4.2 Directed Graphs

d

use example
connected topological

digraph,
Digraphs s
secedge

idirected

raphs
tlmeg P
graph

vertex
vertices-..

REVERSE

wajqo.
2941

9—
q
o
a
-
o
o

» digraph API

» digraph search

» topological sort

» strong components

o
3
(]

5|:| uanlb
%‘muoguodo.ld

U JapJo
“
w

-

awndwo)

Algorithms, 4" Edition : Robert Sedgewick and Kevin Wayne - Copyright © 2002-2010 November 8, 2010 8:43:22 PM

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

vertex of
outdegree 3
and indegree 1

directed path @ directed
from 0 to 2 ~—_ g 9 / cycle
O N

Road network

Vertex = intersection; edge = one-way street.

-~ esses bt : @ ‘
' Il R [=T
N/ [4 k \
1‘ J ! ('é?} > o
,Canal St '/GQ/”/ | N
e I & / {

@
/ Canal St

_ Staton [A.C €]
NV

\

|

e 11" | i |
“aightsy — L | | |
Gl ., Laightst —— =
[y feishtst— =N
g)’ | [| f =1 \
£ [/ E
o= [I [
. :.———4 e — 1
Ve [— H —
]v'(c,, i'r i =2 < Y
g / E’_’I /
H)
f ’g?' ii"; ,S;
= '8
o = 3| / — 9
‘ | Beachst L‘**——~_LJ’IA‘/‘/ \
o — » /
) ['II ’7'~ n En‘csst)ﬁ"si‘__“ — o >
| |] e : 4 {
I‘I ,;r, oy ™ /& '
N T Pwes | i / f | |l : {
= .St_ . e (|| g/ N4/ %6’27&
ly ” [| N Moore St —— |
’ | I‘ { “75‘! | ,'1, r ?\ ,/I
| J ‘1:1' 1) [! > Canal St Stati
Ll { 18]] T ‘ INQR W]
j (| — __:;»;J ‘,'of | / ll" § g { /
g s F | e : N
1N =* Frankiing; .gl : //\
f h_ 3
] :
o' : 7
35/ _ /g,
® W’ 0’7/
&
Q'

e

Y

/4 R
Q™ - Terms of Use

ba

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

X
A/ s
Ve N

e

The Topology of the Federal Funds Market, Bech and Atalay, 2008

WordNet graph

Vertex = synset; edge = hypernym relationship.

event
happening occurrence occurren natural_event
miracle
act human_action human_activity
change alteration modification miracle \
/ \ \ group_action
damage harm impairment transition increase forfeitforfeiture sacrlflce action
/ T resistance opposmon transgressmn
leap jump saltation jumpleap
change
demotlon /r variation
motion movement move
locomotion travel descent
~N { runrunning jump parachuting
- dashsprint

http://wordnet.princeton.edu

The McChrystal Afghanistan PowerPoint slide

Afghanistan Stability / COIN Dynamics

Crime and Narcotics
Coalition Forces & Actions
Physical Environment

T renad M | Population/Popular Support
#__) - Significant Infrastructure, Economy, & Services
— Delay B | Government

M | Afghanistan Security Forces

M | Insurgents

i}

n

3]

Demages) 3 A'ﬂ»“" OUTSIDE SUPPORT
P = —_~—_TO INSURGENT
Source Ops“\sgg:'jz!ew /_,_s.rgtrrg'ﬁ;es — ‘\’ Coug\r?rpn réaéi’osticsl
—— T e S o x_FACTIONS
m N (Cicar) . Gov' tANSF! \\
romlong iti Havedls I Ability to ulsid;l
'K perate

- Coalition
Leadershi A Policin,
Suppot
Enaggmem
of Ins. ‘
Ins. AoordinI on
; mong Ins. Insurgent
Territory Not .~ Presence Factions Ins. Terrai
cUnder ov't Clear & Hold) k TLegd.ers i Fligxs‘.?\rsﬂfi?s;
{ raining, ion,
& Pakistan ‘ /&Expeaence Retention, Yy

