip?
A. Compute right $[c]=$ rightmost occurrence of character c in pat.

right $=$ new int $[R]$;

for (int $c=0 ; c<R$; $c++$) right[c] $=-1$;
for (int $j=0$; $j<M$; $j++$) right[pat.charAt(j)] = j

c	N		E	E	D	L	E	$\underline{\text { right [c] }}$
		0	1	2	3	4	5	
A	-1	-1	-1	-1	-1	-1	-1	-1
B	-1	-1	-1	-1	-1	-1	-1	-1
c	-1	-1	-1	-1	-1	-1	-1	-1
D	-1	-1	-1	-1	3	3	3	3
E	-1	-1	1	2	2	2	5	5
.								-1
L	-1	-1	-1	-1	-1	4	4	4
M	-1	-1	-1	-1	-1	-1	-1	-1
N	-1	0	0	0	0	0	0	0
.								-1
	Boyer-Moore skip table computation							

Q. How much to skip?
A. Compute right $[c]=$ rightmost occurrence of character c in pat.

```
lasic idea 
ncrement i by j - right['N']
    to line up text with N in pattern
        N L E
        E E D L E
        reset j to M-1 ¢
```

Mismatched character heuristic (mismatch in pattern)

Boyer-Moore: mismatched character heuristic
Q. How much to skip?
A. Compute right $[c]=$ rightmost occurrence of character c in pat.

Heuristic no help? Increment i and reset j to $\mathrm{m}-1$

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right [c] = rightmost occurrence of character c in pat.

Mismatched character heuristic (mismatch not in pattern)

Character not in pattern? Set right[c] to - 1 .

Boyer-Moore: Java implementation

```
public int search(String txt)
{
    int N = txt.length();
    int M = pat.length();
    int skip;
    for (int i = 0; i <= N-M; i += skip)
    {
        skip = 0;
        for (int j = M-1; j >= 0; j--)
        {
            if (pat.charAt(j) != txt.charAt(i+j))
            {
                skip = Math.max(1, j - right[txt.charAt(i+j)]);
                break;
            }
        }
        if (skip == 0) return i;
    }
    return N;
}
```

Property. Substring search with the Boyer-Moore mismatched character heuristic takes about $\sim N / M$ character compares to search for a pattern of length M in a text of length N. sublinear

Worst-case. Can be as bad as $\sim M N$.

$$
\begin{array}{llllllllllll}
\text { i } & \text { skip } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & \text { txt } & \text { B } \\
0 & 0 & \text { A } & \text { B } & \leftarrow & \text { pat } & & & \\
1 & 1 & & \text { A } & \text { B } & & & & \\
2 & 1 & & & \text { A } & \text { B } & & & \\
3 & 1 & & & & \text { A } & \text { B } & & \\
4 & 1 & & & & & \text { A } & \text { B } & \\
5 & 1 & & & & & & \text { A } & \text { B }
\end{array}
$$

Boyer-Moore variant. Can improve worst case to $\sim 3 N$ by adding a KMP-like rule to guard against repetitive patterns.

Rabin-Karp fingerprint search

Basic idea = modular hashing.

- Compute a hash of pattern characters 0 to $M-1$.
- For each i, compute a hash of text characters i to $M+i-1$.
- If pattern hash = text substring hash, check for a match.

$$
\begin{aligned}
& \text { i } \quad \begin{array}{llll}
\text { pat.charat } \\
0 & 1 & 2 & 3
\end{array} \\
& \begin{array}{llllll}
2 & 6 & 5 & 3 & 5
\end{array} \% 997=613 \\
& \text { i } \quad \begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & \text { txt.charAt (i) }
\end{array} \\
& \begin{array}{llllllllllllllll}
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 & 5 & 8 & 9 & 7 & 9 & 3
\end{array} \\
& \begin{array}{lllllllll}
0 & 3 & 1 & 4 & 1 & 5 & \% & 997 & =508
\end{array} \\
& \begin{array}{lllllll}
1 & 4 & 1 & 5 & 9 & \% & 997
\end{array}=20 \\
& \begin{array}{lllllll}
4 & 1 & 5 & 9 & 2 & \% & 997
\end{array}=715 \\
& \begin{array}{lllllll}
1 & 5 & 9 & 2 & 6 & \% & 97
\end{array}=971 \\
& \begin{array}{llllll}
5 & 9 & 2 & 6 & 5 & \% \\
& 9 & 27
\end{array}=442 \\
& 9 \begin{array}{llllll}
2 & 6 & 5 & 3 & \% & 997
\end{array}=929 \text { match } \\
& 6 \longleftarrow \text { return } i=6 \quad 2 \quad 6 \quad 5 \quad 3 \quad 5 \quad \% 997=613
\end{aligned}
$$

