4.2 Directed Graphs

▶ digraph API

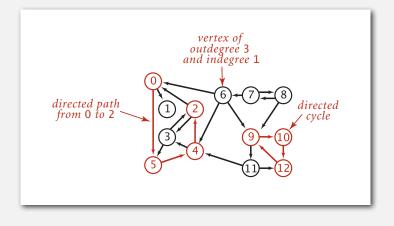
digraph search

Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · November 8, 2010 8:43:22 PM

- topological sort
- strong components

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

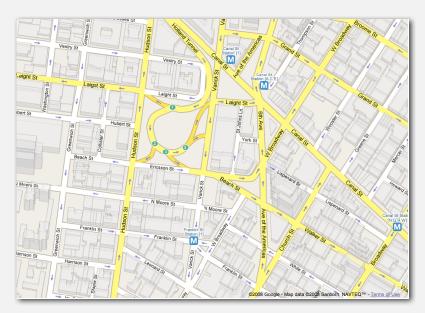


2

Road network

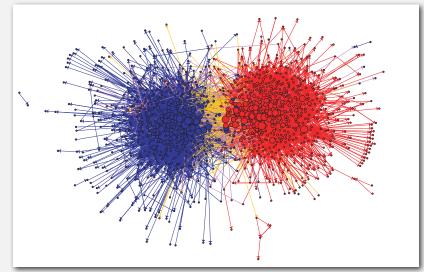
Algorithms, 4th Edition

Vertex = intersection; edge = one-way street.



Political blogosphere graph

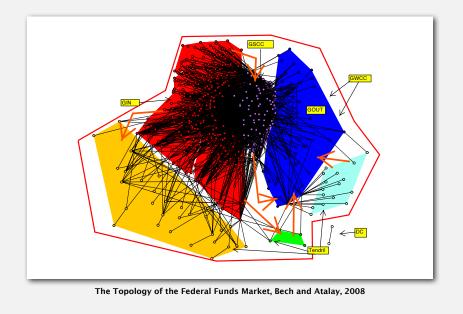
Vertex = political blog; edge = link.



The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

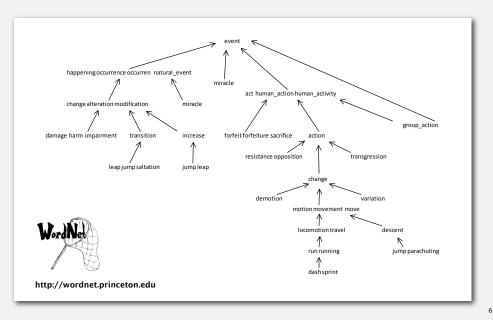
Overnight interbank loan graph

Vertex = bank; edge = overnight loan.



WordNet graph

Vertex = synset; edge = hypernym relationship.



Afghanistan Stability / COIN Dynamics = OUTSIDE SUPPORT TO INSURGENT ANSF FACTIONS TACTICA ANSF INSTITUTIONAL INSURGENT COALITION CAPACITY & College PRIORITIES POPULATION " Acceptance of Mathematical Acceptance of Acc VERALL GOVERNMENT & BELIEFS APACITY POPULAR Monitorio COALITION Sime DOMESTIC SUPPORT * SERVICES & Provide
 Humanitaria ECONOMY WORKING DRAFT - V3 PA Consulting Group Page 22

The McChrystal Afghanistan PowerPoint slide

Digraph applications

digraph	vertex	directed edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
WordNet	synset	hypernym
scheduling	task	precedence constraint
financial	bank	transaction
cell phone	person	placed call
infectious disease	person	infection
game	board position	legal move
citation	journal article	citation
object graph	object	pointer
inheritance hierarchy	class	inherits from
control flow	code block	jump

Some digraph problems

Path. Is there a directed path from s to t?

Shortest path. What is the shortest directed path from s to t?

Topological sort. Can you draw the digraph so that all edges point down?

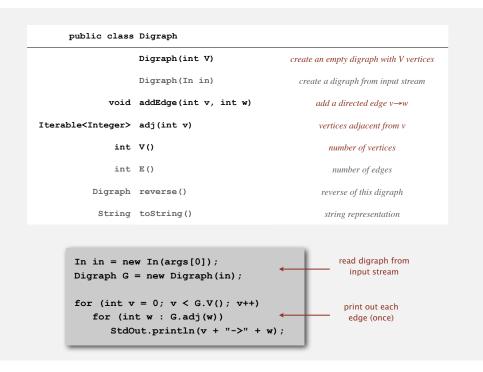
Strong connectivity. Are all vertices mutually reachable?

Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page?

digraph API digraph search topological sort strong components

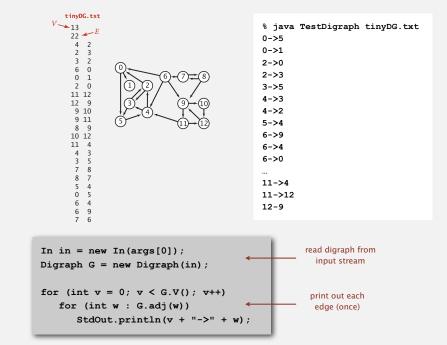
Digraph API



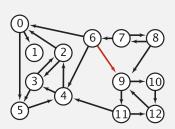
Digraph API

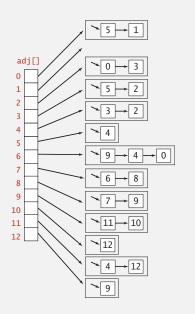
9

11



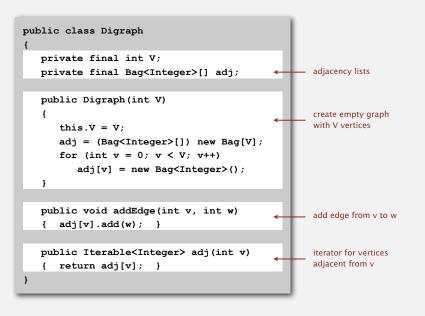
Maintain vertex-indexed array of lists (use Bag abstraction).





Adjacency-lists digraph representation: Java implementation

Same as Graph, but only insert one copy of each edge.



Digraph representations

In practice. Use adjacency-list representation.

- Algorithms based on iterating over vertices adjacent from v.
- Real-world digraphs tend to be sparse.

 huge number of vertices, small average vertex degree

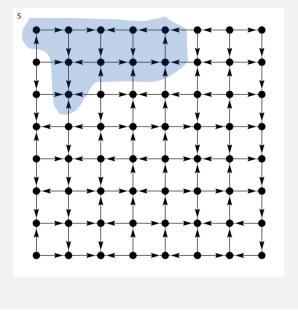
representation	space	insert edge from v to w	edge from v to w?	iterate over vertices adjacent from v?
list of edges	E	1	E	E
adjacency matrix	V ²	1 †	1	V
adjacency list	E + V	1	outdegree(v)	outdegree(v)

† disallows parallel edges

13

Reachability

Problem. Find all vertices reachable from s along a directed path.

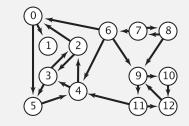


Depth-first search in digraphs

Same method as for undirected graphs.

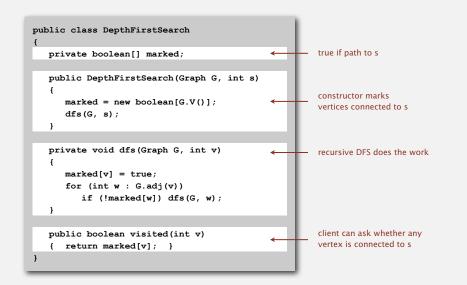
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v) Mark v as visited. Recursively visit all unmarked vertices w adjacent to v.



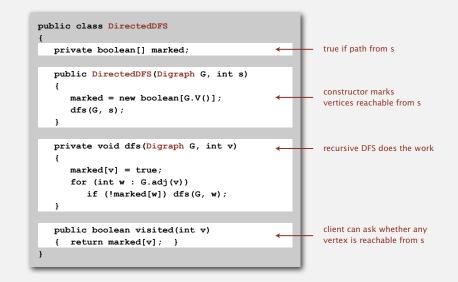
Depth-first search (in undirected graphs)

Recall code for undirected graphs.



Depth-first search (in directed graphs)

Digraph version identical to undirected one (substitute Digraph for Graph).



17

Every program is a digraph.

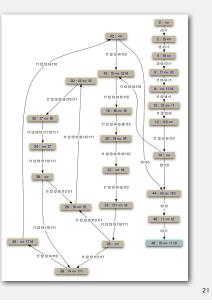
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

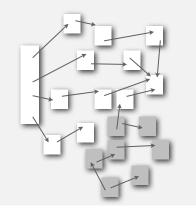


Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.



23

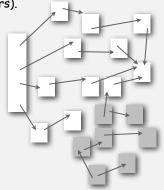
Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).



Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- ✓ Reachability.
 - Path finding.
 - Topological sort.
 - Directed cycle detection.
 - Transitive closure.

