5.3 Substring Search Substring search

Goal. Find pattern of length M in a text of length N.

typically N >> M

Qpem(er“'"“"‘her
Substrmg pattern—N E E D L E
m m“ilme
text CCCCC et —I1 N A H A Y S TACKNETETDTLETNA
me[;d match
,,,,,,,, Tightvalue
I » brute force
pa ern » Knuth-Morris-Pratt
chara(;terrrst % » Boyer-Moore Computer forensics. Search memory or disk for signatures,
,,,,,, : .g. A .
"h‘latCh > Rabln-Karp e.g., all URLs or RSA keys that the user has entered
o gposition
B ere
hashwsta.e
http://citp.princeton.edu/memory
Algorithms, 4™ Edition - Robert Sedgewick and Kevin Wayne . Copyright © 2002-2010 - December 3, 2010 7:00:21 AM
Applications Application: spam filtering
* Parsers. Identify patterns indicative of spam.
e Spam filters. * PROFITS
* Digital libraries. * LOSE WELGHT
* Screen scrapers. * herbal Viagra
* Word processors. (3 * There is no catch.
» Web search engines. Le)fiShNefiSZ * LOW MORTGAGE RATES
 Electronic surveillance. T — * This is a one-time mailing.

* Natural Ianguage pr‘ocessing. ® This message is sent in compliance with
* Computational molecular biology.
» FBIs Digital Collection System 3000.

* Feature detection in digitized images.

spam regulations.

Application: electronic surveillance

Need to monitor all
internet traffic.
(security)

Well, we’re mainly
interested in

“ATTACK AT DAWN"

“ATTACK AT DAWN”
substring search
machine

found

Screen scraping: Java implementation

Java library. The indexof () method in Java's string library returns the index
of the first occurrence of a given string, starting at a given offset.

public class StockQuote

No way!
(privacy))
™
OK. Build a

machine that just)
looks for that.

{
public static void main(String[] args)
{
String name = "http://finance.yahoo.com/g?s=";
In in = new In(name + args[0]);
String text = in.readAll();
int start = text.indexOf ("Last Trade:", 0);
int from = text.indexOf ("", start);
int to = text.indexOf ("", from) ;
String price = text.substring(from + 3, to);
StdOut.println (price) ;
}
}

564.35

% java StockQuote msft

26.04

% java StockQuote goog

£87

Application: screen scraping

Goal. Extract relevant data from web page.

Ex. Find string delimited by and after first occurrence of

pattern Last Trade:.

Google Inc. (GOOG) A 1110 T 256.44 3 539 (2.26%) e
‘Moro On GOOG <tr>
Quotes <td class= "yfnc tableheadl"
» Summary Google Inc. (NasdagGs: GOOG) 006 24-Nov 11:10am (C)¥ahoo! —
Real-Time ECNE% new Real-time: 258.46 -3.97 (-151%) 70 width= "48%">
Historical Prices Last Trade: 256.44 Days Range: 250.26 - 269.95 Last Trade :
Charts Trade Time: 11:19AM ET 52wk Range: 247.30-724.80 ,
O T
(CED Change 4599 (228%) X‘vm\ :2:::: T et oy o </td>
Basic Tech. Analysis prey Close: 26243 wg Vol (3m: 1334, customze chat S o
O Open 200,68 Market Cap: 80.67B 4 AddGOOG to Your Portioio <td class= yfnc_tabledatal >
Hosdince il Bid 25631 x 100 ::w ::;: e oooe <big>452.92</big>
Company Events Ask: 256.57 x 100 {m): ¥ Download Annual Report
Message Board 1y Target Est 51187 Div & Yield: NIA(NIA) 4 Add Quotes to Your Web Ste </td></tr>
<td class= "yfnc_tableheadl"
http://finance.yahoo.com/q?s=goog width= "48%">
Trade Time:
</td>

<td class= "yfnc_tabledatal">

Brute-force substring search

Check for pattern starting at each text position.

i j i+j 0 1 2 3 4 5 6 7 8 910
txt—A B A C A D A B R A C
0 2 2 A B R ~— pat
1 0 1 A entries in red are
5 1 3 A B / mismatches
entries in gray are
3 0 3 A for reference only
4 1 > entries in black B
5 0 5 match the text
6. 4 10 ABRA
A return 1 when j isM 4
match

Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

i j 9+ 0 1 2 3 4 5 6 7 8 9
txt— A A A A A A A A A

0 4 4 A A A A B~ pat

1 4 5 A A A A B

2 4 6 A A A A B

3 4 7 A A A A B

4 4 8 A A A A B

5 5 10 A A A B

Worst case. ~M N char compares.

