
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · November 8, 2010 8:43:22 PM

4.2 Directed Graphs

‣ digraph API
‣ digraph search
‣ topological sort
‣ strong components

Digraph. Set of vertices connected pairwise by directed edges.

2

Directed graphs

A directed graph (digraph)

directed
cycle

directed path
from 0 to 2

vertex of
outdegree 3

and indegree 1

3

Road network

Vertex = intersection; edge = one-way street.

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

Vertex = political blog; edge = link.

4

Political blogosphere graph

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Figure 1: Community structure of political blogs (expanded set), shown using utilizing a GEM
layout [11] in the GUESS[3] visualization and analysis tool. The colors reflect political orientation,
red for conservative, and blue for liberal. Orange links go from liberal to conservative, and purple
ones from conservative to liberal. The size of each blog reflects the number of other blogs that link
to it.

longer existed, or had moved to a different location. When looking at the front page of a blog we did
not make a distinction between blog references made in blogrolls (blogroll links) from those made
in posts (post citations). This had the disadvantage of not differentiating between blogs that were
actively mentioned in a post on that day, from blogroll links that remain static over many weeks [10].
Since posts usually contain sparse references to other blogs, and blogrolls usually contain dozens of
blogs, we assumed that the network obtained by crawling the front page of each blog would strongly
reflect blogroll links. 479 blogs had blogrolls through blogrolling.com, while many others simply
maintained a list of links to their favorite blogs. We did not include blogrolls placed on a secondary
page.

We constructed a citation network by identifying whether a URL present on the page of one blog
references another political blog. We called a link found anywhere on a blog’s page, a “page link” to
distinguish it from a “post citation”, a link to another blog that occurs strictly within a post. Figure 1
shows the unmistakable division between the liberal and conservative political (blogo)spheres. In
fact, 91% of the links originating within either the conservative or liberal communities stay within
that community. An effect that may not be as apparent from the visualization is that even though
we started with a balanced set of blogs, conservative blogs show a greater tendency to link. 84%
of conservative blogs link to at least one other blog, and 82% receive a link. In contrast, 74% of
liberal blogs link to another blog, while only 67% are linked to by another blog. So overall, we see a
slightly higher tendency for conservative blogs to link. Liberal blogs linked to 13.6 blogs on average,
while conservative blogs linked to an average of 15.1, and this difference is almost entirely due to
the higher proportion of liberal blogs with no links at all.

Although liberal blogs may not link as generously on average, the most popular liberal blogs,
Daily Kos and Eschaton (atrios.blogspot.com), had 338 and 264 links from our single-day snapshot

4

Vertex = bank; edge = overnight loan.

5

Overnight interbank loan graph

The Topology of the Federal Funds Market, Bech and Atalay, 2008

GSCC

GWCC

Tendril

DC

GOUT
GIN

!"#$%& '(!&)&%*+ ,$-). -&/01%2 ,1% 3&4/&56&% 7'8 799:; <=>> ? #"*-/ 0&*2+@ A1--&A/&) A1541-&-/8
B> ?)".A1--&A/&) A1541-&-/8 <3>> ? #"*-/ ./%1-#+@ A1--&A/&) A1541-&-/8 <CD ? #"*-/ "-EA1541-&-/8
<FGH ? #"*-/ 1$/E A1541-&-/; F- /I".)*@ /I&%& 0&%& JK -1)&. "- /I& <3>>8 L9L -1)&. "- /I& <CD8 :K
-1)&. "- <FGH8 J9 -1)&. "- /I& /&-)%"+. *-) 7 -1)&. "- *)".A1--&A/&) A1541-&-/;