Basis for solving difficult digraph problems.

- Directed Euler path.
- Strongly-connected components.

Breadth-first search in digraphs

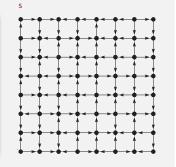
Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

- Repeat until the queue is empty:
- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue, and mark them as visited.



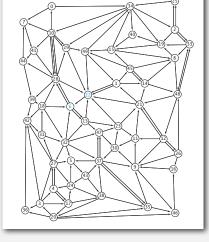
Proposition. BFS computes shortest paths (fewest number of edges).

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu. Solution. BFS with implicit graph.

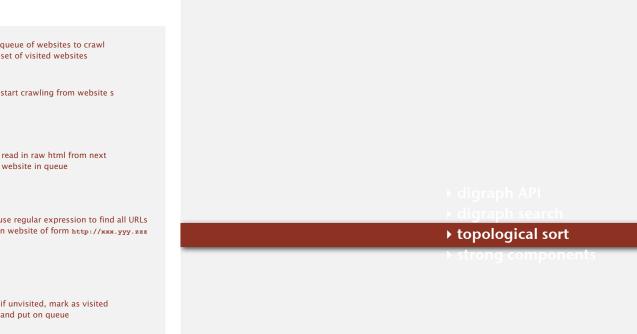
BFS.

- Choose root web page as source s.
- Maintain a gueue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

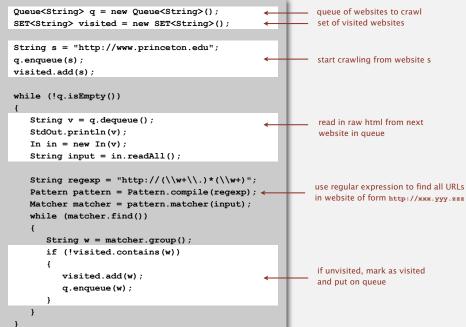


Q. Why not use DFS?

25



Bare-bones web crawler: Java implementation

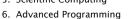


27

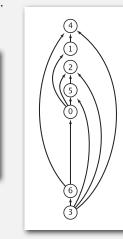
Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Graph model. vertex = task; edge = precedence constraint.



precedence constraint graph



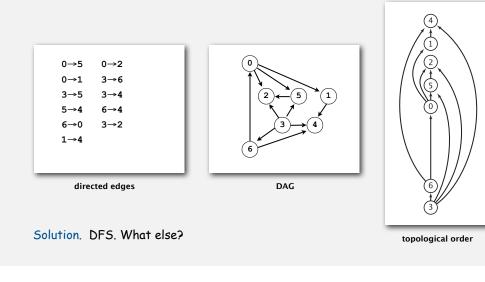
feasible schedule

29

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point up.



Depth-first search order

Topological sort demo

		marked[]	reversePost	
	dfs(0)	1000000	_	\sim
\sim	dfs(1)	1100000	-	(4)
51	dfs(4)	1 1 0 0 <mark>1</mark> 0 0	-	
(1)	4 done	1 1 0 0 1 0 0	4	(1)
r	1 done	1 1 0 0 1 0 0	4 1	1/2
	dfs(2)	1110100	4 1	
	2 done	1 1 1 0 1 0 0	4 1 2	$//(\pm \Sigma)$
	dfs(5)	1 1 1 0 1 1 0	4 1 2	
	check 2	1 1 1 0 1 1 0	4 1 2	VI VI
	5 done	1 1 1 0 1 1 0	4 1 2 5	
	0 done	1 1 1 0 1 1 0	4 1 2 5 <mark>0</mark>	\uparrow
	check 1	1 1 1 0 1 1 0	4 1 2 5 0	
	check 2	1 1 1 0 1 1 0	4 1 2 5 0	
	dfs(3)	1 1 1 <mark>1</mark> 1 1 0	4 1 2 5 0	
	check 2	1 1 1 1 1 1 0	4 1 2 5 0	
	check 4	1 1 1 1 1 1 0	4 1 2 5 0	
	check 5	1 1 1 1 1 1 0	4 1 2 5 0	
	dfs(6)	1 1 1 1 1 1 <mark>1</mark>	4 1 2 5 0	\mathbb{Q}
	6 done	1 1 1 1 1 1 1	412506	
	3 done	$1\ 1\ 1\ 1\ 1\ 1\ 1$	4125063	3
	check 4	1 1 1 1 1 1 0	4 1 2 5 0 6 3	DEC
	check 5	1 1 1 1 1 1 0	4 1 2 5 0 6 3	reverse DFS
	check 6	1 1 1 1 1 1 0	4 1 2 5 0 6 3	postorder is a
	done	1 1 1 1 1 1 1	4125063	topological order!

