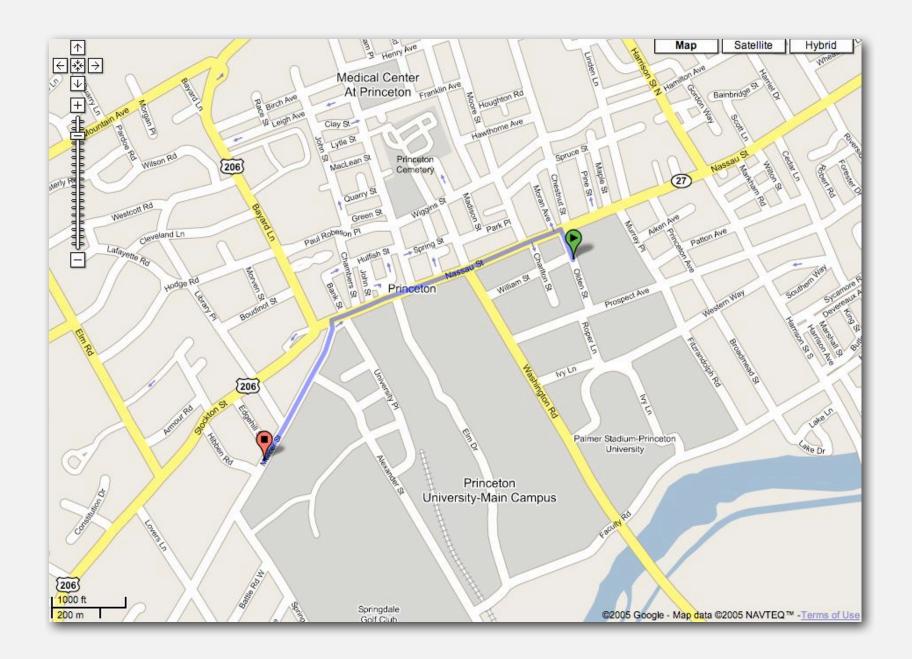
4.4 Shortest Paths

- edge-weighted digraph API
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

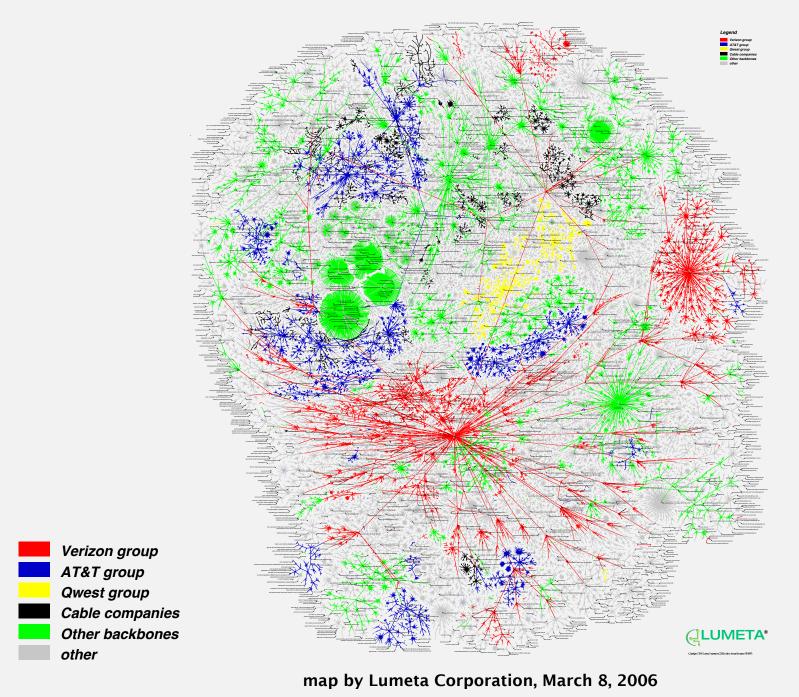
Google maps



Continental U.S. routes (August 2010)

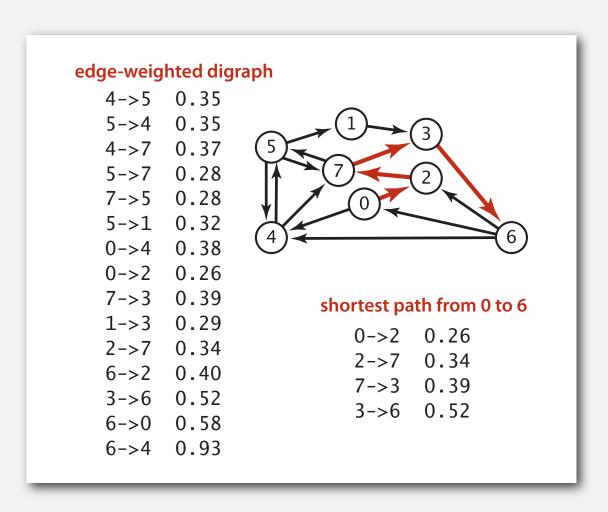
http://www.continental.com/web/en-US/content/travel/routes

Shortest outgoing routes on the Internet from Lumeta headquarters



Shortest paths in a weighted digraph

Given an edge-weighted digraph, find the shortest (directed) path from s to t.



Shortest path variants

Which vertices?