!"#$%&%'$(HI& -1)&. 1, * -&/01%2 A*- 6& 4*%/"/"1-&) "-/1 * A1++&A/"1- 1,)".M1"-/ .&/. A*++&))".A1--&A/&)
A1541-&-/.8 !!!" # "!!!!!"; HI& -1)&. 0"/I"- &*AI)".A1--&A/&) A1541-&-/)1 -1/ I*N& +"-2. /1 1% ,%15
-1)&. "- *-@ 1/I&% A1541-&-/8 ";&;8 #!"# $"# !$# "" $ " $!!!!" % $ $!!!!!"& # ' ", % (# %!; HI& A1541-&-/
0"/I /I& +*%#&./ -$56&% 1, -1)&. ". %&,&%%&) /1 *. /I&)%*$& +"*,-. /'$$"/&"0 /'12'$"$& O<=>>P; C- 1/I&%
01%).8 /I& <=>> ". /I& +*%#&./ A1541-&-/ 1, /I& -&/01%2 "- 0I"AI *++ -1)&. A1--&A/ /1 &*AI 1/I&% N"*
$-)"%&A/&) 4*/I.; HI& %&5*"-"-#)".A1--&A/&) A1541-&-/. OB>.P *%& .5*++&% A1541-&-/. ,1% 0I"AI /I&
.*5& ". /%$&; C- &54"%"A*+ ./$)"&. /I& <=>> ". 1,/&- ,1$-) /1 6& .&N&%*+ 1%)&%. 1, 5*#-"/$)& +*%#&% /I*-
*-@ 1, /I& B>. O.&& Q%1)&% "& *-3 O7999PP;

HI& <=>> A1-."./. 1, *)%*$& 4&5'$)-. /'$$"/&"0 /'12'$"$& O<3>>P8 *)%*$& '6&7/'12'$"$& O<FGHP8
*)%*$& %$7/'12'$"$& O<CDP *-) &"$05%-4 O.&& !"#$%& 'P; HI& <3>> A154%".&. *++ -1)&. /I*/ A*- %&*AI &N&%@
1/I&% -1)& "- /I& <3>> /I%1$#I *)"%&A/&) 4*/I; R -1)& ". "- /I& <FGH ", "/ I*. * 4*/I ,%15 /I& <3>>
6$/ -1/ /1 /I& <3>>; C- A1-/%*./8 * -1)& ". "- /I& <CD ", "/ I*. * 4*/I /1 /I& <3>> 6$/ -1/ ,%15 "/; R
-1)& ". "- * /&-)%"+ ", "/)1&. -1/ %&.")& 1- *)"%&A/&) 4*/I /1 1% ,%15 /I& <3>>;S9

!%4/644%'$(C- /I& -&/01%2 1, 4*@5&-/. .&-/ 1N&% !&)0"%& *-*+@T&) 6@ 31%*5U2" "& *-3 O799:P8 /I& <3>>
". /I& +*%#&./ A1541-&-/; F- *N&%*#&8 *+51./ %&' 1, /I& -1)&. "- /I*/ -&/01%2 6&+1-# /1 /I& <3>>; C-
A1-/%*./8 /I& <3>> ". 5$AI .5*++&% ,1% /I& ,&)&%*+ ,$-). -&/01%2; C- 799:8 1-+@ (&') (' 1, /I& -1)&.
6&+1-# /1 /I". A1541-&-/; Q@ ,*% /I& +*%#&./ A1541-&-/ ". /I& <CD; C- 799:8)%'))' 1, /I& -1)&. 0&%&
"- /I". A1541-&-/; HI& <FGH A1-/*"-&) (*') +' 1, *++ -1)&. 4&%)*@8 0I"+& /I&%& 0&%& (+') ,' 1,
/I& -1)&. +1A*/&) "- /I& /&-)%"+.;SS V&.. /I*- -') (' 1, /I& -1)&. 0&%& "- /I& %&5*"-"-#)".A1--&A/&)
A1541-&-/. O.&& H*6+& JP;

S9HI& /&-)%"+. 5*@ *+.1 6&)"W&%&-/"*/&) "-/1 /I%&& .$6A1541-&-/.(* .&/ 1, -1)&. /I*/ *%& 1- * 4*/I &5*-*/"-# ,%15 <CD8 *
.&/ 1, -1)&. /I*/ *%& 1- * 4*/I +&*)"-# /1 <FGH8 *-) * .&/ 1, -1)&. /I*/ *%& 1- * 4*/I /I*/ 6&#"-. "- <CD *-) &-). "- <FGH;

SS!!"# 1, -1)&. 0&%& "- X,%15E<CDY /&-)%"+.8 $!%# 1, -1)&. 0&%& "- /I& X/1E<FGHY /&-)%"+. *-) "!&# 1, -1)&. 0&%& "-
X/$6&.Y ,%15 <CD /1 <FGH;

S7

Vertex = synset; edge = hypernym relationship.