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When dfs (G, v) is called:

- Case 1: dfs (G, w) has already been called and returned. Thus, w was done before v.
- Case 2: dfs(G, w) has not yet been called. It will get called directly or indirectly by dfs(G, v) and will finish before dfs(G, v). Thus, w will be done before v.
- Case 3: dfs(G, w) has already been called, but has not returned.

Can't happen in a DAG: function call stack contains path from w to v, so $v \rightarrow w$ would complete a cycle.

> all vertices adjacent from 3 are done before 3 is done, so they all appear after 3

Ex: -

case '

case 2

36

dfs(0) dfs(1) dfs(4)

0 done check 1

check 2

check

check 4 check 5 dfs(6)

6 done 3 done

check 4

check 5

check 6

done

dfs(3)

4 done 1 done

check 2 5 done

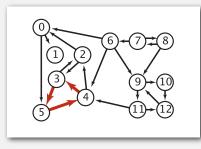
dfs(2) 2 done dfs(5)

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.



Solution, DFS. What else? See textbook for full details.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

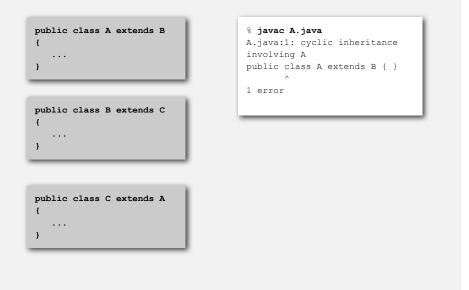
PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE	CP5C 432	INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432
0	October 1100	A DESCRIPTION OF A DESC	C

http://xkcd.com/754

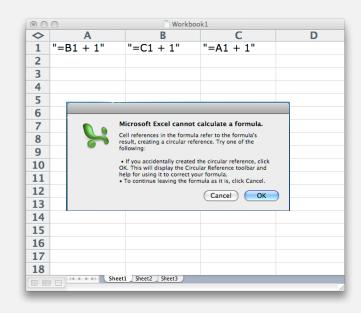
Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: spreadsheet recalculation

The Java compiler does cycle detection.



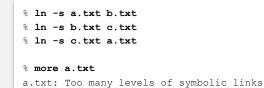
Microsoft Excel does cycle detection (and has a circular reference toolbar!)



37

Directed cycle detection application: symbolic links

The Linux file system does not do cycle detection.



digraph API

topological sort

strong components

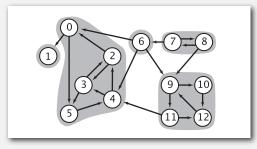
38

Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path from v to w and a directed path from w to v.

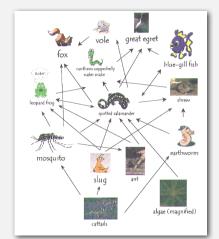
Key property. Strong connectivity is an equivalence relation:

- v is strongly connected to v.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.
- Def. A strong component is a maximal subset of strongly-connected vertices.



Food web graph. Vertex = species; edge = from producer to consumer.

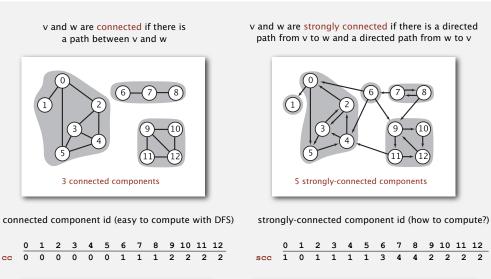
Strong component application: ecological food webs



http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.git

Strong component. Subset of species with common energy flow.

Connected components vs. strongly-connected components



Strong component application: software modules

Software module dependency graph.

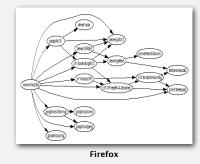
• Vertex = software module.

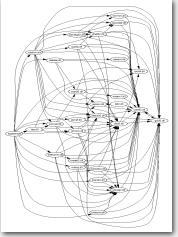
public int connected(int v, int w)

constant-time client connectivity query

{ return cc[v] == cc[w]; }

• Edge: from module to dependency.





Internet Explorer

Strong component. Subset of mutually interacting modules. Approach 1. Package strong components together. Approach 2. Use to improve design!

43

41

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms (Gabow, Mehlhorn).

