Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

4.2 Directed Graphs

using Ex
pathDAGs
vertex of
outdegree 3
and indegree 1

strong

@ directed

®
poyraw

example 3,.

co:nected topologicalg§
digraph.:... |

Dlgnf'as,bhusn éf%é},% » digraph API Y0

seeéeélge 8% » digraph search directe(c)i path ©

idirectéd~ $DFS » topological sort Jrom 00 2 =~ y e

time graphs o » strong components ©,

graph @/ \@9

aindwo)

vertex
vertices:.

November 8, 2010 8:43:22 PM

Copyright © 2002-2010

Algorithms, 4™ Edition - Robert Sedgewick and Kevin Wayne
Road network Political blogosphere graph
Vertex = intersection; edge = one-way street. Vertex = political blog; edge = link.
Z’ Sa— 7
t £ 5 %y
g $ K2
= Vestry sy 3 D
- I c3 AN
t f A ——
aight st =]
s Laight ¢ = 7
§' Laight s¢
H + t) ~
bert 5 S| t \
— Hubert sy f i X
§ 2 %) @ %
: g \e & %] @ /1
& 8 Kl o = N S d{’
Beach s¢ I 2 / 1 > 7 &3
= Enicss, X
i on St —, 7 S p:
t &, see% = %%"’s fa) 4
I Moore 5y %) I 7 S o
N 5 % RN
= N Moore 5 X Y
! 7] N Moore s b3 // Pary S fl
< S >~ Canal St Stati
g Y, ° N NQRW]
- Frankin sy Ig s & % > "Va/)
& — S 4,
§ Frankiin s M= ;3 ™ § ég? sy N A
armison g1 NN 2 N 2 f
[T p— Leons $) “, t , g
AL i N S 3
7,
The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

©2008 Google - Map data ©2008 Sanbofn, NAVTEQ™ - Terms of Use

Staple g

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

DAL
e
/

{Tendril

The Topology of the Federal Funds Market, Bech and Atalay, 2008

The McChrystal Afghanistan PowerPoint slide

WordNet graph

Vertex = synset; edge = hypernym relationship.

event

happeningoccurrence occurren natural_event
miracle

act human_action human_activity

change alteration modification miracle \

group_action

damage harm impairment transition increase forfeitforfeiture sacrifice action
resistance opposition transgression
leap jump saltation jumpleap
change
demotion variation

motion movement move

Population/Popular Support

Afghanistan Stability / COIN Dynamics Y s

Afghanistan Securly Forces

-

/\S: OUTSIDE SUPPORT __

o mes “TO INSURGENT
—_ = S O FACTIONS

=
sem

Viestorn

raSe
\\ N

WORKING DRAFT - V3

PAGoulting
Group

©PA Knowledge Limiled 2009 Page 22

http://www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide

Infrastructure, Economy, & Services

locomotion travel descent
\ runrunning jump parachuting
/ dashsprint
http://wordnet.princeton.edu
Digraph applications
transportation street intersection one-way street
web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump

Some digraph problems

Path. Is there adirected path froms o ¢?

Shortest path. What is the shortest directed path from s to ¢ ?

Topological sort. Can you draw the digraph so that all edges point down?

Strong connectivity. Are all vertices mutually reachable?

Transitive closure. For which vertices v and w is there a path from v o w ?

PageRank. What is the importance of a web page?

Digraph APT

public class

Digraph

void
Iterable<Integer>
int

int

Digraph

String

In in = new In(args[0]);

Digraph (int V)
Digraph (In in)
addEdge (int v,
adj (int v)

V()

E()

reverse ()

toString ()

create an empty digraph with V vertices
create a digraph from input stream
int w) add a directed edge v—w
vertices adjacent from v
number of vertices
number of edges
reverse of this digraph

string representation

read digraph from
input stream

Digraph G = new Digraph (in);

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(w))
StdOut.println(v + "->" + w);

Pram—

print out each
edge (once)

» digraph API

Digraph API
tinyDG. txt
V—13 E % java TestDigraph tinyDG.txt
224~ 0->5
4 2
2 3 0->1
3.2 2->0
6 0
0 1)= 2->3
2 0 ©)O 3->5
11 12
59 OND 4->3
9 10 (4 4->2
9 11 _
o1 g -1 5->4
10 12 6->9
1 4 6->4
4 3
35 6->0
78
8 7
: a 11->4
0 5 11->12
6 4
6 9 12-9
7 6
In in = new In(args[0]); read digraph from
o _ - s <« input stream
Digraph G = new Digraph(in);
for (int v = 0; v < G.V(); v++) print out each
for (int w : G.adj(w)) S edge (once)
StdOut.println(v + "->" + w);

Adjacency-list digraph representation

Maintain vertex-indexed array of lists (use Bag abstraction).