6

WordNet graph

http://wordnet.princeton.edu

7

The McChrystal Afghanistan PowerPoint slide

http://www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide

8

Digraph applications

digraph vertex directed edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

9

Some digraph problems

Path. Is there a directed path from s to t ?

Shortest path. What is the shortest directed path from s to t ?

Topological sort. Can you draw the digraph so that all edges point down?

Strong connectivity. Are all vertices mutually reachable?

Transitive closure. For which vertices v and w is there a path from v to w ?

PageRank. What is the importance of a web page?

10

‣ digraph API
‣ digraph search
‣ topological sort
‣ strong components

11

Digraph API

 public class Digraph public class Digraph

Digraph(int V)Digraph(int V) create an empty digraph with V vertices

Digraph(In in)Digraph(In in) create a digraph from input stream

void addEdge(int v, int w)addEdge(int v, int w) add a directed edge v→w

Iterable<Integer> adj(int v)adj(int v) vertices adjacent from v

int V()V() number of vertices

int E()E() number of edges

Digraph reverse()reverse() reverse of this digraph

String toString()toString() string representation

In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(w))
 StdOut.println(v + "->" + w);

read digraph from
input stream

print out each
edge (once)

12

Digraph API

In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(w))
 StdOut.println(v + "->" + w);

read digraph from
input stream

print out each
edge (once)

adj[]

0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

7 9

11 10

6 8

4 12

4

12

9

9 4 0

Digraph input format and
adjacency-lists representation

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 8 9
10 12
11 4
 4 3
 3 5
 7 8
 8 7
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E
% java TestDigraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
4->3
4->2
5->4
6->9
6->4
6->0
…
11->4
11->12
12-9

Maintain vertex-indexed array of lists (use Bag abstraction).

adj[]

0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

7 9

11 10

6 8

4 12

4

12

9

9 4 0

Digraph input format and
adjacency-lists representation

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 8 9
10 12
11 4
 4 3
 3 5
 7 8
 8 7
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

13

Adjacency-list digraph representation

Same as Graph, but only insert one copy of each edge.

14

Adjacency-lists digraph representation: Java implementation

public class Digraph
{
 private final int V;
 private final Bag<Integer>[] adj;

 public Digraph(int V)
 {
 this.V = V;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }

 public void addEdge(int v, int w)
 { adj[v].add(w); }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency lists

create empty graph
with V vertices

add edge from v to w

iterator for vertices
adjacent from v

In practice. Use adjacency-list representation.

• Algorithms based on iterating over vertices adjacent from v.

• Real-world digraphs tend to be sparse.

15

Digraph representations

representation space
insert edge
from v to w

edge from
v to w?

iterate over vertices
adjacent from v?

list of edges E 1 E E

adjacency matrix V 2 1 † 1 V

adjacency list E + V 1 outdegree(v) outdegree(v)

huge number of vertices,
small average vertex degree

† disallows parallel edges

16

‣ digraph API
‣ digraph search
‣ topological sort
‣ strong components

17

Reachability

Problem. Find all vertices reachable from s along a directed path.

s

Same method as for undirected graphs.

• Every undirected graph is a digraph (with edges in both directions).

• DFS is a digraph algorithm.

18

Depth-first search in digraphs

Mark v as visited.

Recursively visit all unmarked

 vertices w adjacent to v.