Brute-force substring search: Java implementation

Check for pattern starting at each text position.

> o
@ |
>N
N|w

i=4, j=3

> > | b
O O|lwv

6 7 8
A B R AC
A

public static int search(String pat, String txt)
{

int M = pat.length();

int N = txt.length();

for (int i = 0; 1 <= N - M; i++)

{

int j;
for (j = 0; j < M; j++)
if (txt.charAt(i+j) !'= pat.charAt(j))
break;
if (§ = M) return i; «— index in text where

pattern starts

}

return N; <«— notfound

Backup

In typical applications, we want to avoid backup in text stream.
 Treat input as stream of data.
* Abstract model: standard input. ATTACK AT DAV

substring search
machine

found Q@

Brute-force algorithm needs backup for every mismatch.

matched chars

l mismatch
R — /
A A A A AA
A A A A A B
backup
A
A

/

shift pattern right one position

Approach 1. Maintain buffer of size M (build backup into standard input).
Approach 2. Stay tuned.

Brute-force substring search: alternate implementation Algorithmic challenges in substring search

Same sequence of char compares as previous implementation. Brute-force is often not good enough.
* i points to end of sequence of already-matched chars in fext.
* j stores number of already-matched chars (end of sequence in pattern). Theoretical challenge. Linear-time guarantee. <— fundamental algorithmic problem
012 3 456 7 8 9 10 2 : . '
i=6, j=3 Practical challenge. Avoid backup in text stream. <— often no room or time to save text
A B ACADABURASTC
A D A
Now is the time for all people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for many good people to come to the aid of their party.
))))) Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
public static int search(String pat, String txt) people to come to the aid of their party. Now is the time for all of the good people to come to the aid of
{ their party. Now is the time for all good people to come to the aid of their party. Now is the time for
each good person to come to the aid of their party. Now is the time for all good people to come to the aid
int i ’ N = txt. length() ; of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
. . - . time for all good people to come to the aid of their party. Now is the time for many or all good people to
int j, M = pat.length(); come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
for (1 =0, J=0; 1i <N && j < M; i++) is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
(is the time for many good people to come to the aid of their party. Now is the time for all good people to
if (txt.charAt(i) == pat_charAt(j)) j++; come to the aid of their party. Now is the time for a lot of good people to come to the aid of their
N N . . is the time for all of the good people to come to the aid of their party. Now is the time for
= . - . - K party. Now is
else { i J; 37 0; '} backup all good people to come to the aid of their attack at dawn party. Now is the time for each person to come
} to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is
. . . the time for all good Republicans to come to the aid of their party. Now is the time for all good people
if (j - M) return i - M; to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
else return N,' party. Now is the time for all good people to come to the aid of their party. Now is the time for all good
} Democrats to come to the aid of their party.

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BaaAaaaaAA.
» Suppose we match 5 chars in pattern, with mismatch on 6% char.
* We know previous 6 chars in fext are BAAAAB.

° Don'T need to back up text poinTer‘! \ assuming { A, B } alphabet

:
rext\ i
. A B A AAABAAAAAAAAA
after mismatch
onsixthchar—>B A A A A A ~— pattern

» Knuth-Morris-Pratt brute-force backs __—~ B
up to try this B

~

and this B
and this B
and this = B AAAAAAAAA
and this
A A A A A AAAA
but no backup
is needed —

Knuth-Moris-Pratt algorithm. Clever method to always avoid backup. ()

Deterministic finite state automaton (DFA)

DFA is abstract string-searching machine.

* Finite number of states (including start and halt).
 Exactly one transition for each char in alphabet.

* Accept if sequence of transitions leads to halt state.

internal representation

j o0 1 2 3 4 5
pat.charAt(j) A B A B A C If in state j reading char c:
113 15 1 if j is 6 halt and accept
dfa[]1[3jl g g (2) 8 3 8 g else move to state dfa[c] [j]

graphical representation

c @/\

Interpretation of Knuth-Morris-Pratt DFA
Q. What is interpretation of DFA state after reading in txt[i]?

A. State = number of characters in pattern that have been matched.
(length of longest prefix of pat[] that is a suffix of txt[o..i])

Ex. DFA is in state 3 after reading in character txt[e].