NSE 5 %& Repercussion: “‘\
& Tactical Capacity, Security Op:
Capacity Priorities & (Hold)
i ‘COIN ffectiveness
Support Manpower
Uni - Recruiting & ANSF Avgé
ty Coalition | Retention rofessionalisi
A Adjustment N~ skill, Discipline,
Coalition of Approach ANSE
ypoetse |/ /o rRAghn 2 st SANSF e i
- lanpower
Effort & ANSF Training & ree aPaAT .‘
foree antoring Of Gov't &

I~ 5 INSURGENTS\' &
Coalition k' [():eova.lgin;_ %‘:';::gon \&/CI N STIT U TIONA L . “" Perceived Services ‘ p(’::-,aso’;:%:ﬁl; «— ’\Y'
Avg COIN ~ Coalit N l‘_/ N Ins. Strategic “‘ NARGOTICS

Damages & Effectiveness’
Experience R.O.L. Poli Commun| Use of Force
Skill —»-Ca on
upport to -
Relative nsurgents Likelihood of
Popu‘lar/'| . Crime/Violence'

& Ex
Priom‘i{zs P
upport/ /Ins. Support
Perception of ’ liooia:ggce

Ins. Targeted unding .
Attacks on Funding 8,
Progress/ Material

Perceived SUFgmﬂ

Damages/Use for Govit
of Force b

& Affiliation w/
Population

CAPACITY & onlidon SalltionHomela
'PRIORITIES ey sigiah o
CENTRAL. st GOVERNMENT

US Gov't Xecutior

spportor GOV'T j"“"’\CAPACITY

Gov't & Coalitiol for Payment
Insurgent
Strength &

AN
POPULATION ™ £
CONDITIONS 72

Insurgents

Insurgents, Supporting
Insurgency,

Sg";wmng Sym%a;tazing the Fence vsvympathiling Actively
/& BELIEFS Fear of Ins.
Relative

 GovEa SE
- Attackl ATS

1]
Pro

a
epercussions

message tt
X\ I Mess‘age . Amplification ‘ R
P . . mpac oV 5
/ Breadth of Adequacy Y/ ||l|e(éroa\lli(0l\ of ~ 55'"5 ‘1 /A;tfrgc;l\\;tec:ss HTerﬁain
oalition Local Tribal ' ster o 3 arshness
8 surgent Path
and 0 Structures éﬂ:‘l‘(‘l’au:hn Perception of. ‘ S U PPO RT P g 9 & Breadth
ing Workforce ' Coalition Intent ’
t% skDAvau & Commitmen
Transparency \ ‘
of Gov’t Gov't ,‘
Processes & Professionalism Reach, 7 S&relpgth of Lpi emfts
avestments Policy Quality Execution. ldeol o';“i
nvestment Tribay .4 \
Security, Services
Religious &Employment Visible Gains
't/ N g In S ity,
SUPPORT - e Ethnic/Tribal : / N Secun
Cobiuon_ - Comuption & Rvaly~__ 3\ Structures , Employmep En
Dev. Ops- Tribal Favoritisr Path Expectations
Infgast(ucture, \ Beliefs = fg;riieé::sn 2
ervice: verage s
Econ. Connecte%qess Percetved Employment :
AgVA?g of Populatiof Securi | AN C
<
T
Infr, Services, Econ: ‘
Policy & Execution eI

Gov'tvs Ins POPU LAR ~_,Potential
Gov't Training
Support VME.‘?I,?I‘IO“”Q. 7«‘6 vt
it Perception ;
ez > 7 o
Overall Gov't —I Pkt And Agric.
Fairness * Capacity & A :
Satisfacti
¢ — il Structures Cultural Erosiol ility t Wi Gains in. .
s=$DOMESTIC
B \
Go
IPerceived Fairness

I
s

WORKING DRAFT -V3
Consulting

Group
© PA Knowledge Limited 2009 Page 22

http://www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide

Digraph applications

transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

street intersection
web page
species
synset
task
bank
person
person
board position
journal article
object
class

code block

one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

jump

Some digraph problems

Path. Is there a directed path from s to¢?