adj[]

© N O VA WN R O

®
24

B~
©-®

o
= o

=
N

Digraph representations

In practice. Use adjacency-list representation.
* Algorithms based on iterating over vertices adjacent from v.
* Real-world digraphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

. insert edge edge from iterate over vertices
representation space)
from v to w v to w? adjacent from v?
list of edges E 1 E E
adjacency matrix V2 1t 1 \"
adjacency list E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

Adjacency-lists digraph representation: Java implementation

Same as Graph, but only insert one copy of each edge.

public class Digraph
{

private final int V;

private final Bag<Integer>[] adj; <«—+— adjacency lists

public Digraph (int V)

{ N crgate emp'ty graph
this.V = V; with V vertices
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>();

}

public void addEdge (int v, int w) el edlee fem v e w

{ adj[v].add(w); '}

public Iterable<Integer> adj(int v) -l iterator for vertices

{ return adj[v]; } adjacent from v

}

» digraph search

Reachability

Problem. Find all vertices reachable from s along a directed path.

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked;

public DepthFirstSearch(Graph G, int s)
{

marked = new boolean[G.V()];

dfs (G, s);
}

private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
}

public boolean visited(int v)
{ return marked[v]; }

true if path to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether any
vertex is connected to s

Depth-first search in digraphs

Same method as for undirected graphs.

* Every undirected graph is a digraph (with edges in both directions).

» DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Depth-first search (in directed graphs)

P

(12

Digraph version identical to undirected one (substitute pigraph for Graph).

public class DirectedDFS
{

private boolean[] marked;

public DirectedDFS (Digraph G, int s)
{

marked = new boolean[G.V()];

dfs (G, s);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
}

public boolean visited(int v)
{ return marked([v]; }

<«———+— true if path from s

constructor marks
vertices reachable from s

<«——+— recursive DFS does the work

client can ask whether any
vertex is reachable from s

20

Reachability application: program control-flow analysis

Every program is a digraph.
* Vertex = basic block of instructions (straight-line program).
* Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

8:<=tite
e
10: @<= 1t

e

Infinite-loop detection.
Determine whether exit is unreachable. A A

"
40: <=t

g0 46:r<=1
on
ne

1
treBBo
"

@O j
2: <= 48:10<= 110
ne

|
N\ L

St

8

21

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
* Mark: mark all reachable objects.
* Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

2 1
7=
N
Vi,
{KJ .

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
* Vertex = object.
* Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
T
T
4 J?/J
=
i -
:{,,/J)

(starting at a root and following a chain of pointers).

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
* Reachability.

* Path finding.

* Topological sort.

* Directed cycle detection.

* Transitive closure.

Basis for solving difficult digraph problems.

* Directed Euler path.
+ Strongly-connected components.

24

Breadth-first search in digraphs Breadth-first search in digraphs application: web crawler

Same method as for undirected graphs. Goal. Crawl web, starting from some root web page, say www.princeton.edu.
* Every undirected graph is a digraph (with edges in both directions). Solution. BFS with implicit graph.
* BFS is a digraph algorithm.

BFS.
S * Choose root web page as source s.
BFS (from source vertex s) * Maintain a gueue of websites to explore.
Put s onto a FIFO queue, and mark s as visited. * Maintain a ser of discovered websites.
Repeat until the queue is empty: » Dequeue the next website and enqueue
- remove the least recently added vertex v websites to which it links
- add each of v's unvisited neighbors to the queue, (provided you haven't done so before).

and mark them as visited.

Proposition. BFS computes shortest paths (fewest number of edges). Q. Why not use DFS?

Bare-bones web crawler: Java implementation

Queue<String> q = new Queue<String>(); <«———+—— queue of websites to crawl
SET<String> visited = new SET<String>(); <«—F+—— set of visited websites
String s = "http://www.princeton.edu";

g.enqueue (s) ; <«—+—— start crawling from website s

visited.add(s) ;

while ('q.isEmpty())
{
String v = q.dequeue() ; «—+F readin raw html from next
StdOut.println(v); website in queue
In in = new In(v);
String input = in.readAll();

String regexp = "http:// (\\w+\\.)* (\\w+)"; :) r———
Pattern pattern = Pattern.compile (regexp); «— use regular expression to find a s

i bsite of f http: LYYy H
Matcher matcher = pattern.matcher (input) ;) CHEEINES CIF MO 58 5y 4 t0p0|Oglca| sort
while (matcher.find())

{
String w = matcher.group() ;
if (!'visited.contains(w))

{

if unvisited, mark as visited

visited.add(w) ; -—
and put on queue

g.enqueue (w) ;

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Graph model. vertex = task; edge = precedence constraint.