- Source-sink: from one vertex to another.
- Single source: from one vertex to every other.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Arbitrary weights.
- Euclidean weights.

Cycles?

- · No cycles.
- No "negative cycles."

Simplifying assumption. There exists a shortest path from s to each vertex v.

Shortest path applications

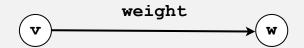
- Map routing.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Subroutine in advanced algorithms.
- Routing of telecommunications messages.
- Approximating piecewise linear functions.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

edge-weighted digraph API

- > shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

Weighted directed edge API



Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Eage for undirected graphs, but a bit simpler.

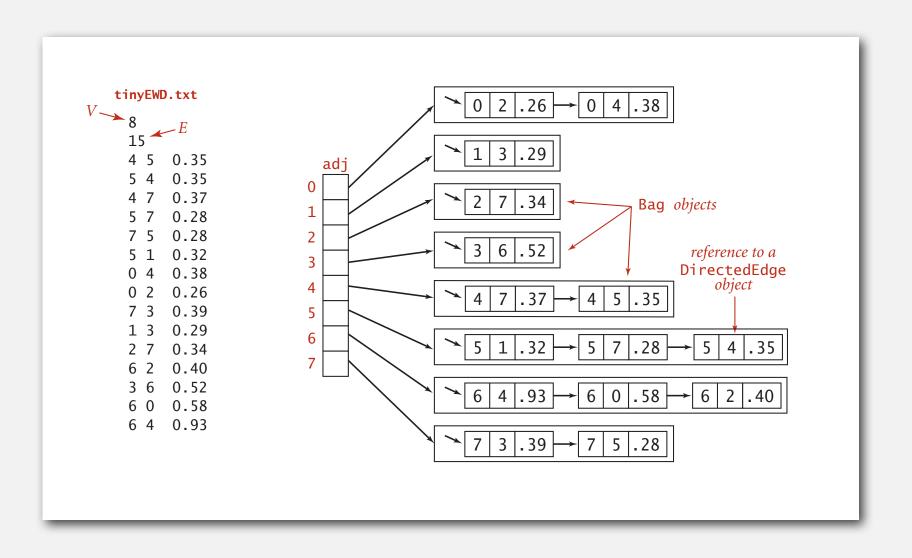
```
public class DirectedEdge
   private final int v, w;
   private final double weight;
   public DirectedEdge(int v, int w, double weight)
      this.v = v;
      this.w = w;
      this.weight = weight;
      public int from()
   { return v; }
                                                                  from() and to() replace
                                                                  either() and other()
   public int to()
      return w; }
   public int weight()
   { return weight; }
```

Edge-weighted digraph API

public class	EdgeWeightedDigraph			
	EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices		
	EdgeWeightedDigraph(In in)	edge-weighted digraph from input stream		
void	addEdge(DirectedEdge e)	add weighted directed edge e		
Iterable <directededge></directededge>	adj(int v)	edges adjacent from v		
int	V()	number of vertices		
int	E()	number of edges		
Iterable <directededge></directededge>	edges()	all edges in this digraph		
String	toString()	string representation		

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation



Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeweightedGraph except replace Graph with Digraph.

```
public class EdgeWeightedDigraph
   private final int V;
   private final Bag<Edge>[] adj;
   public EdgeWeightedDigraph(int V)
      this.V = V;
      adj = (Bag<DirectedEdge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<DirectedEdge>();
   public void addEdge(DirectedEdge e)
      int v = e.from();
                                                         similar to edge-weighted
      adj[v].add(e);
                                                         undirected graph, but only
                                                         add edge to v's adjacency list
   public Iterable<DirectedEdge> adj(int v)
      return adj[v]; }
```

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?
```

```
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + " ");
    StdOut.println();
}</pre>
```

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?
```

```
% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38 4->5 0.35
0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52
0 to 7 (0.60): 0->2 0.26 2->7 0.34
```

- edge-weighted digraph API
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

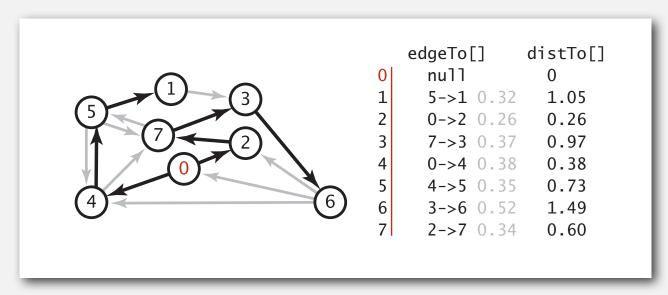
Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest path tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.



shortest path tree from 0

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest path tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.

```
public double distTo(int v)
{    return distTo[v]; }

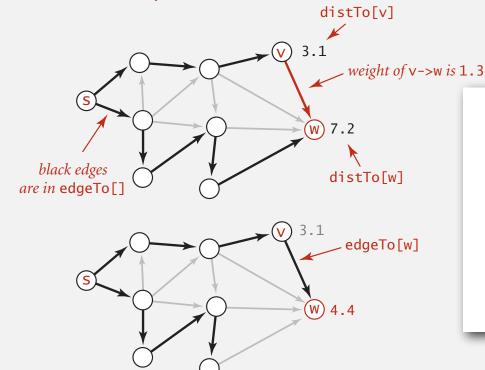
public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```

Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update disto[w] and edgeto[w].

v->w successfully relaxes