Shortest path. What is the shortest directed path from s to ¢?
Topological sort. Can you draw the digraph so that all edges point down?
Strong connectivity. Are all vertices mutually reachable?

Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page?

» digraph API

Digraph API

public class Digraph

Digraph (int V)
Digraph(In in)
void addEdge (int v, int w)
Iterable<Integer> adj(int v)
int V()
int E()
Digraph reverse ()

String toString()

In in = new In(args[0]);
Digraph G = new Digraph (in) ;

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(w))
StdOut.println(v + "->" + w)

create an empty digraph with V vertices
create a digraph from input stream
add a directed edge v—w
vertices adjacent from v
number of vertices
number of edges
reverse of this digraph

string representation

read digraph from

A

input stream

print out each

A

edge (once)

Digraph API

tinyDG. txt
V13 E % java TestDigraph tinyDG. txt
224/ _
0o 0->5
2 3 0->1
g S 2->0
0 1 O-D=() 2->3
2 0 ©»O 3->5
11 12
4->3
12 9 (90
9 10 e 4->2
O g ORE® 5->4
10 12 6->9
Y : 6->4
3 5§ 6->0
7 8 e
8 7
5 4 11->4
0 5 11->12
6 4 _
6 9 12-9
7 6
In in = new In(args[0]) read digraph from

A

Digraph G = new Digraph (in) ; input stream

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(w))
StdOut.println(v + "->" + w);

print out each
edge (once)

A

Adjacency-list digraph representation

Maintain vertex-indexed array of lists (use Bag abstraction).

adj[

]

© 00 N o Ui b W N P O

=
o

=
=

=
N

VZZIANN\N

5 1
0 3
5 2
3 2
4

9 |~ 4
6 8
7 9
11 10
12

4 12

Adjacency-lists digraph representation: Java implementation

Same as Graph, but only insert one copy of each edge.

public class Digraph

{
private final int V;
private final Bag<Integer>[] adj; <«—+— adjacency lists

public Digraph(int V)
{ create empty graph
this.V = V; with V vertices
adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>() ;

public void addEdge (int v, int w)
{ adjlv].add(w); }

<«—F— add edge from v tow

public Iterable<Integer> adj(int v) iterator for vertices
{ return adj[v]; } adjacent from v

Digraph representations

In practice. Use adjacency-list representation.

 Algorithms based on iterating over vertices adjacent from v.
* Real-world digraphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

: insert edge edge from
representation

iterate over vertices
adjacent from v?

fromvtow VvV to w?

list of edges E 1

E E
adjacency matrix V2 1t 1 \Y
adjacency list E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

» digraph search

Reachability

Problem. Find all vertices reachable from s along a directed path.

Q—»I—»T I< @ = I< I > @
A
%— -« @ @ >0< 0=« ¢ >‘
I A A A A
<« Q<@ <—9 »‘
ﬁ A A A
Y |
’4 o=@ »’ >’ > >0 >@
Y Y \ \
o > @« +< r< : >¢<—’—>‘
Y Y Y
O~ O >0 >0« O > >Q—>@
A A A
\ Y |
¢—>C—>+< ’ >’ >¢<—’<—O
Y Y
I—>¢—>0<—0—>0<—1—>0<—6

Depth-first search in digraphs

Same method as for undirected graphs.

» Every undirected graph is a digraph (with edges in both directions).

* DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

,% @g:

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked;

public DepthFirstSearch (Graph G, int s)
{

marked = new boolean[G.V()];

dfs (G, s);

private void dfs (Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);

public boolean visited(int v)
{ return marked[v]; }

A

A

true if path to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether any
vertex is connected to s

Depth-first search (in directed graphs)

Digraph version identical to undirected one (substitute pigraph for Graph).

public class DirectedDFS
{

private boolean[] marked; true if path from s

A

public DirectedDFS (Digraph G, int s)
{

marked = new boolean[G.V()];

constructor marks
vertices reachable from s

A

dfs (G, s);
}
private void dfs(Digraph G, int v) <«——+— recursive DFS does the work
{

marked[v] = true;

for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);

public boolean visited(int v) client can ask whether any
{ return marked[v]; } vertex is reachable from s

20

Reachability application: program control-flow analysis

Every program is a digraph.