0 7 8
B CcC A patt —> A B A

> | o

1 2 3 45
C B AAB

suffix of text[0..6]

B
@—A B—»@—A—» B —> A—»%s}(—»@
B,C

\—/_/

txt —>

prefix of pat[]

KMP substring search: trace

01 2 3 4 5 6 7 8 9
read thischar—~8 C B A A B A C A A

inthisstate—0 0 0 0 1 1 2 3 0 1
go to this state = 5

10 11 12 13 14 15 16 <~ 1
A B A C A A~ txt.charAt(i)

B
12 3 456 ~73J

found
A returni - M =9
A
A i 0 1 2 3 4 5
B pat.charAt(j) A B A B A C
B A1l 1 3 1 5 1
A dfa[1(jljs 0 2 0 4 0 4
c 0 0o o0 0 oO 6
match: B
set j to dfa[txt.charAt(i)1[j] A
= dfa[pat.charAt(3)]1[j]
= j+1 B
B
A
mismatch: B
set j to dfa[txt.charAt(i)][j] A
implies pattern shift to align
pat.charAt(j) with C
txt.charAt(i+1) A B A B A C
Trace of KMP substring search (DFA simulation) forA B AB A C
KMP search: Java implementation
Key differences from brute-force implementation.
* Text pointer i never decrements.
* Need to precompute dfa[][] from pattern.
public int search(String txt)
{
int i, j, N = txt.length();
for (1 =0, j=0; i <N & j < M; i++)
j = dfa[txt.charAt(i)][j]; <—— no backup
if (j == M) return i - M;
else return N;
}
Running fime.

* Simulate DFA on text: at most N character accesses.
* Build DFA: how to do efficiently? [warning: tricky algorithm ahead]

20

KMP search: Java implementation

Key differences from brute-force implementation.
* Text pointer i never decrements.

* Need to precompute dfa[][]1 from pattern.

* Could use input stream.

public int search(In in)

{

int i, j;
for (i =0, j =0; !'in.isEmpty() && j < M; i++)
j = dfa[in.readChar()][]j]; <«———+— no backup
if (j == M) return i - M;
else return NOT FOUND;

<

G~
&

How to build DFA from pattern?

Mismatch transition. If in state 5 and next char ¢ '= pat.charat(j),

then the last j characters of input are pat[1..j5-1], followed by c.

To compute dfa[c] [71: Simulate pat[1..j-1] on DFA and take transition c.
Running fime. Seems to require j steps. T

still under construction (1)
Ex. dfa['A'][5] = 1, dfa['B'][5] = 4

simulate BABA (state X); simulate BABA (state X);
take transition 'A' take transition 'B'

j 0 1 2 3 4
pat.charAt(j) A B A B A C

How to build DFA from pattern?

Match transition. If instate 5 and hext char c == pat.charat(j),
then go to state j+1. T T

first j characters of pattern next char matches

o have already been matched
now first j+1 characters of

pattern have been matched

j 0 1 2 3 4
pat.charAt(j) A B A B A C

A
B
B —— A— B —— A— C—»@
/
B,C

22

How to build DFA from pattern?

Mismatch transition. If in state 5 and next char ¢ '= pat.charat(j),
then the last j characters of input are pat[1..j-1], followed by c.
state X
To compute dfa[e] [71: Simulate pat[1..j-11 on DFA and take transition c.
Running time. Takes only constant time if we know state X. (1)

Ex. afa['a'js] = 1; dfa['B'][5]

= 4, X'=0
from state X, from state X, from state X,
take transition 'A’ take transition 'B' take transition 'C'
= dfa['A"l[X] = dfa['B'][X] = dfa['C'][X]

24

Constructing the DFA for KMP substring search: example

] 0 G,C]
o IV
pat.charAt(j) A A—
- ©O-—0O
dfa[][jl|B8 0O
c o
X
! j dfall1[X] todf
. A j y X] t j
i 0 1 (‘B.‘(C)/ copy dta 0 Aa[].[J] .
pat.charAt(3j) A B (@) r— s—(2) dfa[pat.charAt(3)1[3] = j+1;
A 1 1 X ~—c¢ X = dfa[pat.charAt(3)1[X]];
dfa[1(i1(8 (0) 2
c 0 o0
1<)
B,C A J
) H e
io0 1 2 C@Agésﬂ@Aﬂ@
pat.charAt(j) A B A X~ ‘&/&(
A @ 13
dfall[j1|B 0 2 0
c o0 0 0
X
| .
i 0o 1 2 3 (‘B.c (A J
g) N
pat.charAt(j) A B A B 3 A B —> A—> B—>
Al 1 3 1 C%\-\Q_}\X/MQ} c@ ©
dfa[1fille 0 (@ 0 4 _/
c 0 0 0 0