```
private void relax(DirectedEdge e)
{
  int v = e.from(), w = e.to();
  if (distTo[w] > distTo[v] + e.weight())
  {
     distTo[w] = distTo[v] + e.weight();
     edgeTo[w] = e;
  }
}
```

Shortest-paths optimality conditions

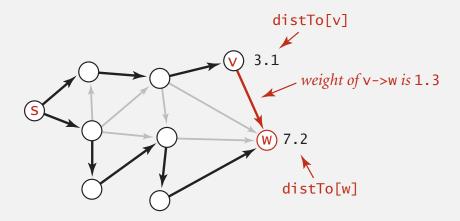
Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

Pf. \Leftarrow [necessary]

- Suppose that distTo[w] > distTo[v] + e.weight() for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than distTo[w].



Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- For each vertex v, distro[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

```
Pf. \Rightarrow [sufficient]
```

• Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k = w$ is a shortest path from s to w.

```
• Then, distTo[v_k] \leq distTo[v_{k-1}] + e_k.weight() distTo[v_{k-1}] \leq distTo[v_{k-2}] + e_{k-1}.weight() \qquad e_i = i^{th} \ edge \ on \ shortest path \ from \ s \ to \ w \cdots distTo[v_1] \leq distTo[v_0] + e_1.weight()
```

• Collapsing these inequalities and eliminate dist $To[v_0] = distTo[s] = 0$:

```
\label{eq:distTo} \begin{array}{ll} \text{distTo[w]} = \text{distTo[v_k]} \leq \underbrace{e_k.\text{weight()} + e_{k-1}.\text{weight()} + ... + e_1.\text{weight()}}_{\text{weight of some path from s to w}} \\ \end{array}
```

• Thus, distTo[w] is the weight of shortest path to w. ■

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Proposition. Generic algorithm computes SPT from s. \leftarrow assuming SPT exists Pf sketch.

- Throughout algorithm, distTo[v] is the length of a simple path from s to v and edgeTo[v] is last edge on path.
- Each successful relaxation decreases disto[v] for some v.
- The entry distro[v] can decrease at most a finite number of times. •

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Efficient implementations. How to choose which edge to relax?

- Ex 1. Dijkstra's algorithm (nonnegative weights).
- Ex 2. Topological sort algorithm (no directed cycles).
- Ex 3. Bellman-Ford algorithm (no negative cycles).

- edge-weighted digraph API
- shortest-paths properties
- ▶ Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

Edsger W. Dijkstra: select quotes

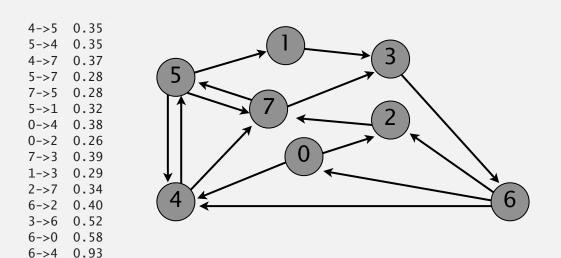
- "Do only what only you can do."
- "In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."
- "The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
- "It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."
- "APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."

Edsger W. Dijkstra Turing award 1972

Edsger W. Dijkstra: select quotes

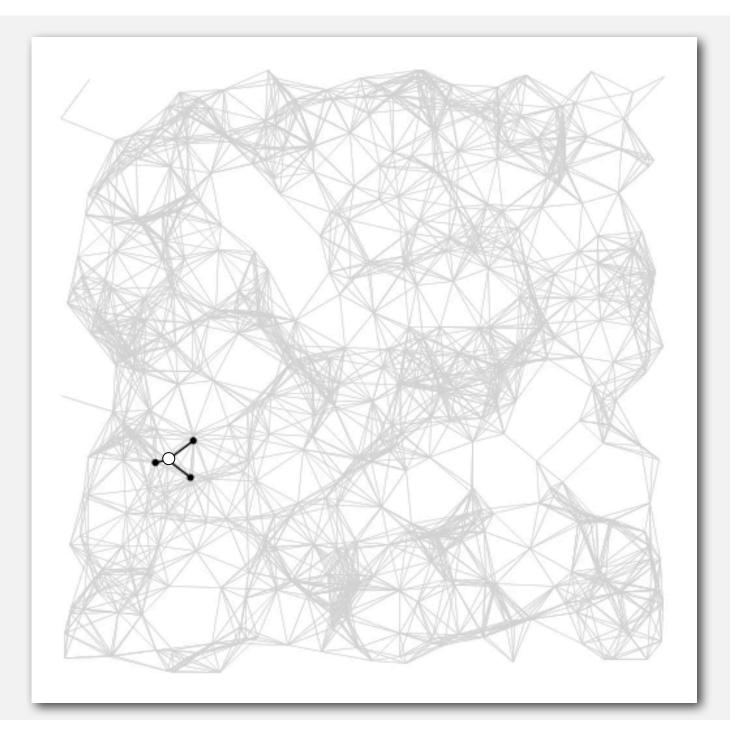
Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distance] value).
- Add vertex to tree and relax all edges incident from that vertex.

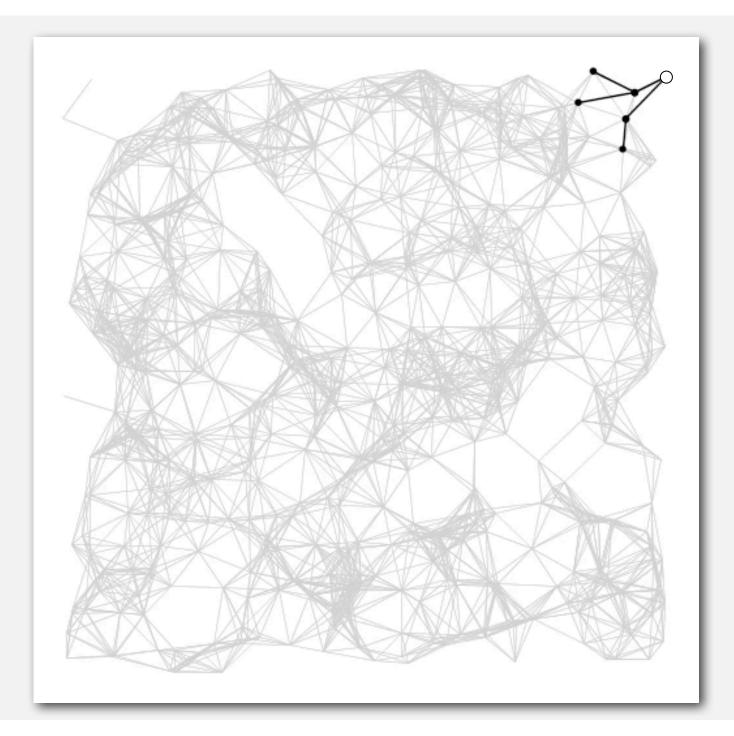


v	distTo[v]	edgeTo[v]
0	0.00	-
1		
2		
3		
4		
5		
6		
7		

Dijkstra's algorithm visualization



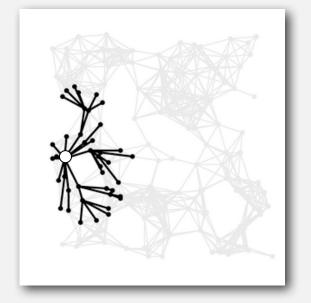
Dijkstra's algorithm visualization



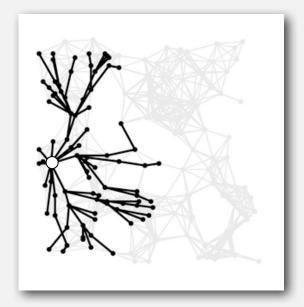
Shortest path trees

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distance] value).
- Add vertex to tree and relax all edges incident from that vertex.

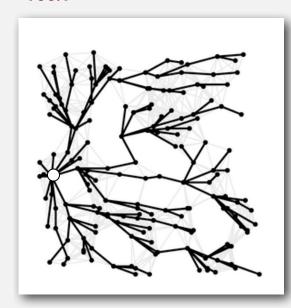
25%



50%



100%



Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when v is relaxed), leaving distTo[w] \leq distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
 - distTo[w] Cannot increase ← distTo[] values are monotone decreasing
 - distTo[v] will not change edge weights are nonnegative and we choose lowest distTo[] value at each step
- Thus, upon termination, shortest-paths optimality conditions hold. •

Dijkstra's algorithm: Java implementation