DFS (to visit a vertex v)

Recall code for undirected graphs.

public class DepthFirstSearch
{
 private boolean[] marked;

 public DepthFirstSearch(Graph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean visited(int v)
 { return marked[v]; }
}

19

Depth-first search (in undirected graphs)

true if path to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether any
vertex is connected to s

Digraph version identical to undirected one (substitute Digraph for Graph).

public class DirectedDFS
{
 private boolean[] marked;

 public DirectedDFS(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean visited(int v)
 { return marked[v]; }
}

20

Depth-first search (in directed graphs)

true if path from s

constructor marks
vertices reachable from s

recursive DFS does the work

client can ask whether any
vertex is reachable from s

21

Reachability application: program control-flow analysis

Every program is a digraph.

• Vertex = basic block of instructions (straight-line program).

• Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

Every data structure is a digraph.

• Vertex = object.

• Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

22

Reachability application: mark-sweep garbage collector

23

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

• Mark: mark all reachable objects.

• Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

DFS enables direct solution of simple digraph problems.

• Reachability.

• Path finding.

• Topological sort.

• Directed cycle detection.

• Transitive closure.

Basis for solving difficult digraph problems.

• Directed Euler path.

• Strongly-connected components.

24

Depth-first search in digraphs summary

✓

Same method as for undirected graphs.

• Every undirected graph is a digraph (with edges in both directions).

• BFS is a digraph algorithm.

Proposition. BFS computes shortest paths (fewest number of edges).

25

Breadth-first search in digraphs

Is w reachable from v in this digraph?

v

w

s

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

 - remove the least recently added vertex v

 - add each of v's unvisited neighbors to the queue,

 and mark them as visited.

BFS (from source vertex s)

26

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.

BFS.

• Choose root web page as source s.

• Maintain a Queue of websites to explore.

• Maintain a SET of discovered websites.

• Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002
 1 .017
 2 .009
 3 .003
 4 .006
 5 .016
 6 .066
 7 .021
 8 .017
 9 .040
 10 .002
 11 .028
 12 .006
 13 .045
 14 .018
 15 .026
 16 .023
 17 .005
 18 .023
 19 .026
 20 .004
 21 .034
 22 .063
 23 .043
 24 .011
 25 .005
 26 .006
 27 .008
 28 .037
 29 .003
 30 .037
 31 .023
 32 .018
 33 .013
 34 .024
 35 .019
 36 .003
 37 .031
 38 .012
 39 .023
 40 .017
 41 .021
 42 .021
 43 .016
 44 .023
 45 .006
 46 .023
 47 .024
 48 .019
 49 .016

6 22

27

Bare-bones web crawler: Java implementation

 Queue<String> q = new Queue<String>();
 SET<String> visited = new SET<String>();

 String s = "http://www.princeton.edu";
 q.enqueue(s);
 visited.add(s);

 while (!q.isEmpty())
 {
 String v = q.dequeue();
 StdOut.println(v);
 In in = new In(v);
 String input = in.readAll();

 String regexp = "http://(\\w+\\.)*(\\w+)";
 Pattern pattern = Pattern.compile(regexp);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 {
 String w = matcher.group();
 if (!visited.contains(w))
 {
 visited.add(w);
 q.enqueue(w);
 }
 }
 }

read in raw html from next
website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz

if unvisited, mark as visited
and put on queue

start crawling from website s

queue of websites to crawl
set of visited websites

28

‣ digraph API
‣ digraph search
‣ topological sort
‣ strong components

Goal. Given a set of tasks to be completed with precedence constraints,
in which order should we schedule the tasks?

Graph model. vertex = task; edge = precedence constraint.

29

Precedence scheduling

tasks precedence constraint graph

0

1

4

52

6

3

feasible schedule

0. Algorithms

1. Complexity Theory

2. Artificial Intelligence

3. Intro to CS

4. Cryptography

5. Scientific Computing

6. Advanced Programming

30

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point up.