» Vertex = basic block of instructions (straight-line program).

» Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

40: <= 1114

T /”—“

42 <=

N~
1121314110

11121314110

<= 214

30:83<=13 :

123156101 ne tai“ o
/ 18: t8<= 15
32:t7<=16
‘ 1213141518 10
2131517 11011 l

l 1112131516 110 111 20 b=t
<=

34: 17

123 l4 519110

111213 15 1ot

t9
t\tZl314!5l10
Il(2!3t5(10111
28 6<= 15 24: l‘|1<}=M
I112l315|10ll1
1 12 B350

123110111 l

11121314110 t112t3110t11

N

121314110

0: <=
—_
ror
A\
2:13<=
3011
\J
4:td<=
t3tdrort
\
6:t1<=10
_
1t3dr
\
8:<=1114
t3dn
v
10: 2<=1n1
11121314
\J

12: 10 <=

1121314110

14 <=
13110

e

44: 10 <= 110

1310

'

46: <= t3
ort

48: 0 <=r1r0

21

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

« Vertex = object.

» Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).
Reachable objects. Objects indirectly accessible by program

/J‘;,/»

L
;J/J/_J
\J/J JZ{;J
N5

(starting at a root and following a chain of pointers).

22

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
* Mark: mark all reachable objects.

» Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

/J‘;,/»

“—

[
\J/J -_’]-}:JJ
N5 2

23

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
* Reachability.

Path finding.

Topological sort.

Directed cycle detection.

Transitive closure.

Basis for solving difficult digraph problems.
 Directed Euler path.
e Strongly-connected components.

24

Breadth-first search in digraphs

Same method as for undirected graphs.

» Every undirected graph is a digraph (with edges in both directions).
* BFS is a digraph algorithm.

BFS (from source vertex s) T_I I I I

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v I

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

Proposition. BFS computes shortest paths (fewest number of edges).

25

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.

BFS.

e Choose root web page as source s.

* Maintain a gueue of websites to explore.
e Maintain a seT of discovered websites.
e Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

26

Bare-bones web crawler: Java implementation

Queue<String> q = new Queue<String>() ;
SET<String> visited = new SET<String>() ; <«

String s = "http://www.princeton.edu";
g.enqueue (s) ; B

visited.add(s) ;

while ('qg.isEmpty())

{

A

String v = g.dequeue() ;
StdOut.println(v) ;

In in = new In(v);

String input = in.readAll () ;

String regexp = "http:// (\\w+\\.)* (\\w+)";
Pattern pattern = Pattern.compile (regexp),; «——
Matcher matcher = pattern.matcher (input) ;
while (matcher.find())
{

String w = matcher.group() ;

if ('visited.contains (w))

{

visited.add (w) ; «—

g.enqueue (W) ;

gueue of websites to crawl
set of visited websites

start crawling from website s

read in raw html from next
website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz

if unvisited, mark as visited
and put on queue

27

» topological sort

28

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,
in which order should we schedule the tasks?

Graph model. vertex = task; edge = precedence constraint.

S vl AW N —= O

. Algorithms

Complexity Theory
Artificial Intelligence
Intro to CS
Cryptography

Scientific Computing
Advanced Programming

6

&@

piots

tasks

precedence constraint graph

OIC4C,

feasible schedule

29

Topological sort
DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point up.