```
public class DijkstaSP
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   private IndexMinPQ<Double> pq;
   public DijkstraSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE INFINITY;
      distTo[s] = 0.0;
      pq.insert(s, 0.0);
                                                              relax vertices in order
      while (pq.isEmpty())
                                                               of distance from s
          int v = pq.delMin();
          for (DirectedEdge e : G.adj(v))
             relax(e);
```

Dijkstra's algorithm: Java implementation

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
array	1	V	1	V 2
binary heap	log V	log V	log V	E log V
d-way heap (Johnson 1975)	d log _d V	d log _d V	log _d V	E log _{E/V} V
Fibonacci heap (Fredman-Tarjan 1984)	1 †	log V †	1 †	E + V log V

† amortized

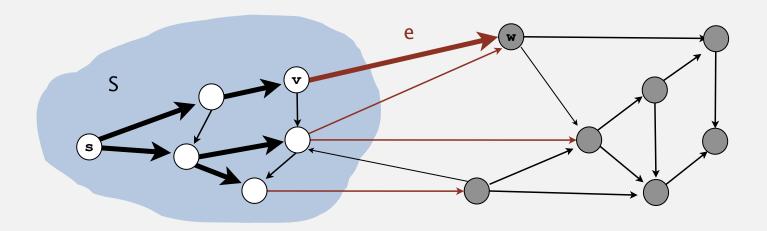
Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- d-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Priority-first search

Insight. Four of our graph-search methods are the same algorithm!

- Maintain a set of explored vertices S.
- Grow S by exploring edges with exactly one endpoint leaving S.
- DFS. Take edge from vertex which was discovered most recently.
- BFS. Take edge from vertex which was discovered least recently.
- Prim. Take edge of minimum weight.
- Dijkstra. Take edge to vertex that is closest to S.



Challenge. Express this insight in reusable Java code.

- edge-weighted digraph AP
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

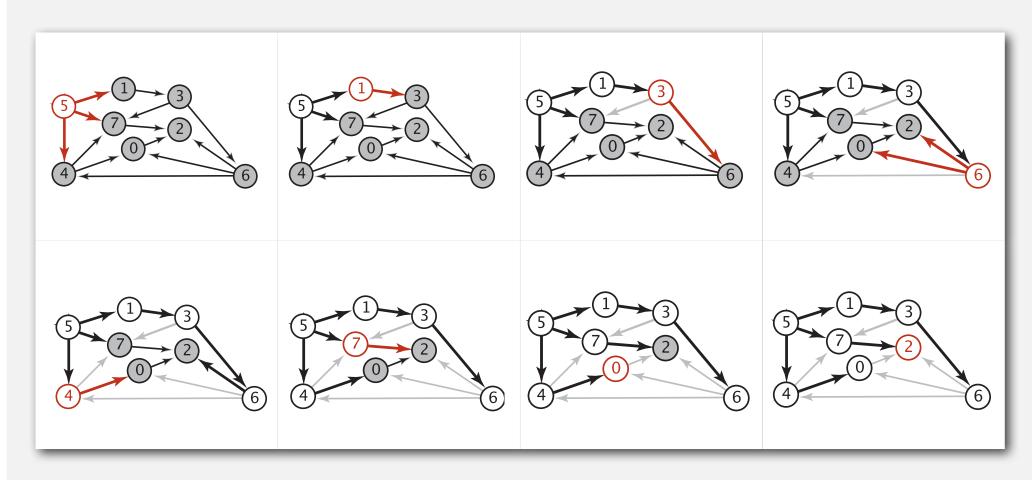
A. Yes!

5->4 0.35 4->7 0.37 5->7 0.28 5->1 0.32 4->0 0.38 0->2 0.26 3->7 0.39 1->3 0.29 7->2 0.34 6->2 0.40 3->6 0.52 6->0 0.58 6->4 0.93

Shortest paths in edge-weighted DAGs

Topological sort algorithm.

- Consider vertices in topologically order.
- Relax all edges incident from vertex.



topological order: 5 1 3 6 4 7 0 2

Shortest paths in edge-weighted DAGs