Solution. DFS. What else? topological order

directed edges DAG

 0→5 0→2

 0→1 3→6

 3→5 3→4

 5→4 6→4

 6→0 3→2

 1→4

0

1

4

52

6

3

31

Topological sort demo

32

Depth-first search order

public class DepthFirstOrder
{
 private boolean[] marked;
 private Stack<Integer> reversePost;

 public DepthFirstOrder(Digraph G)
 {
 reversePost = new Stack<Integer>();
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) dfs(G, v);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 reversePost.push(v);
 }

 public Iterable<Integer> reversePost()
 { return reversePost; }
}

returns all vertices in
“reverse DFS postorder”

Reverse DFS postorder in a DAG

33

dfs(0) 1 0 0 0 0 0 0 -
 dfs(1) 1 1 0 0 0 0 0 -
 dfs(4) 1 1 0 0 1 0 0 -
 4 done 1 1 0 0 1 0 0 4
 1 done 1 1 0 0 1 0 0 4 1
 dfs(2) 1 1 1 0 1 0 0 4 1
 2 done 1 1 1 0 1 0 0 4 1 2
 dfs(5) 1 1 1 0 1 1 0 4 1 2
 check 2 1 1 1 0 1 1 0 4 1 2
 5 done 1 1 1 0 1 1 0 4 1 2 5
0 done 1 1 1 0 1 1 0 4 1 2 5 0
check 1 1 1 1 0 1 1 0 4 1 2 5 0
check 2 1 1 1 0 1 1 0 4 1 2 5 0
dfs(3) 1 1 1 1 1 1 0 4 1 2 5 0
 check 2 1 1 1 1 1 1 0 4 1 2 5 0
 check 4 1 1 1 1 1 1 0 4 1 2 5 0
 check 5 1 1 1 1 1 1 0 4 1 2 5 0
 dfs(6) 1 1 1 1 1 1 1 4 1 2 5 0
 6 done 1 1 1 1 1 1 1 4 1 2 5 0 6
3 done 1 1 1 1 1 1 1 4 1 2 5 0 6 3
check 4 1 1 1 1 1 1 0 4 1 2 5 0 6 3
check 5 1 1 1 1 1 1 0 4 1 2 5 0 6 3
check 6 1 1 1 1 1 1 0 4 1 2 5 0 6 3
done 1 1 1 1 1 1 1 4 1 2 5 0 6 3

marked[] reversePost

0

1

4

52

6

3

reverse DFS
postorder is a

topological order!

0→5

0→2

0→1

3→6

3→5

3→4

5→4

6→4

6→0

3→2

1→4

Proposition. Reverse DFS postorder of a DAG is a topological order.
Pf. Consider any edge v→w. When dfs(G, v) is called:

• Case 1: dfs(G, w) has already been called and returned.
Thus, w was done before v.

• Case 2: dfs(G, w) has not yet been called.
It will get called directly or indirectly
by dfs(G, v) and will finish before dfs(G, v).
Thus, w will be done before v.

• Case 3: dfs(G, w) has already been called,
but has not returned.
Can’t happen in a DAG: function call stack contains
path from w to v, so v→w would complete a cycle.

dfs(0)
 dfs(1)
 dfs(4)
 4 done
 1 done
 dfs(2)
 2 done
 dfs(5)
 check 2
 5 done
0 done
check 1
check 2
dfs(3)
 check 2
 check 4
 check 5
 dfs(6)
 6 done
3 done
check 4
check 5
check 6
done

34

Topological sort in a DAG: correctness proof

all vertices adjacent from 3
are done before 3 is done,
so they all appear after 3

Ex:

case 1

case 2

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

• If directed cycle, topological order impossible.

• If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook for full details.
35

Directed cycle detection

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

Remark. A directed cycle implies scheduling problem is infeasible.

36

Directed cycle detection application: precedence scheduling

http://xkcd.com/754

37

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B
{
 ...
}

public class B extends C
{
 ...
}

public class C extends A
{
 ...
}

% javac A.java
A.java:1: cyclic inheritance
involving A
public class A extends B { }
 ^
1 error

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

38

Directed cycle detection application: spreadsheet recalculation

39

Directed cycle detection application: symbolic links

The Linux file system does not do cycle detection.