. Algorithms

. Complexity Theory
. Artificial Intelligence
. Intro to CS

. Cryptography

. Scientific Computing

O U1 A W N — O

. Advanced Programming

Svibs
®

tasks

Topological sort demo

precedence constraint graph

CFO-OO-G

feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point up.

0—-5 02

0—1 3-6

35 34 @4_@ 5@
5—4 64 /

60 3-2 e o
14

CFO-O O~

directed edges

Solution. DFS. What else?

Depth-first search order

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder (Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if (!'marked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);
reversePost.push(v) ;

}

public Iterable<Integer> reversePost ()
{ return reversePost; }

—

31

topological order

returns all vertices in
“reverse DFS postorder”

30

32

Reverse DFS postorder in a DAG

marked[] reversePost
dfs (0) 1000000
dfs (1) 1100000
dfs (4) 1100100
@<_® 4 done 4
f 1 done 41
@ dfs (2) 1110100
2 done 412
dfs (5) 1110110
5 done 4125
05 0 done 41250
0—2
o= dfs (3) 1111110
3—6
3—5
8= dfs (6) 1111111
54 6 done 412506
64 3 done 4125063
6—0
3—2
done 1111111 4125063
14

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

* If directed cycle, topological order impossible.

* If no directed cycle, DFS-based algorithm finds a topological ord

Goal. Given a digraph, find a directed cycle.

Ou0,

©,
O—n

SNEYS
()

&

Solution. DFS. What else? See textbook for full details.

FrO0

reverse DFS
postorder is a
topological order!

33

er.

35

Topological sort ina DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs (e, v) is called:

dfs (0)
dfs (1)
dfs (4)
4 done

* Case l: afs(G, w) has already been called and returned.

Thus, w was done before v. 1 done
dfs (2)

2 done
dfs (5)
» Case 2: dfs(G, w) has not yet been called.

5 done

It will get called directly or indirectly 0 done

by dfs (e, v) and will finish before dafs (e, v).
ExX: ————> dfs(3)

case 1 <:>

Thus, w will be done before v.

» Case 3: dfs(G, w) has already been called, case 2 <} :f:;,‘;;
but has not returned. 3 done
Can't happen in a DAG: function call stack contains
path from w to v, so v—w would complete a cycle. done

all vertices adjacent from 3
are done before 3 is done,
so they all appear after 3

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PRGE 3

DEPARTMENT COURSE DESCRIPTON PREREQS

COMPUTER CPSC Y32 | INTERMEDIATE COMPIER [CPSC Y32

SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

34

36

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B
{

}

public class B extends C
{

}

% javac A.java

A.java:1l: cyclic inheritance
involving A

public class A extends B { }

N

1 error

public class C extends A
{

}

Directed cycle detection application: symbolic links

The Linux file system does not do cycle detection.

o o° oo

oe

ln -s a.txt b.txt
ln -s b.txt c.txt
ln -s c.txt a.txt

more a.txt

.txt: Too many levels of symbolic links

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

® 00 Workbook1
< A B C D
1 "=Bl1+1" "=Cl+1" "=Al+1"
2
3
4
5
6
icroso! xcel cannot calculate a formula.
7 Mi ft Excel Icul f I
8 u Cell references in the formula refer to the formula's
e result, creating a circular reference. Try one of the
9 following:
10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
1 1 help for using it to correct your formula.
* To continue leaving the formula as it is, click Cancel.
12 (Cance)
13
14
15
16
17
18
<<+ » Tl Sheetl [Sheet2 | Sheet3 [

37 38

» strong components

39 40

Strongly-connected components Connected components vs. strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path v and w are connected if there is v and w are strongly connected if there is a directed
o a path between v and w path from v to w and a directed path from w to v
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

* vis strongly connected to v. @ 5
 If vis strongly connected to w, then w is strongly connected to v. Q{ @_
* If vis strongly connected to w and w to x, then v is strongly connected to x. @/ \@%
. . . 3 d 5 ly- d
Def. A strong component is a maximal subset of strongly-connected vertices. connected components strongly-connected components
connected component id (easy to compute with DFS) strongly-connected component id (how to compute?)