```
public class AcyclicSP
  private DirectedEdge[] edgeTo;
  private double[] distTo;
  public AcyclicSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE INFINITY;
      distTo[s] = 0.0;
      Topological topological = new Topological(G); ←
                                                                topological order
      for (int v : topological.order())
         for (DirectedEdge e : G.adj(v))
            relax(e);
```

Shortest paths in edge-weighted DAGs

Topological sort algorithm.

- Consider vertices in topologically order.
- Relax all edges incident from vertex.

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to E+V.

Pf.

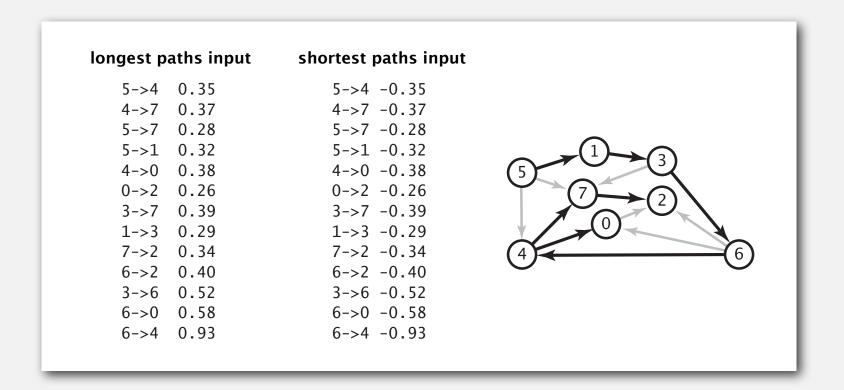
- Each edge $e = v \rightarrow w$ is relaxed exactly once (when v is relaxed), leaving distTo[w] \leq distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
 - distTo[w] cannot increase ← distTo[] values are monotone decreasing
 - distTo[v] will not change because of topological order, no edge pointing to v will be relaxed after v is relaxed
- Thus, upon termination, shortest-paths optimality conditions hold. •

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.

equivalent: reverse sense of equality in relax()



Key point. Topological sort algorithm works even with negative edge weights.

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time while respecting the constraints.

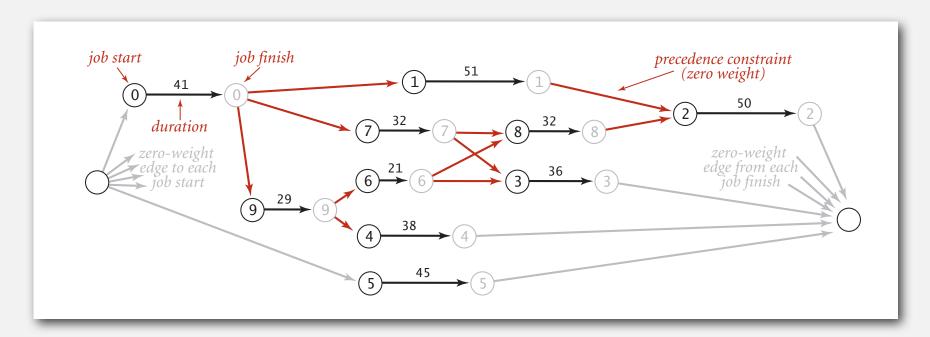
job	duration	mus	t con befoi	nplete e										
0	41.0	1	7	9										
1	51.0	2												
2	50.0													
3	36.0													
4	38.0						_				_			
5	45.0								1					
6	21.0	3	8					7			3			
7	32.0	3	8			0		9		6	8		2	
8	32.0	2				5				4				
9	29.0	4	6		0		 41		70	91		123		173
				Parallel job scheduling solution										