% ln -s a.txt b.txt
% ln -s b.txt c.txt
% ln -s c.txt a.txt

% more a.txt
a.txt: Too many levels of symbolic links

40

‣ digraph API
‣ digraph search
‣ topological sort
‣ strong components

Def. Vertices v and w are strongly connected if there is a directed path
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

• v is strongly connected to v.

• If v is strongly connected to w, then w is strongly connected to v.

• If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

Strongly-connected components

41A digraph and its strong componentsA graph and its connected components

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

Connected components vs. strongly-connected components

42

 0 1 2 3 4 5 6 7 8 9 10 11 12
cc 0 0 0 0 0 0 1 1 1 2 2 2 2

v and w are connected if there is
a path between v and w

v and w are strongly connected if there is a directed
path from v to w and a directed path from w to v

 0 1 2 3 4 5 6 7 8 9 10 11 12
scc 1 0 1 1 1 1 3 4 4 2 2 2 2

constant-time client connectivity query constant-time client strong connectivity query

3 connected components 5 strongly-connected components

connected component id (easy to compute with DFS) strongly-connected component id (how to compute?)

A digraph and its strong componentsA graph and its connected components

public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }

A digraph and its strong componentsA graph and its connected components

43

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

Strong component. Subset of species with common energy flow.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

44

Strong component application: software modules

Software module dependency graph.

• Vertex = software module.

• Edge: from module to dependency.

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

Internet ExplorerFirefox

Strong components algorithms: brief history

1960s: Core OR problem.

• Widely studied; some practical algorithms.

• Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

• Classic algorithm.

• Level of difficulty: Algs4++.

• Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).

• Forgot notes for lecture; developed algorithm in order to teach it!

• Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms (Gabow, Mehlhorn).

• Gabow: fixed old OR algorithm.

• Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.
45

Reverse graph. Strong components in G are same as in GR.

Kernel DAG. Contract each strong component into a single vertex.

Idea.

• Compute topological order in kernel DAG.

• Run DFS, considering vertices in reverse topological.

46

Kosaraju's algorithm: intuition

A digraph and its strong componentsA graph and its connected components

0 2 3 4 5

1

9 10 11 12

7 8

digraph G and its strong components kernel DAG of G

how to compute?

6

Simple (but mysterious) algorithm for computing strong components.

• Run DFS on GR to compute reverse postorder.

• Run DFS on G, considering vertices in order given by first DFS.

47

Kosaraju's algorithm

GR

dfs(1)
1 done
dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5
 dfs(2)
 check 0
 check 3
 2 done
 3 done
 check 2
 4 done
 5 done
 check 1
0 done
check 2
check 4
check 5
check 3
dfs(11)
 check 4
 dfs(12)
 dfs(9)
 check 11
 dfs(10)
 check 12
 10 done
 9 done
 12 done
11 done
check 9
check 12
check 10
dfs(6)
 check 9
 check 4
 check 0
6 done
dfs(7)
 check 6
 dfs(8)
 check 7
 check 9
 8 done
7 done
check 8

Kosaraju’s algorithm for !nding strong components in digraphs

check unmarked vertices in the order
0 1 2 3 4 5 6 7 8 9 10 11 12

dfs(0)
 dfs(6)
 dfs(7)
 dfs(8)
 check 7
 8 done
 7 done
 6 done
 dfs(2)
 dfs(4)
 dfs(11)
 dfs(9)
 dfs(12)
 check 11
 dfs(10)
 check 9
 10 done
 12 done
 check 8
 check 6
 9 done
 11 done
 check 6
 dfs(5)
 dfs(3)
 check 4
 check 2
 3 done
 check 0
 5 done
 4 done
 check 3
 2 done
0 done
dfs(1)
 check 0
1 done
check 2
check 3
check 4
check 5
check 6
check 7
check 8
check 9
check 10
check 11
check 12

strong
components

reverse
postorder

for use
in second
dfs()

(read up)

