
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · October 29, 2010 8:33:52 AM

4.1 Undirected Graphs

‣ graph API
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

• Interesting and broadly useful abstraction.

• Challenging branch of computer science and discrete math.

• Hundreds of graph algorithms known.

• Thousands of practical applications.

2

Undirected graphs

3

Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

4

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

5

Map of science clickstreams

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

6

Kevin's facebook friends (Princeton network)

7

One week of Enron emails

8

The evolution of FCC lobbying coalitions

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

9

Graph applications

graph vertex edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation street intersection, airport highway, airway route

internet class C network connection

game board position legal move

social relationship person, actor friendship, movie cast

neural network neuron synapse

protein network protein protein-protein interaction

chemical compound molecule bond

10

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

Anatomy of a graph

cycle of
length 5

vertex

vertex of
degree 3

edge

path of
length 4

connected
components

11

Some graph-processing problems

Path. Is there a path between s and t?
Shortest path. What is the shortest path between s and t?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

12

‣ graph API
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Graph drawing. Provides intuition about the structure of the graph.
Caveat. Intuition can be misleading.

13

Graph representation

Two drawings of the same graph

Vertex representation.

• This lecture: use integers between 0 and V-1.

• Applications: convert between names and integers with symbol table.

Anomalies.

A

G

E

CB

F

D

14

Graph representation

symbol table

0

6

4

21

5

3

Anomalies

parallel
edgesself-loop

15

Graph API

 public class Graph public class Graph

Graph(int V) create an empty graph with V vertices

Graph(In in) create a graph from input stream

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

int V() number of vertices

int E() number of edges

String toString() string representation

In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(w))
 StdOut.println(v + "-" + w);

read graph from
input stream

print out each
edge (twice)

16

Graph input format.

Graph API: sample client

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E
% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4
…
12-11
12-9

In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(w))
 StdOut.println(v + "-" + w);

read graph from
input stream

print out each
edge (twice)

17

Typical graph-processing code

compute the degree of v

public static int degree(Graph G, int v)
{
 int degree = 0;
 for (int w : G.adj(v)) degree++;
 return degree;
}

compute maximum degree

public static int maxDegree(Graph G)
{
 int max = 0;
 for (int v = 0; v < G.V(); v++)
 if (degree(G, v) > max)
 max = degree(G, v);
 return max;
}

compute average degree

public static int avgDegree(Graph G)
{
 return 2 * G.E() / G.V();
}

count self-loops

public static int numberOfSelfLoops(Graph G)
{
 int count = 0;
 for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 if (v == w) count++;
 return count/2;
}

print the graph’s adjacency lists
(instance method in Graph)

public String toString()
{
 String s = V + " vertices, " + E + " edges\n";
 for (int v = 0; v < V; v++)
 {
 s += v + " ";
 for (int w : adj[v])
 s += w + " ";
 s += "\n";
 }
 return s;
}

Typical graph-processing code

4294.1 Undirected Graphs

Maintain a list of the edges (linked list or array).

18

Set-of-edges graph representation

 0 1
 0 2
 0 5
 0 6
 3 4
 3 5
 4 5
 4 6
 7 8
 9 10
 9 11
 9 12
11 12

87

109

1211

0

6

4

21

5

3

Maintain a two-dimensional V-by-V boolean array;
for each edge v-w in graph: adj[v][w] = adj[w][v] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 1 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 1 0 1 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0

19

Adjacency-matrix graph representation

two entries
for each edge

109

1211

0

6

4

21

5

3

87

Maintain vertex-indexed array of lists.
(use Bag abstraction)

20

Adjacency-list graph representation

109

1211

0

6

4

21

5

3

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 4

0 4

9 12

11 9

0

0

8

7

9

5 6 3

3 4 0

11 10 12

6 2 1 5

Adjacency-lists representation (undirected graph)

Bag objects

representations
of the same edge

87

21

Adjacency-list graph representation: Java implementation

public class Graph
{
 private final int V;
 private Bag<Integer>[] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 adj[w].add(v);
 }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency lists

(use Bag data type)

create empty graph

with V vertices

add edge v-w

(parallel edges allowed)

iterator for vertices adjacent to v

In practice. Use adjacency-lists representation.