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

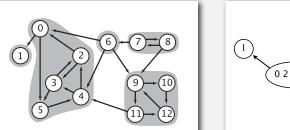
Kosaraju's algorithm: intuition

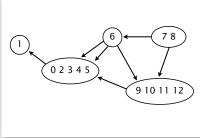
Reverse graph. Strong components in G are same as in G^{R} .

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- Compute topological order in kernel DAG
- Run DFS, considering vertices in reverse topological.





how to compute?

digraph G and its strong components

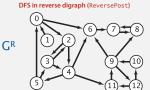
kernel DAG of G

48

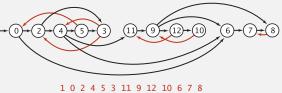
Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

- Run DFS on G^R to compute reverse postorder.
- Run DFS on G, considering vertices in order given by first DFS.



check unmarked vertices in the order 0 1 2 3 4 5 6 7 8 9 10 11 12

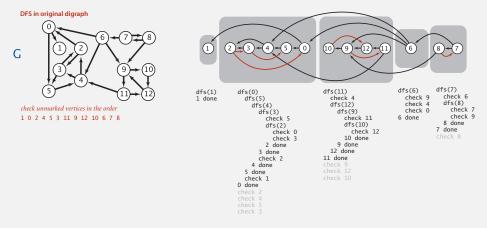


reverse postorder

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

- Run DFS on *G^R* to compute reverse postorder.
- Run DFS on G, considering vertices in order given by first DFS.



Proposition. Second DFS gives strong components. (!!)

Kosaraju proof of correctness

Proposition. Kosaraju's algorithm computes strong components.

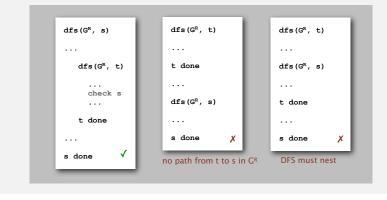
Pf. We show that the vertices marked during the constructor call $a_{fs}(G, s)$ are the vertices strongly connected to s.

- \leftarrow [If *t* is strongly connected to *s*, then *t* is marked during the call dfs(G, s).]
- There is a path from s to t, so t will be marked during afs (G, s) unless t was previously marked.
- There is a path from t to s, so if t were previously marked, then s would be marked before t finishes (so afs(G, s) would not have been called in constructor).

Kosaraju proof of correctness (continued)

Proposition. Kosaraju's algorithm computes strong components.

- \Rightarrow [If t is marked during the call dfs (G, s), then t is strongly connected to s.]
- Since t is marked during the call afs(G, s), there is a path from s to t in G (or equivalently, a path from t to s in G^R).
- Reverse postorder construction implies that t is done before s in dfs of G^R.
- The only possibility for dfs in G^R implies there is a path from s to t in G^R . (or equivalently, from t to s in G).



Strong components in a digraph (with two DFSs)

70	rivate boolean marked[];
	civate int[] id;
-	rivate int count;
יוסי	blic KosarajuSCC (Digraph G)
{	
	<pre>marked = new boolean[G.V()];</pre>
	<pre>id = new int[G.V()];</pre>
	<pre>DepthFirstOrder dfs = new DepthFirstOrder(G.reverse()); for (int v : dfs.reversePost())</pre>
	{
	if (!marked[v])
	{
	dfs(G, v); count++;
	}
	}
}	
-	rivate void dfs(Digraph G, int v)
{	
	<pre>marked[v] = true; id[v] = count;</pre>
	for (int w : G.adj(v))
	if (!marked[w])
	dfs(G, w);
}	
pu	blic boolean <pre>stronglyConnected(int v, int w)</pre>
	<pre>return id[v] == id[w]; }</pre>

Connected components in an undirected graph (with DFS)

public class CC {
<pre>private boolean marked[]; private int[] id; private int count;</pre>
public CC(Graph G) {
<pre>marked = new boolean[G.V()]; id = new int[G.V()];</pre>
<pre>for (int v = 0; v < G.V(); v++) {</pre>
<pre>if (!marked[v]) {</pre>
dfs(G, v); count++;
}
}
<pre>private void dfs(Graph G, int v) {</pre>
<pre>marked[v] = true;</pre>
<pre>id[v] = count; for (int w : G.adj(v))</pre>
if (!marked[w])
dfs(G, w); }
,
<pre>public boolean connected(int v, int w) { return id[v] == id[w]; }</pre>
{ recur raiv; raiw; ; }

49

Digraph-processing summary: algorithms of the day