Constructing the DFA for KMP substring searchforA B A B A C

Constructing the DFA for KMP substring search: Java implementation

For each state j:

* Copy dfa[][x] To dfa[][3] for mismatch case.

e Set dfa[pat.charat(j)][j] to j+1 for match case.
* Update x.

public KMP(String pat)
{
this.pat = pat;
M = pat.length();
dfa = new int[R] [M];
dfa[pat.charAt(0)][0] = 1;
for (int X =0, j =1; j < M; j++)
{
for (int ¢ = 0; c < R; c++)

dfa[c] [j] = dfa[c] [X]; <«<———+— copy mismatch cases
dfa[pat.charAt(j)]1[j] = j+1; <«——+— setmatch case
X = dfa[pat.charAt(j)][X]; <«——+— update restart state

Running time. M character accesses (but space proportional to R M).

Constructing the DFA for KMP substring search: example

X
|)
i 0o 1 2 3 B,C A/_\A bl
pat.charAt(j) A B A B (@,\jégg, /\4,@‘./3_>®
A1l 1 3 1 R~ € Ny 8¢ c
dfalltille 0 @ o0 4 v
c o0 0 0 0
X
|)
i 0 1 2 3 4 Cs (*/_x\ j
: VS e
pat.charAt(j) A B A B A ,\4,@34, A—> B —> A—
A1 1 ® 1 5 @‘\Kc/gg cQ B@_ ©
dfa[][il1[8 0 2 0 4 0O '
c o0 0 0 0 0
X
| «)
i 0 1 2 3 4 5 (e A/\, NPL
pat.charAt(;) A B A B A C C@AHCQ&BH@A;&H@A/Q /c_.@
A1l 1 3 1 5 1 ‘X_/M ¢ P
dfa[][il1[B 0 2 0 4 0 4 '
co o o ® o 6

Constructing the DFA for KMP substring searchfor A B A B A C

25

KMP substring search analysis

Proposition. KMP substring search accesses no more than M+ N chars
to search for a pattern of length M in a text of length N.

Pf. Each pattern char accessed once when constructing the DFA;
each text char accessed once (in the worst case) when simulating the DFA.
Proposition. KMP constructs dafa[][] in time and space proportional to R M.

Larger alphabets. Improved version of KMP constructs nfal] in time and space
proportional to M.

N
@Wm@fﬁgc_ﬂ,

26

28

Knuth-Morris-Pratt: brief history

* Independently discovered by two theoreticians and a hacker.
- Knuth: inspired by esoteric theorem, discovered linear-time algorithm
- Pratt: made running time independent of alphabet size
- Morris: built a text editor for the CDC 6400 computer

* Theory meets practice.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTHf, JAMES H. MORRIS, JR.{ AND VAUGHAN R. PRATT{

Abstract. An algorithm is presented which finds all occurrences of one given string within
another, in running time proportional to the sum of the lengths of the strings. The constant of
proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pat ing problems. A i ication of the
algorithm shows that the set of concatenations of even palindromes, i.e., the language {aa}*, can be
recognized in linear time. Other algorithms which run even faster on the average are also considered.

{ i

Don Knuth Jim Morris Vaughan Pratt
29

Boyer-Moore: mismatched character heuristic

Intuition.
* Scan characters in pattern from right to left.
* Can skip M text chars when finding one not in the pattern.

i j 0 1 2 3 4 5 6 7 8 910111213 14 15 16 17 18 19 20 21 22 23
text 4~ F ' T N D I N A HAY S TACIKNETETDL E

0 5 E <~— pattern

5 5 E

11 4 L E

15 0 N E E D L E

returni = 15

32

Robert Boyer J. Strother Moore
31

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat.