 DFS in reverse digraph (ReversePost)

check unmarked vertices in the order
1 0 2 4 5 3 11 9 12 10 6 7 8

 DFS in original digraph

dfs(1)
1 done
dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5
 dfs(2)
 check 0
 check 3
 2 done
 3 done
 check 2
 4 done
 5 done
 check 1
0 done
check 2
check 4
check 5
check 3
dfs(11)
 check 4
 dfs(12)
 dfs(9)
 check 11
 dfs(10)
 check 12
 10 done
 9 done
 12 done
11 done
check 9
check 12
check 10
dfs(6)
 check 9
 check 4
 check 0
6 done
dfs(7)
 check 6
 dfs(8)
 check 7
 check 9
 8 done
7 done
check 8

Kosaraju’s algorithm for !nding strong components in digraphs

check unmarked vertices in the order
0 1 2 3 4 5 6 7 8 9 10 11 12

dfs(0)
 dfs(6)
 dfs(7)
 dfs(8)
 check 7
 8 done
 7 done
 6 done
 dfs(2)
 dfs(4)
 dfs(11)
 dfs(9)
 dfs(12)
 check 11
 dfs(10)
 check 9
 10 done
 12 done
 check 8
 check 6
 9 done
 11 done
 check 6
 dfs(5)
 dfs(3)
 check 4
 check 2
 3 done
 check 0
 5 done
 4 done
 check 3
 2 done
0 done
dfs(1)
 check 0
1 done
check 2
check 3
check 4
check 5
check 6
check 7
check 8
check 9
check 10
check 11
check 12

strong
components

reverse
postorder

for use
in second
dfs()

(read up)

 DFS in reverse digraph (ReversePost)

check unmarked vertices in the order
1 0 2 4 5 3 11 9 12 10 6 7 8

 DFS in original digraph

...

dfs(1)
1 done
dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5
 dfs(2)
 check 0
 check 3
 2 done
 3 done
 check 2
 4 done
 5 done
 check 1
0 done
check 2
check 4
check 5
check 3
dfs(11)
 check 4
 dfs(12)
 dfs(9)
 check 11
 dfs(10)
 check 12
 10 done
 9 done
 12 done
11 done
check 9
check 12
check 10
dfs(6)
 check 9
 check 4
 check 0
6 done
dfs(7)
 check 6
 dfs(8)
 check 7
 check 9
 8 done
7 done
check 8

Kosaraju’s algorithm for !nding strong components in digraphs

check unmarked vertices in the order
0 1 2 3 4 5 6 7 8 9 10 11 12

dfs(0)
 dfs(6)
 dfs(7)
 dfs(8)
 check 7
 8 done
 7 done
 6 done
 dfs(2)
 dfs(4)
 dfs(11)
 dfs(9)
 dfs(12)
 check 11
 dfs(10)
 check 9
 10 done
 12 done
 check 8
 check 6
 9 done
 11 done
 check 6
 dfs(5)
 dfs(3)
 check 4
 check 2
 3 done
 check 0
 5 done
 4 done
 check 3
 2 done
0 done
dfs(1)
 check 0
1 done
check 2
check 3
check 4
check 5
check 6
check 7
check 8
check 9
check 10
check 11
check 12

strong
components

reverse
postorder

for use
in second
dfs()

(read up)

 DFS in reverse digraph (ReversePost)

check unmarked vertices in the order
1 0 2 4 5 3 11 9 12 10 6 7 8

 DFS in original digraph

reverse postorder

Simple (but mysterious) algorithm for computing strong components.

• Run DFS on GR to compute reverse postorder.

• Run DFS on G, considering vertices in order given by first DFS.

