4.3 Minimum Spanning Trees

- ▶ edge-weighted graph API
- greedy algorithm
- ▶ Kruskal's algorithm
- ▶ Prim's algorithm
- advanced topics

Algorithms, 4th Edition

Robert Sedgewick and Kevin Wayne

· Copyright © 2002–2010 · October 28, 2010 1:04:25 PM

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

not connected

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

not acyclic

Minimum spanning tree

Given. Undirected graph ${\it G}$ with positive edge weights (connected).

Def. A spanning tree of ${\it G}$ is a subgraph ${\it T}$ that is connected and acyclic.

Goal. Find a min weight spanning tree.

spanning tree T: cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

Brute force. Try all spanning trees?

Applications

MST is fundamental problem with diverse applications.

- · Cluster analysis.
- · Max bottleneck paths.
- · Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, cable, computer, road).

http://www.ics.uci.edu/~eppstein/gina/mst.html

Network design

MST of bicycle routes in North Seattle

Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

Genetic research

▶ edge-weighted graph API

- greedy algorithm
- Kruskal's algorithm
- ▶ Prim's algorithm
- advanced topics

Weighted edge API

Edge abstraction needed for weighted edges.

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge>
   private final int v, w;
   private final double weight;
   public Edge(int v, int w, double weight)
                                                                 constructor
      this.v = v;
      this.w = w;
      this.weight = weight;
   public int either()
                                                                 either endpoint
   { return v; }
   public int other(int vertex)
                                                                 other endpoint
      if (vertex == v) return w;
      else return v;
   public int compareTo(Edge that)
                                                                 compare edges by weight
               (this.weight < that.weight) return -1;</pre>
      else if (this.weight > that.weight) return +1;
                                            return 0;
```

Edge-weighted graph API

Conventions.

- Allow self-loops.
- · Allow parallel edges.

Edge-weighted graph: adjacency-list representation

Maintain vertex-indexed array of Edge lists (use Bag abstraction).

Edge-weighted graph: adjacency-lists implementation

Minimum spanning tree API

Q. How to represent the MST?

% java MST tinyEWG.txt 0-7 0.16 1-7 0.19 0-2 0.26 2-3 0.17 5-7 0.28 4-5 0.35 6-2 0.40 1.81

,

Minimum spanning tree API

Q. How to represent the MST?

```
public class MST

MST (EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST
```

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    MST mst = new MST(G);
    for (Edge e : mst.edges())
        StdOut.println(e);
    StdOut.println(mst.weight());
}
```

```
% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81
```

edge-weighted graph API

→ greedy algorithm

- Kruskal's algorithm
- Prim's algorithm
- ▶ advanced topics

Cut property

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Cut property: correctness proof

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Pf. Let e be the min-weight crossing edge in cut.

- Suppose e is not in the MST.
- ullet Adding e to the MST creates a cycle.
- ullet Some other edge f in cycle must be a crossing edge.
- \bullet Removing f and adding e is also a spanning tree.
- Since weight of *e* is less than the weight of *f*, that spanning tree is lower weight.
- Contradiction.

Greedy MST algorithm

Proposition. The following algorithm computes the MST:

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Continue until V-1 edges are colored black.

Greedy MST algorithm

Proposition. The following algorithm computes the MST:

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Continue until V-1 edges are colored black.

Pf.

- Any edge colored black is in the MST (via cut property).
- If fewer than V-1 black edges, there exists a cut with no black crossing edges. (consider cut whose vertices are one connected component)

fewer than V-1 edges colored black

a cut with no black crossing edges

Greedy MST algorithm

Proposition. The following algorithm computes the MST:

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Continue until V 1 edges are colored black.

Efficient implementations. How to choose cut? How to find min-weight edge?

- Ex 1. Kruskal's algorithm. [stay tuned]
- Ex 2. Prim's algorithm. [stay tuned]
- Ex 3. Borüvka's algorithm.