• Algorithms based on iterating over vertices adjacent to v.

• Real-world graphs tend to be “sparse.”

22

Graph representations

representation space add edge edge between
v and w?

iterate over vertices
adjacent to v?

list of edges E 1 E E

adjacency matrix V 2 1 * 1 V

adjacency lists E + V 1 degree(v) degree(v)

huge number of vertices,
small average vertex degree

* disallows parallel edges

In practice. Use adjacency-lists representation.

• Algorithms based on iterating over vertices adjacent to v.

• Real-world graphs tend to be “sparse.”

23

Graph representations

huge number of vertices,
small average vertex degree

sparse (E = 200) dense (E = 1000)

Two graphs (V = 50)

24

‣ graph API
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

25

Maze exploration

Maze graphs.

• Vertex = intersection.

• Edge = passage.

Goal. Explore every intersection in the maze.

intersection passage

Algorithm.

• Unroll a ball of string behind you.

• Mark each visited intersection and each visited passage.

• Retrace steps when no unvisited options.

26

Trémaux maze exploration

Tremaux exploration

27

Trémaux maze exploration

Algorithm.

• Unroll a ball of string behind you.

• Mark each visited intersection and each visited passage.

• Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur;
Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

28

Maze exploration

29

Maze exploration

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

Typical applications. [ahead]

• Find all vertices connected to a given source vertex.

• Find a path between two vertices.

Depth-first search

Mark v as visited.

Recursively visit all unmarked

 vertices w adjacent to v.

DFS (to visit a vertex v)

31

Design pattern. Decouple graph data type from graph processing.

Typical client program.

• Create a Graph.

• Pass the Graph to a graph-processing routine, e.g., Search.

• Query the graph-processing routine for information.

Design pattern for graph processing

 Search search = new Search(G, s);
 for (int v = 0; v < G.V(); v++)
 if (search.marked(v))
 StdOut.println(v);

 public class Search public class Search

Search(Graph G, int s) find vertices connected to s

boolean marked(int v) is vertex v connected to s?

int count() how many vertices connected to s?

print all vertices
connected to s

Goal. Find all vertices connected to s.
Idea. Mimic maze exploration.

Algorithm.

• Use recursion (ball of string).

• Mark each visited vertex.

• Return (retrace steps) when no
unvisited options.

Data structure.

• boolean[] marked to mark visited vertices.

Depth-first search (warmup)

Trace of depth-!rst search to !nd vertices connected to 0

marked[]

 0 T
 1
 2
 3
 4
 5

 0 T
 1
 2 T
 3
 4
 5

 0 T
 1 T
 2 T
 3
 4
 5

 0 T
 1 T
 2 T
 3 T
 4
 5

 0 T
 1 T
 2 T
 3 T
 4
 5 T

 0 T
 1 T
 2 T
 3 T
 4 T
 5 T

dfs(0)

 dfs(2)
 check 0

 dfs(1)
 check 0
 check 2
 1 done

 dfs(3)

 dfs(5)
 check 3
 check 0
 5 done

 dfs(4)
 check 3
 check 2
 4 done
 check 2
 3 done
 check 4
 2 done
 check 1
 check 5
0 done

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

 adj[]

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

33

Depth-first search (warmup)

public class DepthFirstSearch
{
 private boolean[] marked;

 public DepthFirstSearch(Graph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean marked(int v)
 { return marked[v]; }
}

true if connected to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether
vertex v is connected to s

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to the
sum of their degrees.

Pf.

• Correctness:

- if w marked, then w connected to s (why?)

- if w connected to s, then w marked
(if w unmarked, then consider last edge
on a path from s to w that goes from a
marked vertex to an unmarked one)

• Running time: each vertex
connected to s is visited once.

34

set of
unmarked

vertices

no such edge
can exist

source

v

s

set of marked
vertices

w

x

Depth-first search application: preparing for a date

35

http://xkcd.com/761/

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

Q. How difficult?

36

37

Depth-first search application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

• Vertex: pixel.