Critical path method

CPM. To solve a parallel job-scheduling problem, create acyclic edge-weighted digraph:

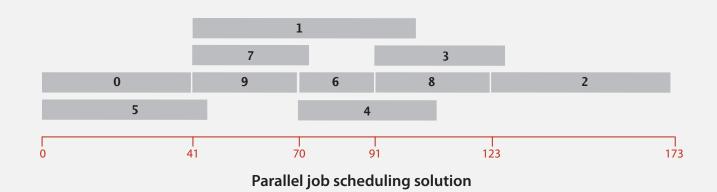
- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)

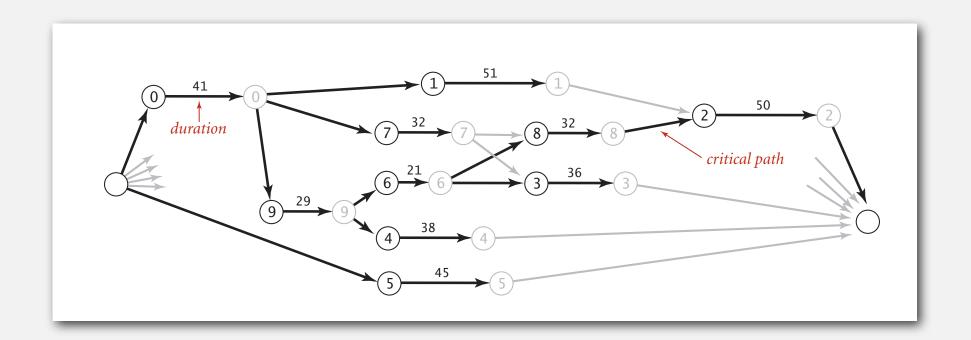
job	duration	must complete before				
0	41.0	1	7	9		
1	51.0	2				
2	50.0					
3	36.0					
4	38.0					
5	45.0					
6	21.0	3	8			
7	32.0	3	8			
8	32.0	2				
9	29.0	4	6			



Critical path method

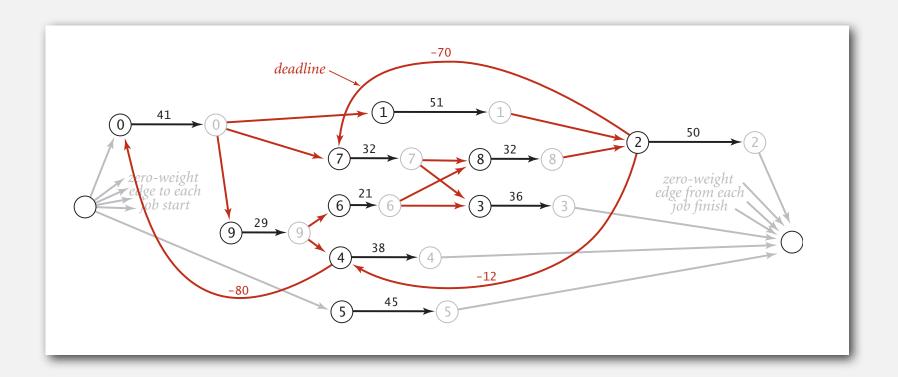
CPM. Use longest path from the source to schedule each job.





Deep water

Deadlines. Add extra constraints to the parallel job-scheduling problem. Ex. "Job 2 must start no later than 12 time units after job 4 starts."



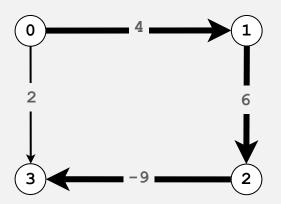
Consequences.

- Corresponding shortest-paths problem has cycles (and negative weights).
- Possibility of infeasible problem (negative cycles).

- edge-weighted digraph AP
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

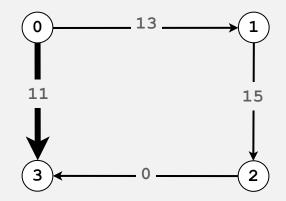
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.



Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0\rightarrow 1\rightarrow 2\rightarrow 3$.

Re-weighting. Add a constant to every edge weight doesn't work.

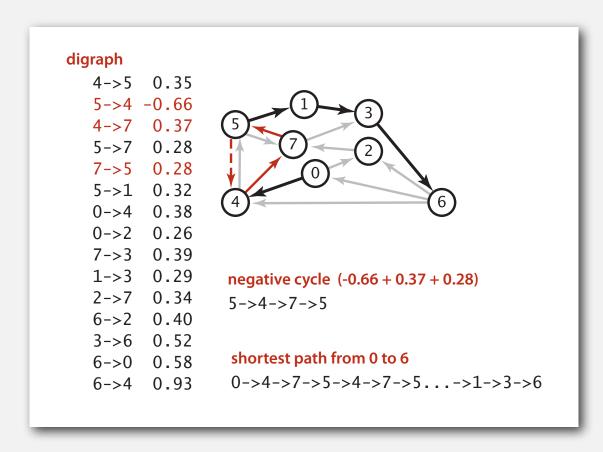


Adding 9 to each edge weight changes the shortest path from $0\rightarrow 1\rightarrow 2\rightarrow 3$ to $0\rightarrow 3$.

Bad news. Need a different algorithm.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.



Proposition. A SPT exists iff no negative cycles.

assuming all vertices reachable from s

Shortest paths with negative weights: dynamic programming algorithm

Dynamic programming algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