Rabin-Karp

Michael Rabin, Turing Award '76 and Dick Karp, Turing Award ' 85

Efficiently computing the hash function

Modular hash function. Using the notation t_{i} for txt.charAt (i), we wish to compute

$$
x_{i}=t_{i} R^{M-1}+t_{i+1} R^{M-2}+\ldots+t_{i+M-1} R^{0}(\bmod Q)
$$

Intuition. M-digit, base- R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree- M polynomial.

```
    pat.charAt()
i 01123
1 01 2 3 4
    2 % 997 = 2
    2 6 % 997 = (2*10+6)% 997
    2 6 5 % 997 = (26*10 + 5)% 997 = 26
    3 6 5 3 % 997 = (265*10 + 3)% 997 = 659
    4 2 6 5 3 5 % 997 = (659*10 + 5) % 997 = 613
    Computing the hash value for the pattern with Horner's method
```

```
// Compute hash for M-digit key
private int hash(String key, int M)
pri
    int h = 0;
    for (int j = 0; j < M; j++)
        h = (R * h + key.charAt(j)) % Q;
        return h
}
```


Challenge. How to efficiently compute x_{i+1} given that we know x_{i}.

$$
\begin{aligned}
& x_{i}=t_{i} R^{M-1}+t_{i+1} R^{M-2}+\ldots+t_{i+M-1} R^{0} \\
& x_{i+1}=t_{i+1} R^{M-1}+t_{i+2} R^{M-2}+\ldots+t_{i+M} R^{0}
\end{aligned}
$$

Key property. Can update hash function in constant time!

$$
\begin{array}{ccccccccc}
\mathbf{i} & \ldots & 2 & 3 & 4 & 5 & 6 & 7 & \ldots \\
\begin{array}{c}
\text { current value } \\
\text { new value }
\end{array} & 4 & 1 & 5 & 9 & 2 & 6 & 5 \\
& 4 & 1 & 5 & 9 & 2 & 6 & 5
\end{array}>\text { text }
$$

public class RabinKarp pub i

```
private int patHash;
    private int M;
    private int Q;
    private int R;
    private int R;
    private int RM; // R^(M-1) % Q
```

 public RabinKarp(String pat) \{
 M = pat. length () ;
 R \(=256\);
 Q = largeRandomPrime();
 for (int \(i=1\); \(i<=M-1\); \(i++\)
 \(R M=(R * R M) \% Q ;\)
 patHash \(=\) hash (pat, m\()\)
 \}
 private int hash (String key, int M)
 \{ /* as before */ \}
 public int search (String txt)
 \{ /* see next slide */ \}
 Rabin-Karp: Java implementation (continued)

Monte Carlo version. Return match if hash match.

public int search (String txt)

int $\mathrm{N}=$ txt. length () ;
int txtHash $=$ hash (txt, M) ;
if (patHash $==$ txtHash) return 0 ;
for (int i = M; i < N; j++)
1
txtHash $=($ txtHash $+Q$ - RM*txt.charAt(i-M) \% Q) \% Q;
txtHash $=\left(\right.$ txtHash ${ }^{2}$ R + txt.charAt(i)) $\% ~ Q$;
if (patHash $==$ txtHash) return $i-M+1$;
\}
return N ;

Las Vegas version. Check for substring match if hash match; continue search if false collision.

Theory. If Q is a sufficiently large random prime (about $M N^{2}$),
then the probability of a false collision is about $1 / \mathrm{N}$.

Practice. Choose Q to be a large prime (but not so large as to cause overflow). Under reasonable assumptions, probability of a collision is about $1 / Q$.

Monte Carlo version.

- Always runs in linear time.
- Extremely likely to return correct answer (but not always!).

Las Vegas version.

- Always returns correct answer.
- Extremely likely to run in linear time (but worst case is $M N$).

Advantages.

- Extends to 2d patterns.
- Extends to finding multiple patterns.

Disadvantages.

- Arithmetic ops slower than char compares.
- Poor worst-case guarantee.
- Requires backup.
Q. How would you extend Rabin-Karp to efficiently search for any one of P possible patterns in a text of length N ?

Substring search cost summary

Cost of searching for an M-character pattern in an N -character text.

algorithm	version	operation count		backup in input?	correct?	$\begin{aligned} & \text { extra } \\ & \text { space } \end{aligned}$
		guarantee	typical			
brute force	-	MN	1.1 N	yes	yes	1
Knuth-Morris-Pratt	full DFA (Algorithm 5.6)	2 N	1.1 N	no	yes	MR
	mismatch transitions only	3 N	1.1 N	no	yes	M
Boyer-Moore	full algorithm	$3 N$	N / M	yes	yes	R
	mismatched char heuristic only (Algorithm 5.7)	MN	N / M	yes	yes	R
Rabin-Karp ${ }^{\dagger}$	Monte Carlo (Algorithm 5.8)	7 N	7 N	no	yes ${ }^{\text {t }}$	1
	Las Vegas	$7 N^{+}$	7 N	yes	yes	1
\dagger probabilisitic guarantee, with uniform hash function						