• Edge: between two adjacent red pixels.

• Blob: all pixels connected to given pixel.

recolor red blob to blue

38

Depth-first search application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

• Vertex: pixel.

• Edge: between two adjacent red pixels.

• Blob: all pixels connected to given pixel.

recolor red blob to blue

Goal. Does there exist a path from s to t ?

39

Paths in graphs

† amortized

40

Paths in graphs: union-find vs. DFS

Goal. Does there exist a path from s to t ?

Union-find. Can intermix queries and edge insertions.
Depth-first search. Constant time per query.

method preprocessing time query time space

union-find V + E log* V log* V † V

DFS E + V 1 E + V

† amortized

Goal. Does there exist a path from s to t ? If yes, find any such path.

41

Pathfinding in graphs

† amortized

42

Pathfinding in graphs

Goal. Does there exist a path from s to t ? If yes, find any such path.

Union-find. Not much help.
Depth-first search. After linear-time preprocessing, can recover path itself
in time proportional to its length.

 public class Paths public class Paths

Paths(Graph G, int s) find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

easy modification
(stay tuned)

Goal. Find paths to all vertices connected
to a given source s.
Idea. Mimic maze exploration.

Algorithm.

• Use recursion (ball of string).

• Mark each visited vertex by keeping

• track of edge taken to visit it.

• Return (retrace steps) when
no unvisited options.

Data structures.

• boolean[] marked to mark visited vertices.

• int[] edgeTo to keep tree of paths.

• (edgeTo[w] == v) means that edge v-w
 was taken to visit w the first time

Depth-first search (pathfinding)

Trace of depth-!rst search to !nd all paths from 0

edgeTo[]

 0
 1
 2
 3
 4
 5

 0
 1
 2 0
 3
 4
 5

 0
 1 2
 2 0
 3
 4
 5

 0
 1 2
 2 0
 3 2
 4
 5

 0
 1 2
 2 0
 3 2
 4
 5 3

 0
 1 2
 2 0
 3 2
 4 3
 5 3

dfs(0)

 dfs(2)
 check 0

 dfs(1)
 check 0
 check 2
 1 done

 dfs(3)

 dfs(5)
 check 3
 check 0
 5 done

 dfs(4)
 check 3
 check 2
 4 done
 check 2
 3 done
 check 4
 2 done
 check 1
 check 5
0 done

 0
 1 2
 2 0
 3 2
 4 3
 5 3

44

Depth-first search (pathfinding)

public class DepthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private final int s;

 public DepthFirstPaths(Graph G, int s)
 {
 marked = new boolean[G.V()];
 edgeTo = new int[G.V()];
 this.s = s;
 dfs(G, s);
 }
 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }

 public boolean hasPathTo(int v)
 public Iterable<Integer> pathTo(int v)
}

parent-link representation
of DFS tree

set parent link

ahead

Depth-first search (pathfinding trace)

45

Trace of depth-!rst search to !nd all paths from 0

edgeTo[]

 0
 1
 2
 3
 4
 5

 0
 1
 2 0
 3
 4
 5

 0
 1 2
 2 0
 3
 4
 5

 0
 1 2
 2 0
 3 2
 4
 5

 0
 1 2
 2 0
 3 2
 4
 5 3

 0
 1 2
 2 0
 3 2
 4 3
 5 3

dfs(0)

 dfs(2)
 check 0

 dfs(1)
 check 0
 check 2
 1 done

 dfs(3)

 dfs(5)
 check 3
 check 0
 5 done

 dfs(4)
 check 3
 check 2
 4 done
 check 2
 3 done
 check 4
 2 done
 check 1
 check 5
0 done

 0
 1 2
 2 0
 3 2
 4 3
 5 3

adj
0

1

2

3

4

5

2 1 5

0 2

5 4 2

3 2

3 0

0 1 3 4

6
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

tinyCG.txt standard drawing

drawing with both edges

adjacency lists

A connected undirected graph

V
E

edgeTo[] is a parent-link representation of a tree rooted at s.