```
for (int i = 1; i <= G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
        relax(e);</pre>
phase i (relax each edge)
```

Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After phase i, found shortest path containing at most i edges.

Bellman-Ford algorithm

Observation. If distro[v] does not change during phase i, no need to relax any edge incident from v in phase i+1.

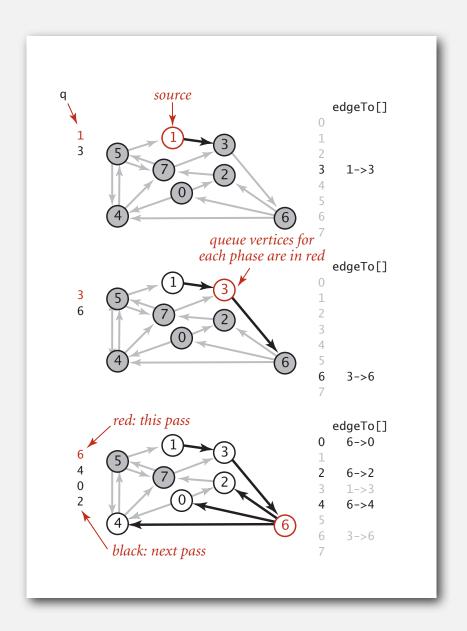
FIFO implementation. Maintain queue of vertices whose distro[] changed.

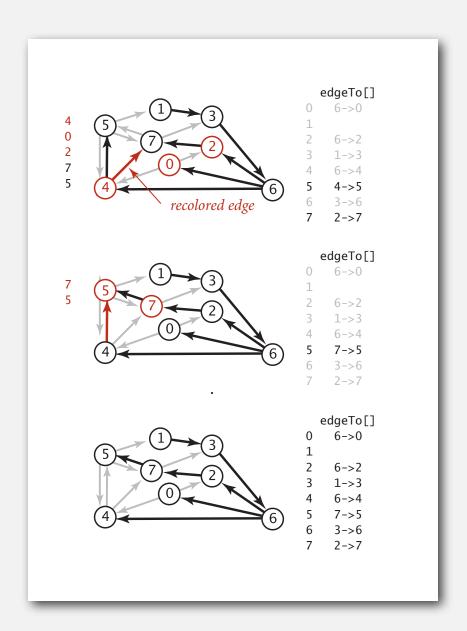
be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Bellman-Ford algorithm trace

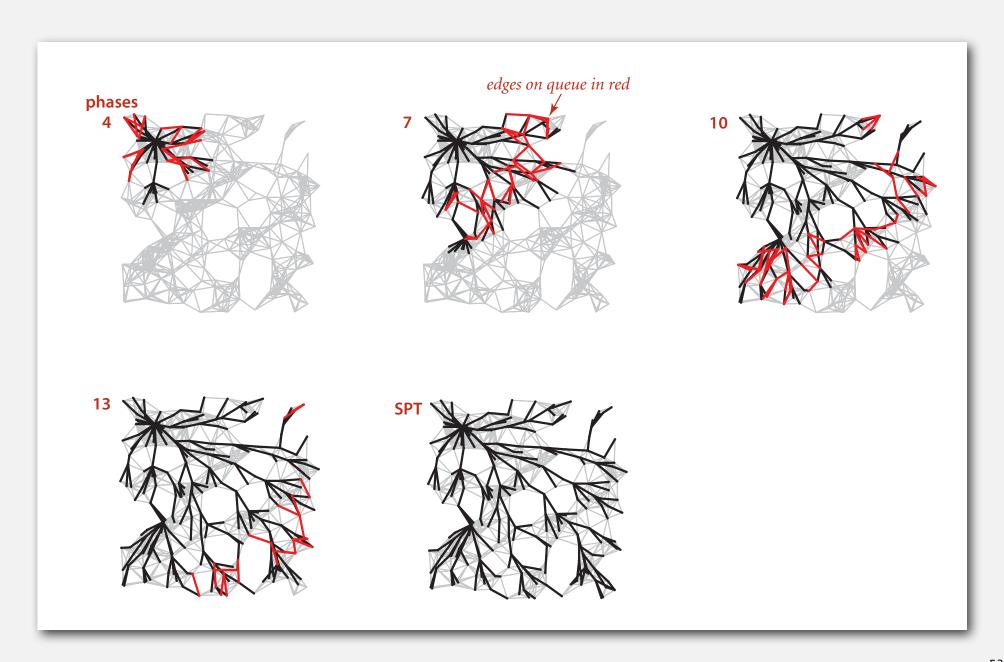




Bellman-Ford algorithm