Proposition. Second DFS gives strong components. (!!)
48

Kosaraju's algorithm

dfs(1)
1 done
dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5
 dfs(2)
 check 0
 check 3
 2 done
 3 done
 check 2
 4 done
 5 done
 check 1
0 done
check 2
check 4
check 5
check 3
dfs(11)
 check 4
 dfs(12)
 dfs(9)
 check 11
 dfs(10)
 check 12
 10 done
 9 done
 12 done
11 done
check 9
check 12
check 10
dfs(6)
 check 9
 check 4
 check 0
6 done
dfs(7)
 check 6
 dfs(8)
 check 7
 check 9
 8 done
7 done
check 8

Kosaraju’s algorithm for !nding strong components in digraphs

check unmarked vertices in the order
0 1 2 3 4 5 6 7 8 9 10 11 12

dfs(0)
 dfs(6)
 dfs(7)
 dfs(8)
 check 7
 8 done
 7 done
 6 done
 dfs(2)
 dfs(4)
 dfs(11)
 dfs(9)
 dfs(12)
 check 11
 dfs(10)
 check 9
 10 done
 12 done
 check 8
 check 6
 9 done
 11 done
 check 6
 dfs(5)
 dfs(3)
 check 4
 check 2
 3 done
 check 0
 5 done
 4 done
 check 3
 2 done
0 done
dfs(1)
 check 0
1 done
check 2
check 3
check 4
check 5
check 6
check 7
check 8
check 9
check 10
check 11
check 12

strong
components

reverse
postorder

for use
in second
dfs()

(read up)

 DFS in reverse digraph (ReversePost)

check unmarked vertices in the order
1 0 2 4 5 3 11 9 12 10 6 7 8

 DFS in original digraph

G

dfs(1)
1 done

dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5
 dfs(2)
 check 0
 check 3
 2 done
 3 done
 check 2
 4 done
 5 done
 check 1
0 done
check 2
check 4
check 5
check 3

dfs(11)
 check 4
 dfs(12)
 dfs(9)
 check 11
 dfs(10)
 check 12
 10 done
 9 done
 12 done
11 done
check 9
check 12
check 10

dfs(6)
 check 9
 check 4
 check 0
6 done

dfs(7)
 check 6
 dfs(8)
 check 7
 check 9
 8 done
7 done
check 8

Proposition. Kosaraju’s algorithm computes strong components.

Pf. We show that the vertices marked during the constructor call dfs(G, s)
are the vertices strongly connected to s.

⇐ [If t is strongly connected to s, then t is marked during the call dfs(G, s).]

• There is a path from s to t, so t will be marked
during dfs(G, s) unless t was previously marked.

• There is a path from t to s, so if t were previously
marked, then s would be marked before t finishes
(so dfs(G, s) would not have been called in constructor).

Kosaraju proof of correctness

49

 dfs(G, s)

 ...

 dfs(G, t)

 ...

 check s

 ...

 t done

 ...

 s done

Proposition. Kosaraju’s algorithm computes strong components.
⇒ [If t is marked during the call dfs(G, s), then t is strongly connected to s.]

• Since t is marked during the call dfs(G, s), there is a path from s to t in G
(or equivalently, a path from t to s in GR).

• Reverse postorder construction implies that t is done before s in dfs of GR.

• The only possibility for dfs in GR implies there is a path from s to t in GR.
(or equivalently, from t to s in G).

Kosaraju proof of correctness (continued)

50

no path from t to s in GR DFS must nest

dfs(GR, s)

...

 dfs(GR, t)

 ...
 check s
 ...

 t done

...

s done ✓

dfs(GR, t)

...

t done

...

dfs(GR, s)

...

s done ✗

dfs(GR, t)

...

dfs(GR, s)

...

t done

...

s done ✗

51

Connected components in an undirected graph (with DFS)

public class CC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public CC(Graph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];

 for (int v = 0; v < G.V(); v++)
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean connected(int v, int w)
 { return id[v] == id[w]; }
}

52

Strong components in a digraph (with two DFSs)

public class KosarajuSCC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public KosarajuSCC(Digraph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
 for (int v : dfs.reversePost())
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean stronglyConnected(int v, int w)
 { return id[v] == id[w]; }
}

Digraph-processing summary: algorithms of the day

53

single-source
reachability

DFS

topological sort
(DAG)

DFS

strong
components

Kosaraju
DFS (twice)

0
6

4

21

5

3

7

12

109

11

8