46

Depth-first search (pathfinding iterator)

 public boolean hasPathTo(int v)
 { return marked[v]; }

 public Iterable<Integer> pathTo(int v)
 {
 if (!hasPathTo(v)) return null;
 Stack<Integer> path = new Stack<Integer>();
 for (int x = v; x != s; x = edgeTo[x])
 path.push(x);
 path.push(s);
 return path;
 }

Trace of pathTo() computation

edgeTo[]
 0
 1 2
 2 0
 3 2
 4 3
 5 3

5 5
3 3 5
2 2 3 5
0 0 2 3 5

x path

47

Depth-first search summary

Enables direct solution of simple graph problems.

• Does there exists a path between s and t ?

• Find path between s and t.

• Connected components (stay tuned).

• Euler tour (see book).

• Cycle detection (see book).

• Bipartiteness checking (see book).

Basis for solving more difficult graph problems.

• Biconnected components (beyond scope).

• Planarity testing (beyond scope).

✓
✓

48

‣ graph API
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

Intuition. BFS examines vertices in increasing distance from s.
49

Breadth-first search

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

 - remove the least recently added vertex v

 - add each of v's unvisited neighbors to the queue,

 and mark them as visited.

BFS (from source vertex s)

Breadth-!rst
maze exploration

50

Breadth-first search (pathfinding)

 private void bfs(Graph G, int s)
 {
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 marked[s] = true;
 while (!q.isEmpty())
 {
 int v = q.dequeue();
 for (int w : G.adj(v))
 if (!marked[w])
 {
 q.enqueue(w);
 marked[w] = true;
 edgeTo[w] = v;
 }
 }
 }

Trace of breadth-!rst search to !nd all paths from 0

marked[]

 0 T
 1
 2
 3
 4
 5

 0 T
 1 T
 2 T
 3
 4
 5 T

 0 T
 1 T
 2 T
 3 T
 4 T
 5 T

 q

 0

1
5
3
4

2
1
5

5
3
4

3
4

4

edgeTo[]

 0
 1
 2
 3
 4
 5

 0
 1 0
 2 0
 3
 4
 5 0

 0
 1 0
 2 0
 3 2
 4 2
 5 0

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

 0 T
 1 T
 2 T
 3 T
 4 T
 5 T

 0
 1 0
 2 0
 3 2
 4 2
 5 0

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

 adj[]

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

 0 T
 1 T
 2 T
 3 T
 4 T
 5 T

 0
 1 0
 2 0
 3 2
 4 2
 5 0

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

 0 T
 1 T
 2 T
 3 T
 4 T
 5 T

 0
 1 0
 2 0
 3 2
 4 2
 5 0

0 2 1 5
1 0 2
2 0 1 3 4
3 5 4 2
4 3 2
5 3 0

Proposition. BFS computes shortest path (number of edges) from s
in a connected graph in time proportional to E + V.

Pf.

• Correctness: queue always consists of zero or more vertices of distance k
from s, followed by zero or more vertices of distance k + 1.

• Running time: each vertex connected to s is visited once.

Breadth-first search properties

51

0

4

2

1

5
3

standard drawing

0

4

2

1

5

3

dist = 0 dist = 1 dist = 2

52

Breadth-first search application: routing

Fewest number of hops in a communication network.

ARPANET, July 1977

53

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

http://oracleofbacon.org SixDegrees iPhone App

Endless Games board game

54

Kevin Bacon graph

• Include a vertex for each performer and for each movie.

• Connect a movie to all performers that appear in that movie.

• Compute shortest path from s = Kevin Bacon.

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielgud

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

performer
vertex

movie
vertex

Symbol graph example (adjacency lists)

...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/... /Geppi, Cindy/Hershey, Barbara...
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/.../Winslet, Kate/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/.../Bancroft, Anne/...
To Catch a Thief (1955)/París, Manuel/.../Grant, Cary/.../Kelly, Grace/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/.../ Tucci, Maria...
...

movies.txt

V and E
not explicitly

specified

"/"
delimiter