```
public class BellmanFordSP
   private double[] distTo;
   private DirectedEdge[] edgeTo;
                                                                     queue of vertices whose
   private int[] onQ;
                                                                      distTo[] value changes
  private Queue<Integer> queue;
   public BellmanFordSPT(EdgeWeightedDigraph G, int s)
      distTo = new double[G.V()];
      edgeTo = new DirectedEdge[G.V()];
      onq = new int[G.V()];
      queue = new Queue<Integer>();
                                                    private void relax(DirectedEdge e)
      for (int v = 0; v < V; v++)
                                                       int v = e.from(), w \neq e.to();
         distTo[v] = Double.POSITIVE INFINITY;
                                                       if (distTo[w] > distTo[v] + e.weight())
      distTo[s] = 0.0;
                                                            distTo[w] = distTo[v] + e.weight();
      queue.enqueue(s);
                                                            edgeTo[w] = e;
      while (!queue.isEmpty())
                                                            if (!onQ[w])
         int v = queue.dequeue();
                                                               q.enqueue(w);
         onQ[v] = false;
                                                               onQ[w] = true;
         for (DirectedEdge e : G.adj(v))
            relax(e);
```

Bellman-Ford algorithm visualization



Single source shortest-paths implementation: cost summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	E log V	E log V	V
dynamic programming	no negative	EV	ΕV	V
Bellman-Ford	cycles	E + V	ΕV	V

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

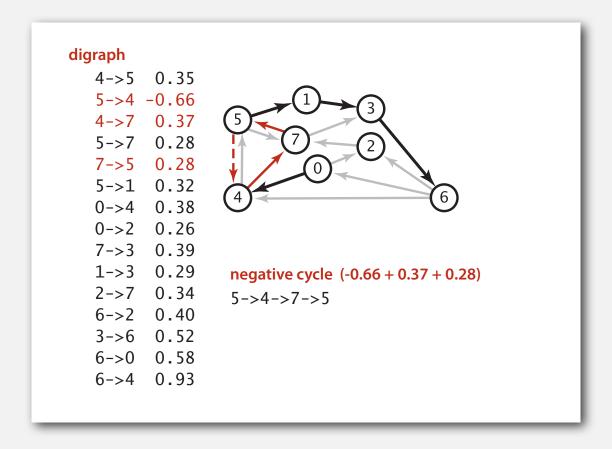
Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Negative cycle. Add two method to the API for Sp.

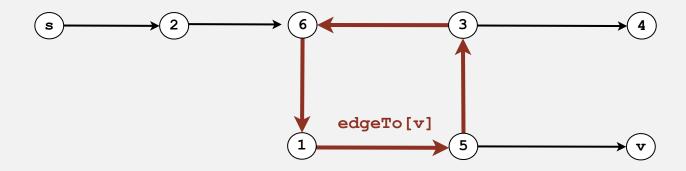
boolean hasNegativeCycle() is there a negative cycle?

Iterable <DirectedEdge> negativeCycle() negative cycle reachable from s



Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating disto[] and edgeto[] entries of vertices in the cycle.



Proposition. If any vertex v is updated in phase V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

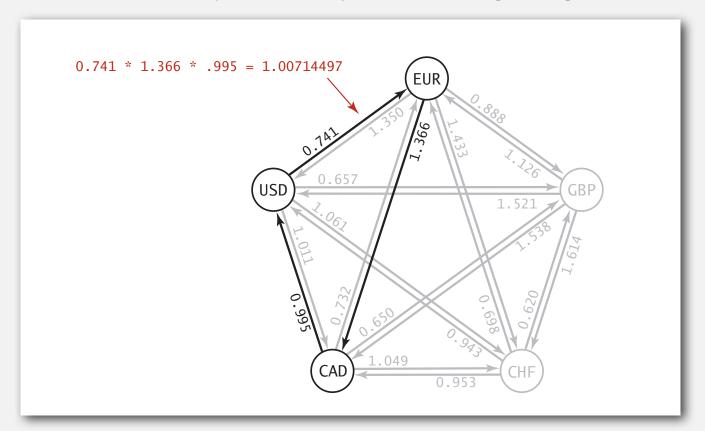
Ex. $$1,000 \Rightarrow 741 \text{ Euros} \Rightarrow 1,012.206 \text{ Canadian dollars} \Rightarrow $1,007.14497.$

 $1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497$

Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

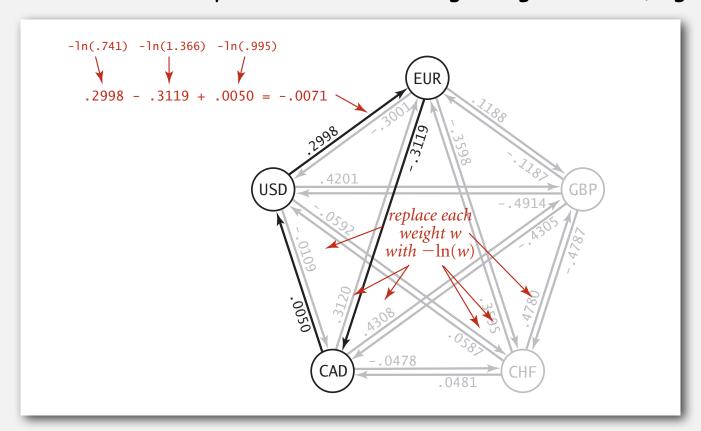


Challenge. Express as a negative cycle detection problem.

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be ln (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).



Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Dijkstra's algorithm.

- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

- Arise in applications.
- Faster than Dijkstra's algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.

- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.