4.1 Undirected Graphs

graph API

- depth-first search
- breadth-first search
- connected components
- challenges

Why study graph algorithms?

- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

Algorithms, $4^{\text {th }}$ Edition

Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

The Internet as mapped by the Opte Project
http://en.wikipedia. org/wiki/Internet

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

One week of Enron emails

The evolution of FCC lobbying coalitions

graph	vertex	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	street intersection, airport	highway, airway route
internet	class C network	connection
game	board position	legal move
social relationship	person, actor	friendship, movie cast
neural network	neuron	synapse
protein network	protein	protein-protein interaction
chemical compound	molecule	bond

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

Some graph-processing problems

Path. Is there a path between s and t?

Shortest path. What is the shortest path between sand t?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges? Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

Graph representation

Graph drawing. Provides intuition about the structure of the graph.
Caveat. Intuition can be misleading.

Two drawings of the same graph

Graph API

public class Graph		
	Graph (int V)	create an empty graph with V vertices
	Graph (In in)	create a graph from input stream
void	addEdge (int v, int w)	add an edge $v-w$
Iterable<Integer>	adj(int v)	vertices adjacent to v
int	V()	number of vertices
int	E ()	number of edges
String	toString ()	string representation

Graph API: sample client

Graph input format.

- This lecture: use integers between 0 and v-1.
- Applications: convert between names and integers with symbol table.

Anomalies.

Typical graph-processing code

compute the degree of v	```public static int degree(Graph G, int v) { int degree = 0; for (int w: G.adj(v)) degree++; return degree; }```
compute maximum degree	```public static int maxDegree(Graph G) { int max = 0; for (int v = 0; v < G.v(); v++) if (degree(G, v) > max) max = degree(G, v); return max; }```
compute average degree	```public static int avgDegree(Graph G) { return 2 * G.E() / G.V(); }```
count self-loops	```public static int numberOfSelfLoops(Graph G) { int count = 0; for (int v = 0; v < G.V(); v++) for (int w: G.adj(v)) if (v == w) count++; return count/2; }```

Adjacency-matrix graph representation

Maintain a two-dimensional V-by- V boolean array;

for each edge $v-w$ in graph: $\operatorname{adj}[v][w]=\operatorname{adj}[w][v]=$ true.

Maintain a list of the edges (linked list or array).

0	1
0	2
0	5
0	6
3	4
3	5
4	5
4	6
7	8
9	10
9	11
9	12
11	12

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

(use bag abstraction)

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v .
- Real-world graphs tend to be "sparse."
huge number of vertices, small average vertex degree

representation	space	add edge	edge between V and w?	iterate over vertices adjacent to v?
list of edges	E	1	E	E
adjacency matrix	V^{2}	1^{*}	1	V
adjacency lists	$\mathrm{E}+\mathrm{V}$	1	degree(v)	degree(v)

* disallows parallel edges

Graph representations
In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v .
- Real-world graphs tend to be "sparse."
huge number of vertices,
small average vertex degree

Maze graphs.

- Vertex = intersection.
- Edge = passage.

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur; Ariadne held ball of string.

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.

Maze exploration

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark vas visited.
Recursively visit all unmarked
vertices w adjacent to v.

Typical applications. [ahead]

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

public class Search		
	Search (Graph G, int s)	find vertices connected to s
boolean	marked (int v)	is vertex v connected to s ?
int	count()	w many vertices connected to s?

Typical client program.

- Create a Graph.
- Pass the Graph to a graph-processing routine, e.g., Search.
- Query the graph-processing routine for information.

```
Search search = new Search(G, s)
for (int v = 0; v < G.V(); v++)
    if (search.marked(v))
        StdOut.println(v);

Depth-first search (warmup)

Goal. Find all vertices connected to s.
Idea. Mimic maze exploration.

Algorithm.
- Use recursion (ball of string).
- Mark each visited vertex.
- Return (retrace steps) when no unvisited options.

Data structure
- boolean [] marked to mark visited vertices.



Depth-first search application: preparing for a date


Depth-first search applicationi preparing for a date

Proposition. DFS marks all vertices connected to \(s\) in time proportional to the sum of their degrees.

Pf.
- Correctness:
- if \(w\) marked, then \(w\) connected to \(s\) (why?) - if \(w\) connected to \(s\), then \(w\) marked (if \(w\) unmarked, then consider last edge on a path from \(s\) to \(w\) that goes from a marked vertex to an unmarked one)
- Running time: each vertex connected to \(s\) is visited once.


Depth-first search application: flood fill
Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

Q. How difficult?

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.
- Vertex: pixel.
- Edge: between two adjacent red pixels.
- Blob: all pixels connected to given pixel.


\section*{Paths in graphs}

Goal. Does there exist a path from \(s\) to \(t\) ?


Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.
- Vertex: pixel.
- Edge: between two adjacent red pixels.
- Blob: all pixels connected to given pixel.


38

Goal. Does there exist a path from \(s\) to \(t\) ?
\begin{tabular}{c|c|c|c|}
\hline method & preprocessing time & query time & space \\
\hline union-find & \(V+E \log * V\) & \(\log ^{*} V+\) & \(V\) \\
DFS & \(E+V\) & 1 & \(E+V\) \\
\hline
\end{tabular}

Union-find. Can intermix queries and edge insertions.
Depth-first search. Constant time per query.

Goal. Does there exist a path from \(s\) to \(t\) ? If yes, find any such path.


Depth-first search (pathfinding)

Goal. Find paths to all vertices connected to a given source \(s\).
Idea. Mimic maze exploration.

\section*{Algorithm.}
- Use recursion (ball of string).
- Mark each visited vertex by keeping
- track of edge taken to visit it.
- Return (retrace steps) when no unvisited options.

Data structures.
- boolean [] marked to mark visited vertices.
- int [] edgeTo to keep tree of paths.
- (edgeтo[w] == v) means that edge v-w was taken to visit w the first time


Depth-first search (pathfinding)


edgeTo[] is a parent-link representation of a tree rooted at s.

```

public boolean hasPathTo(int v)
{ return marked[v]; }
public Iterable<Integer> pathTo(int v)
{
if (!hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x])
path.push(x);
path.push(s)
return path;
}

```

Depth-first search summary

Enables direct solution of simple graph problems.
\(\checkmark\) - Does there exists a path between \(s\) and \(t\) ?
\(\checkmark\) - Find path between \(s\) and \(t\).
- Connected components (stay tuned).
- Euler tour (see book).
- Cycle detection (see book).
- Bipartiteness checking (see book).

Basis for solving more difficult graph problems.
- Biconnected components (beyond scope).

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from \(s\) to \(t\) that uses fewest number of edges.

\section*{BFS (from source vertex s)}

Put s onto a FIFO queue, and mark \(s\) as visited.
Repeat until the queue is empty:
- remove the least recently added vertex \(v\)
- add each of v's unvisited neighbors to the queue,

> and mark them as visited.


Intuition. BFS examines vertices in increasing distance from \(s\).

\section*{Breadth-first search properties}

Proposition. BFS computes shortest path (number of edges) from \(s\)
in a connected graph in time proportional to \(E+V\).

Pf.
- Correctness: queue always consists of zero or more vertices of distance \(k\) from \(s\), followed by zero or more vertices of distance \(k+1\).
- Running time: each vertex connected to \(s\) is visited once.

standard drawing


Breadth-first search application: routing

Fewest number of hops in a communication network.


\section*{Kevin Bacon numbers.}


- Include a vertex for each performer and for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from s = Kevin Bacon.
```