Removing two simplifying assumptions

- Q. What if edge weights are not all distinct?
- A. Greedy MST algorithm still correct if equal weights are present! (our correctness proof fails, but that can be fixed)

1 2	1.00
1 3	0.50
2 4	1.00
3 4	0.50

1 2 1.00 1 3 0.50 2 4 1.00 3 4 0.50

- Q. What if graph is not connected?
- A. Compute minimum spanning forest = MST of each component.

Greed is good

Gordon Gecko (Michael Douglas) address to Teldar Paper Stockholders in Wall Street (1986)

- edge-weighted graph API
- > greedy algorithm
- ▶ Kruskal's algorithm
- Prim's algorithm
- ▶ advanced topics

25

Kruskal's algorithm

Kruskal's algorithm. [Kruskal 1956] Consider edges in ascending order of weight. Add the next edge to the tree T unless doing so would create a cycle.

Kruskal's algorithm visualization

_

Kruskal's algorithm visualization

Kruskal's algorithm: proof of correctness

Proposition. Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm is a special case of the greedy MST algorithm.

- Suppose Kruskal's algorithm colors edge e = v w black.
- Cut = set of vertices connected to v (or to w) in tree T.
- No crossing edge is black.
- No crossing edge has lower weight. Why?

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

How difficult?

- O(E+V) time.
- O(V) time. run DFS from v, check if w is reachable (T has at most V 1 edges)
- $O(\log V)$ time.
- Constant time.

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge $v\!-\!w$ to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If ν and w are in same set, then adding $\nu\!-\!w$ would create a cycle.
- To add v-w to T, merge sets containing v and w.

Case 2: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST
   private Queue<Edge> mst;
   private MinPQ<Edge> pq;
   public KruskalMST(EdgeWeightedGraph G)
      mst = new Queue<Edge>();
      pq = new MinPQ<Edge>(G.edges());
                                                                  build priority queue
      UnionFind uf = new UnionFind(G.V());
      while (!pq.isEmpty() && mst.size() < G.V()-1)
         Edge e = pq.delMin();
                                                                  greedily add edges to MST
         int v = e.either(), w = e.other(v);
         if (!uf.find(v, w))
                                                                  edge v-w does not create cycle
            uf.union(v, w);
                                                                  merge sets
            mst.enqueue(e);
                                                                  add edge to MST
   public Iterable<Edge> edges()
     return mst; }
```

- edge-weighted graph API
- ▶ greedy algorithm
- Kruskal's algorithm

→ Prim's algorithm

advanced topics

Kruskal's algorithm running time

Proposition. Kruskal's algorithm computes MST in $O(E \log E)$ time.

Pf.

operation	frequency	time per op
build pq	1	E
del min	E	log E
union	V	log* V †
find	E	log* V †

† amortized bound using weighted quick union with path compression

recall: $log* V \le 5$ in this universe

Remark. If edges are already sorted, order of growth is $E \log^* V$.

Prim's algorithm example

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]

Start with vertex 0 and greedily grow tree T. At each step, add to T the min weight edge with exactly one endpoint in T.

Prim's algorithm: visualization

Prim's algorithm: visualization

Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?

- O(V) time.
- O(log* *E*) time.
- · Constant time.

Prim's algorithm: proof of correctness

Proposition. Prim's algorithm computes the MST.

Pf. Prim's algorithm is a special case of the greedy MST algorithm.

- Suppose edge $e=\min$ weight edge connecting a vertex on the tree to a vertex not on the tree.
- Cut = set of vertices connected on tree.
- No crossing edge is black.
- No crossing edge has lower weight.

.

Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Delete min to determine next edge e = v w to add to T.
- Disregard if both endpoints v and w are in T.
- Otherwise, let v be vertex not in T:
 - add to PQ any edge incident to v (assuming other endpoint not in T)
 - add v to T

${\bf Prim's\ algorithm:\ lazy\ implementation}$