N E E D L E
< 0 1 2 3 4 5 right[c]
A -1 -1
right = new int[R]; B -1 -1
for (int ¢ = 0; ¢ < R; c++) C -1 -1
right[c] = -1; D -1 3 3
for (int j = 0; j < M; j++) E -1 1 2 5 5
right[pat.charAt(j)] = j; . -1
L -1 4 4
-1 -1
N -1 0 0
-1
Boyer-Moore skip table computation

3

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[c] = rightmost occurrence of character c in pat.

e

-0 Z «— 4
-
m

basicidea i

.

incrementi by j - right[’N’] 1
to line up text with N in pattern |

reset j to M-1 f
J

Mismatched character heuristic (mismatch in pattern)

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[c] = rightmost occurrence of character c in pat.

.

[L
-
m

lining up text with rightmost E
would shift pattern left

. i
so increment i by 1 '

reset j to M-1 4
j

Heuristic no help? Increment i and reset j to M-1

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[e] = rightmost occurrence of character c in pat.

-

o >0 4«3
—
m

;
increment i by j+1

reset j to M-1 T

]

Mismatched character heuristic (mismatch not in pattern)

Character not in pattern? Set right[c] fo -1.

34

Boyer-Moore: Java implementation

public int search(String txt)
{
int N = txt.length();
int M = pat.length();
int skip;
for (int i = 0; i <= N-M; i += skip)
{
skip = 0;
for (int j = M-1; j >= 0; j--)
{
if (pat.charAt(j) != txt.charAt(i+j))
{

skip = Math.max (1, j - right[txt.charAt(i+j)]):

break;

}
if (skip == 0) return i;
}

return N;

36

35

compute skip value

match

37

Boyer-Moore: analysis
Property. Substring search with the Boyer-Moore mismatched character
heuristic takes about ~ N/M character compares to search for a pattern of

length M in a text of length N. sublinear

Worst-case. Can be as bad as ~ M N.

i skip 0123456789
txt—B B B B B B B B B B
0 O A B B B B <«—pat
1 1 A B B B B
2 1 A B B B B
31 A B B B B
4 1 A B B B B » Rabin-Karp
5001 A B B B B

Boyer-Moore variant. Can improve worst case to ~ 3 N by adding a

KMP-like rule to guard against repetitive patterns. Michael Rabin, Turing Award '76
and Dick Karp, Turing Award '85
38 39
Rabin-Karp fingerprint search Efficiently computing the hash function
Basic idea = modular hashing. Modular hash function. Using the notation r for txt.charat(i),
» Compute a hash of pattern characters 0 to M - 1. we wish to compute

* For each i, compute a hash of text charactersito M +i- 1.

Xi=tRM + i RM2+ |+t RO (mod Q)
* If pattern hash = text substring hash, check for a match.

Intuition. M-digit, base-R integer, modulo Q.
pat.charAt(i)

i 0 1 2 3 4

2005 3 5 ool Horner's method. Linear-time method to evaluate degree-M polynomial.

txt.charAt(i)

i 0 1 2 3 4 5 6 7 8 91011 12 13 14 15
314159 26 535389793 /] ¢ oy Tl Eore TChEhs T
.charA ompute hash for M-digit ke
0 3 1 4 1 5 %0997 =508 | pat.charAtO R STEREES Ly
i 0 1 2 3 4 private int hash(String key, int M)
1 1 4 1 5 9 %997 =201
2 6 5 3 5 {
2 4 1 5 9 2 %997 =715 0 2 %997 =2 /R /Q int h = 0;
3 15 9 2 6 %997 =971 1 2 6 %997 = (2%10 + 6) % 997 = 26 for (int j = 0; j < M; j++4)
4 5 9 2 6 5 %997 = 442 2 2 6 5 %997 = (26%10 + 5) % 997 = 265 h = (R * h + key.charAt(j)) % Q;
h g
5 9 2 6 5 3 %997 =929 " 3 2 6 5 3 %997 = (26510 + 3) % 997 = 659 return h;
6 ~— returni =6 2 6 5 3 5 %997 =613 4 2 6 5 3 5 %997 = (659%10 + 5) % 997 = 613 }
Computing the hash value for the pattern with Horner’s method

40 41

Efficiently computing the hash function

Challenge. How to efficiently compute xi.1 given that we know ..

Xi

= RM U+ RM2+ |+ tiva1 RO

Xit+1 = bt RMT + tig R¥2 + L+t RO

Key property. Can update hash function in constant time!