OIC4C,

directed edges DAG 6

Solution. DFS. What else? topological order

Topological sort demo

31

Depth-first search order

public class DepthFirstOrder
{
private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder (Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if ('marked[v]) dfs (G, Vv);

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);
reversePost.push (v) ;

public Iterable<Integer> reversePost ()
{ return reversePost; }

returns all vertices in
“reverse DFS postorder”

32

Reverse DFS postorder in a DAG

0 dfs (0)
dfs (1)

(2)=(5) ?) 4 aone

)’ 1 done
@ dfs (2)
2 done
6 dfs (5)
5 done
0—5 0 done
0—2
V= dfs (3)
3—6
3—5
3—4 dfs (6)
5—4 6 done
6—4 3 done
6—0
32
done

=

=
o
o

marked[]

o

o

o

-8

reversePost

(6]

(6]
o O

(o) W)

6

® O-®

reverse DFS
postorder is a
topological order!

33

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs (¢, v) is called:
dfs (0)
dfs (1)
» Case 1. dfs(G, w) has already been called and returned. dfs (4)

4 done

Thus, w was done before v. 1 done
dfs (2)

2 done
dfs (5)

e Case 2: dfs (G, w) has not yet been called.

5 done

It will get called directly or indirectly 0 done

by dfs (¢, v) and will finish before dafs (c, v).
ExX: ———> dfs (3)

case |1 é

Thus, w will be done before v.

e Case 3: dfs(G, w) has already been called, case2 = S50
but has not returned. 3 done
Can't happen in a DAG: function call stack contains
path from w to v, so v—w would complete a cycle. done

all vertices adjacent from 3
are done before 3 is done,
so they all appear after 3

34

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

« If directed cycle, topological order impossible.
» If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook for full details.

35

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PAGE 3

DEPARTMENT COURSE DESCRIPTON PREREQS
COMPUTER CPSC Y32 | INTERMEDIATE COMPILER | CPSC 432
SCIENCE

DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

e LA

.

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

36

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % javac A.java
{ A.java:l: cyclic inheritance
“ e involving A
} public class A extends B { }
1 error

public class B extends C

{

public class C extends A
{

37

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

® 0O 0 ‘| Workbook1
< A 1 B I C I D
1 "=B1+1" "=C1+1" "=A1l+1"
2
3
4
5
6
7 Microsoft Excel cannot calculate a formula.
8 Cell references in the formula refer to the formula's
result, creating a circular reference. Try one of the
9 following:
10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
1 1 help for using it to correct your formula.
« To continue leaving the formula as it is, click Cancel.
12 (Cancel) G—OKﬂ
13
14
15
16
17
18

4 < > p ‘ Sheetl = Sheet2 _ Sheet3

Directed cycle detection application: symbolic links

The Linux file system does not do cycle detection.

ln -s a.txt b.txt

ln -s b.txt c.txt
ln -s c.txt a.txt

o o o°

o\°

more a.txt

a.txt: Too many levels of symbolic links

» strong components

40

Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
* v is strongly connected to v.

» If vis strongly connected to w, then w is strongly connected to v.
e If vis strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

NN O¥0=
78"

@/’

N

41

Connected components vs. strongly-connected components

v and w are connected if there is
a path between v and w

3 connected components

connected component id (easy to compute with DFS)

0O 1 2 3 4 5 6 7 8 910 11 12
cc 0 0 0 O 0O OO1T 1 1 2 2 2 2

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

A
I

constant-time client connectivity query

v and w are strongly connected if there is a directed
path from v to w and a directed path from w to v

SR

5 strongly-connected components

N5

efe

strongly-connected component id (how to compute?)

0O 1 2 3 4 5 6 7 8 910 11 12
scc 1 0 1 1 1 1 3 4 4 2 2 2 2

public int stronglyConnected(int v, int w)
{ return scc[v] == sccw]; }

A
I

constant-time client strong connectivity query

42

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

A &

m / VOIC gfea{' egref
& “~

-qill fish
northerm copperbelly blue q! (ISI

water snake

TT—

o
iR
'{; :g I-';..
(G2
--,‘.\e,,\. ,?,‘.";.f

leopard frog

spotted salamander

algae (magnified)

cattails

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.
e Vertex = software module.
e Edge: from module to dependency.

develinspr

i

/
il
iR

i

» l|l
T oleaut32.dily |
)
%
P
.V
Al
dII 4
S

'
i
\

Wi

Firefox Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.
e Widely studied; some practical algorithms.
e Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

e Classic algorithm.