5 6 7 8 910 11 12
1 3 4 4 2 2 2 2

lw
IFS

—@—* 01 2 3 45 6 7 8 91011 12 01 2
@ cc 0 0 0 000 1 11 2 2 2 2 sce 1 0 1
?{ @ public int connected(int v, int w) public int stronglyConnected(int v, int w)
{ return cc[v] == cc[w]; } { return scc[v] == scc[w]; }
C A A

| |
constant-time client connectivity query constant-time client strong connectivity query

41 42
Strong component application: ecological food webs Strong component application: software modules
Food web graph. Vertex = species; edge = from producer to consumer. Software module dependency graph.
* Vertex = software module.
* Edge: from module to dependency.
‘) sl
m o~ vole \gneategref
fox F,Z ~ &
) wuv.:..“:vppc.m, blue-gill fish
A =
> shiew D)
; v,
e el
o~ |
) T NN
i ES
algae (magnfied) Firefox Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components fogether.
Strong component. Subset of species with common energy flow. Approach 2. Use to improve design!

http://www.twing istrict96.k12.ilLus, lands/S: der/SalGraphics/salfoodweb.gif

43 44

GR

Strong components algorithms: brief history

1960s: Core OR problem.
* Widely studied; some practical algorithms.
* Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

* Classic algorithm.

* Level of difficulty: Algs4++.

» Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).
* Forgot notes for lecture; developed algorithm in order to teach it!
* Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms (Gabow, Mehlhorn).
* Gabow: fixed old OR algorithm.
¢ Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

45

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
* Run DFS on G® to compute reverse postorder.
* Run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph (ReversePost)

—~c-0=0

O
0%

check unmarked vertices in the order
0123456789101112

102453119121067 8

reverse postorder

dfs (0)
dfs(6)
dfs(7)
dfs(8)
check 7
8 done
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11

47

Kosaraju's algorithm: intuition
Reverse graph. Strong components in G are same as in G~.

Kernel DAG. Contract each strong component into a single vertex.

how to compute?

Idea. —

» Compute topological order in kernel DAG.
* Run DFS, considering vertices in reverse topological.

digraph G and its strong components

c4cho
g

kernel DAG of G

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
* Run DFS on G* to compute reverse postorder.
* Run DFS on G, considering vertices in order given by first DFS.

G

dfs(1)
1 done

DFS in original digraph

O,
O=®
¢ O

@9
AN
e@-©

check unmarked vertices in the order

102453119121067 8

dfs(0)
dfs(5)
dfs(4)
dfs(3)
check 5
dfs(2)
check 0
check 3
2 done
3 done
check 2
4 done
5 done
check 1
0 done

dfs(11)
check 4
dfs(12)
dfs(9)
check 11
dfs(10)
check 12
10 done
9 done
12 done
11 done

dfs(6)
check 9
check 4
check 0
6 done

dfs(7)
check 6
dfs(8)
check 7
check 9
8 done
7 done

Proposition. Second DFS gives strong components. (!!)

46

48

Kosaraju proof of correctness

Proposition. Kosaraju's algorithm computes strong components.

Pf. We show that the vertices marked during the constructor call afs(c, s)

are the vertices strongly connected to s.

< [If ¢is strongly connected to s, then ¢ is marked during the call a£s (G, s).]

* There is a path from s to ¢, so ¢ will be marked
during dafs (G, s) unless 7 was previously marked.

* There is a path from ¢ to s, so if + were previously
marked, then s would be marked before ¢ finishes

(so dfs (e, s) would not have been called in constructor).

Connected components in an undirected graph (with DFS)

public class CC
{

private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)

{
marked = new boolean[G.V()];
id = new int[G.V()];

for (int v = 0; v < G.V(); v++)
{

if ('marked[v])

{

dfs (G, v);
count++;
}
}
}

private void dfs(Graph G, int v)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if (!'marked[w])
dfs (G, w);

}

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

}

dfs (G, s)

dfs (G, t)

check s

t done

s done

Kosaraju proof of correctness (continued)

Proposition. Kosaraju's algorithm computes strong components.

=> [If ¢ is marked during the call ats (e, s), thenis strongly connected to s.]

* Since ¢ is marked during the call ats (G, s), there is a path from s tosin G
(or equivalently, a path from ¢ to s in GX).

* Reverse postorder construction implies that ¢ is done before s in dfs of G*.

* The only possibility for dfs in G* implies there is a path from s to ¢ in GX.
(or equivalently, from ¢ to s in G).

dfs (GR, s) dfs (GR, t) dfs (GR, t)
dfs (G}, t) t done dfs (GR, s)
check s
dfs (GR, s) t done
t done
s done X s done X
v
s done no path from t to s in GR DFS must nest
- —

49 50

Strong components in a digraph (with two DFSs)

public class KosarajuSCC
{

private boolean marked[];
private int[] id;
private int count;

public KosarajuSCC(Digraph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
DepthFirstOrder dfs = new DepthFirstOrder (G.reverse());
for (int v : dfs.reversePost())

if (!marked[v])
{
dfs (G, v);
count++;
}
}
}

private void dfs(Digraph G, int v)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if (!'marked[w])
dfs (G, w);

}

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

}

Digraph-processing summary: algorithms of the day

single-source
reachability

topological sort
(DAG)

strong
components

DFS

DFS

Kosaraju
DFS (twice)