Xit1 = XiR = tiRM + tiwym

1 f

shift subtract add new
left leftmost digit rightmost digit

i ... 2 3 45 6 7 ..
current value 4 1 5 9 2 .
new value 1 5 9 2 6 = et
4 1 5 9 2 currentvalue
- 4 0 0 0 O
1 5 9 2 subtractleading digit
* 1 Q0 multiply by radix
159 20
+ 6 add new trailing digit
1 5 9 2 6 newvalue
Rabin-Karp: Java implementation
public class RabinKarp
{
private int patHash; // pattern hash value
private int M; // pattern length
private int Q; // modulus
private int R; // radix

private int RM;

// R*(M-1) % Q

public RabinKarp(String pat) {
M = pat.length() ;

R = 256;

Q = largeRandomPrime () ;

RM = 1;
for (int i =

1; i <= M-1; i++)

RM = (R * RM) % Q;
patHash = hash(pat, M);

}

private int hash(String key, int M)

{ /* as before

*/ '}

public int search(String txt)
{ /* see next slide */ }

a large prime (but not so
large to cause int overflow)

—— precompute RM- 1 (mod Q)

42

44

Rabin-Karp substring search example

i 0 1 2 3 4 5 6 7 8 9101112 13 14 15
314159 2 65352829 7 9 3

0 3 %997 =3 /ﬁ

1 3 1 %997 = (3*10 + 1) % 997 = 31

2 3 1 4 %997 = (31%10 + 4) % 997 = 314

3 03 1 4 1 %997 = (314¥10 + 1) % 997 = 150

4 3 1 4 1 5 %997 = (150%10 + 5) % 997 = 508 &M R

5 1 4 1 5 9 %997 = ((508 + 3%¥(997 - 30))*10 + 9) % 997 = 201

6 4 1 5 9 2 %997 = ((201 + 1%¥(997 - 30))*10 + 2) % 997 = 715

7 1 5 9 2 6 %997 = ((715 + 4%(997 - 30))*10 + 6) % 997 = 971

8 59 2 6 5 %997 = ((971 + 1¥(997 - 30))¥10 + 5) % 997 = 442 ..
9 9 2 6 5 3 %997 = ((442 + 5%(997 - 30))*10 + 3) % 997 = 929 |
10 «~— returni-ml = 6 2 6 5 3 5 %997 = ((929 + 9%(997 - 30))*10 + 5) % 997 = 613

Rabin-Karp: Java implementation (continued)

Monte Carlo version. Return match if hash match.

public int search(String txt)

{

int N =

{

txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
txtHash = (txtHash*R + txt.charAt(i)) % Q;
if (patHash == txtHash) return i - M + 1;

}

return N;

txt.length() ;

int txtHash = hash(txt, M);

if (patHash == txtHash) return O;
for (int i = M; i < N; j++)

check for hash collision
using rolling hash function

Las Vegas version. Check for substring match if hash match;

continue search if false collision.

43

45

Rabin-Karp analysis

Theory. If Qis asufficiently large random prime (about M N?2),
then the probability of a false collision is about 1/ N.

Practice. Choose O to be a large prime (but not so large as o cause overflow).
Under reasonable assumptions, probability of a collision is about 1/ Q.

Monte Carlo version.

* Always runs in linear time.

* Extremely likely to return correct answer (but not always!).
Las Vegas version.

* Always returns correct answer.
* Extremely likely to run in linear time (but worst case is M N).

46

Substring search cost summary

Cost of searching for an M-character pattern in an N-character text.

operation count backup extra
algorithm version _— correct?
guarantee typical ininput? space
brute force — MN 1IN yes yes 1
full DFA N N
(Algorithm 5.6) 2N 1.IN no yes MR
Knuth-Morris-Pratt)
mismatch 3N LIN om0 yes M
transitions only
full algorithm 3N N/M yes yes R
Boyer-Moore mismatched char
heuristic only MN N/M yes yes R
(Algorithm 5.7)
Monte Carlo N B
(Algorithm 5.8) 7N 7N no res !
Rabin-Karp®
Las Vegas 7Nf 7N yes yes 1
1 probabilisitic guarantee, with uniform hash function

48

Rabin-Karp fingerprint search

Advantages.
» Extends to 2d patterns.
* Extends fo finding multiple patterns.

Disadvantages.

* Arithmetic ops slower than char compares.
* Poor worst-case guarantee.

* Requires backup.

Q. How would you extend Rabin-Karp to efficiently search for any one of
P possible patterns in a text of length N ?

47