* Level of difficulty: Algs4++.

* Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).
* Forgot notes for lecture; developed algorithm in order to teach it!
e Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms (Gabow, Mehlhorn).
e Gabow: fixed old OR algorithm.

 Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

45

Kosaraju's algorithm: intuition
Reverse graph. Strong components in G are same as in G~

Kernel DAG. Contract each strong component into a single vertex.

5
Idea, how to compute:

e Compute topological order in kernel DAG.

* Run DFS, considering vertices in reverse topological.
}O.

¥
6

g

@/’

el

digraph G and its strong components kernel DAG of G

46

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
* Run DFS on G® to compute reverse postorder.

e Run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph (ReversePost)

check unmarked vertices in the order
0123456789 10 11 12

dfs(0)
dfs(6)
dfs(7)
dfs(8)
check 7
8 done
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)

10245311912106 738

reverse postorder

check 11

47

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
e Run DFS on G® to compute reverse postorder.

* Run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph

check unmarked vertices in the order
102453119 12 106 7 8

of o o ofotershoflose

dfs(1) dfs(0) dfs(11) dfs(6) dfs(7)
1 done dfs(5) check 4 check 9 check 6
dfs(4) dfs(12) check 4 dfs(8)
dfs(3) dfs(9) check 0 check 7
check 5 check 11 6 done check 9
dfs(2) dfs(10) 8 done
check 0 check 12 7 done
check 3 10 done
2 done 9 done
3 done 12 done
check 2 11 done
4 done
5 done
check 1
0 done

Proposition. Second DFS gives strong components. (1)

48

Kosaraju proof of correctness
Proposition. Kosaraju's algorithm computes strong components.

Pf. We show that the vertices marked during the constructor call afs (e, s)
are the vertices strongly connected to s.

< [If ¢ is strongly connected to s, then ¢ is marked during the call dafs (G, s).]

e There is a path from s to ¢, so ¢ will be marked
during dfs (G, s) unless ¢ was previously marked. 4Es (G, 5)

e There is a path from ¢ to s, so if t were previously 3
marked, then s would be marked before ¢ finishes dfs (G, t)

(so afs (G, s) would not have been called in constructor).

49

Kosaraju proof of correctness (continued)

Proposition. Kosaraju's algorithm computes strong components.

=> [If ¢ is marked during the call afs (e, s), thentis strongly connected to s.]

 Since ¢ is marked during the call ats (G, s), there is a path from s to¢in G
(or equivalently, a path from ¢ to s in GR).

» Reverse postorder construction implies that ¢ is done before s in dfs of G~

* The only possibility for dfs in G® implies there is a path from s fo ¢ in G*.
(or equivalently, from ¢ to s in G).

dfs (GR, s) dfs (G}, t) dfs (GR, t)

dfs (GR, t) t done dfs (GR, s)

check s
dfs (GR, s)

no path from t to s in GR DFS must nest

50

Connected components in an undirected graph (with DFS)

public class CC

{
private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)

{
marked = new boolean[G.V()];
id = new int[G.V()];

for (int v = 0; v < G.V(); v++)
{
if ('marked[v])
{
dfs (G, v);
count++;

}

private void dfs(Graph G, int v)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if ('marked[w])
dfs (G, w);

}

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

Strong components in a digraph (with two DFSs)

public class KosarajuSCC

{
private boolean marked[];
private int[] id;
private int count;

public KosarajuSCC (Digraph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
DepthFirstOrder dfs = new DepthFirstOrder (G.reverse()) ;
for (int v : dfs.reversePost())
{
if ('marked|[v])
{
dfs (G, v);
count++;

}

private void dfs(Digraph G, int wv)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if ('marked[w])
dfs (G, w);

}

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

Digraph-processing summary: algorithms of the day

single-source

DFS
reachability
topological sort DFS
(DAG)
%\@* |
strong (2) Kosaraju
components ON /@<: DFS (twice)
19,552 Ol ey