```
public class LazyPrimMST
                                 // MST vertices
   private boolean[] marked;
                                 // MST edges
   private Queue<Edge> mst;
   private MinPQ<Edge> pq;
                                 // PQ of edges
    public LazyPrimMST (WeightedGraph G)
        pq = new MinPQ<Edge>();
        mst = new Queue<Edge>();
        marked = new boolean[G.V()];
        visit(G, 0);
                                                                   assume G is connected
        while (!pq.isEmpty())
                                                                    repeatedly delete the
           Edge e = pq.delMin();
                                                                    min weight edge e = v-w from PQ
           int v = e.either(), w = e.other(v);
                                                                    ignore if both endpoints in T
           if (marked[v] && marked[w]) continue;
                                                                    add edge e to tree
           mst.enqueue(e);
           if (!marked[v]) visit(G, v);
                                                                    add v or w to tree
           if (!marked[w]) visit(G, w);
```

Prim's algorithm example: lazy implementation

Use MinPQ: key = edge, prioritized by weight.

(lazy version leaves some obsolete edges on the PQ)

Prim's algorithm: lazy implementation

```
private void visit(WeightedGraph G, int v)
{
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}

public Iterable<Edge> edges()
{ return mst; }

add v to T
for each edge e = v-w, add to
PQ if w not already in T
```

Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ in the worst case.

Pf.

operation	frequency	binary heap
delete min	E	log E
insert	E	log E

Indexed priority queue

Associate an index between 0 and N-1 with each key in a priority queue.

- Client can insert and delete-the-minimum.
- Client can change the key by specifying the index.

public class	lic class IndexMinPQ <key comparable<key="" extends="">></key>		
	IndexMinPQ(int N)	create indexed priority queue with indices 0, 1,, N-1	
void	<pre>insert(int k, Key key)</pre>	associate key with index k	
void	decreaseKey(int k, Key key)	decrease the key associated with index k	
boolean	contains()	is k an index on the priority queue?	
int	delMin()	remove a minimal key and return its associated index	
boolean	isEmpty()	is the priority queue empty?	
int	size()	number of entries in the priority queue	

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in T.

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex v = weight of shortest edge connecting v to T.

- Delete min vertex v and add its associated edge e = v w to T.
- Update PQ by considering all edges e = v x incident to v
 - ignore if x is already in T
- add x to PQ if not already on it
- decrease priority of x if v-x becomes shortest edge connecting x to T

Indexed priority queue implementation

Implementation.

- Start with same code as Minpq.
- Maintain parallel arrays ${\tt keys[],pq[]},$ and ${\tt qp[]}$ so that:
- keys[i] is the priority of i
- pq[i] is the index of the key in heap position i
- qp[i] is the heap position of the key with index i
- Use swim(qp[k]) implement decreaseKey(k, key).

46

Prim's algorithm example: eager implementation

Use IndexMinPQ: key = edge weight, index = vertex.

(eager version has at most one PQ entry per vertex)

- advanced topics

Prim's algorithm: running time

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
array	1	V	1	V ²
binary heap	log V	log V	log V	E log V
d-way heap (Johnson 1975)	d log _d V	d log _d V	log _d V	E log _{E/V} V
Fibonacci heap (Fredman-Tarjan 1984)	1 †	log V †	1 †	E + V log V

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Does a linear-time MST algorithm exist?

deterministic compare-based MST algorithms

year	worst case	discovered by
1975	E log log V	Yao
1976	E log log V	Cheriton-Tarjan
1984	E log* V, E + V log V	Fredman-Tarjan
1986	E log (log* V)	Gabow-Galil-Spencer-Tarjan
1997	$E \alpha(V) \log \alpha(V)$	Chazelle
2000	E α(V)	Chazelle
2002	optimal	Pettie-Ramachandran
20xx	Е	???

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).

Euclidean MST

Given N points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.

Brute force. Compute $\sim N^2/2$ distances and run Prim's algorithm. Ingenuity. Exploit geometry and do it in $\sim c N \log N$.

- Kruskal's algorithmPrim's algorithmadvanced topics