4.1 Undirected Graphs Undirected grophs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

g
Bou
yoym

* Interesting and broadly useful abstraction.

mUSe * Challenging branch of computer science and discrete math.

mveﬁge X * Hundreds of graph algorithms known.

k-]
g
o
T
)
3

Buissad0.d-ydelo

connected XN * Thousands of practical applications.

presentation
ny consider

auo
yo.aeas

==

20

» graph API
» depth-first search

DFS » breadth-first search
e » connected components

edges m » challenges

©
=

method
)

Jaqun
——

Algorithms

Algorithms, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2010 - October 29, 2010 8:33:52 AM 2

Protein-protein interaction network

.
.
3,
-
—
.
o
s
p
4 & s
. - > ..ﬁ'.-._ A
> = w L R
° T % a'e
- * LA 2 oed
~ . . af B ey B
- S,
. P oo o o SaeN * °
- e oo & *%, =
.
. .
o7 /o &
o b L]
o
vod &) 44
p
.
%’ #
¢

http://en.wikipedia.org/wiki/Internet

Reference: Jeong et al, Nature Review | Genetics

Map of science clickstreams

g RO
Gsoptiis"®
e

Rl
e

Minerology
Acoustics

.

aterial s
Engine

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

One week of Enron emails

benjamn rogers & shankman v weldon

ninsts

cience.
ing

Applied

phy

mical
Engineering

KEY: bilragp e Vo
EMPLOYEE (E-MAIL ADDRESS)- g | o l vacy geaccone
. theresa staab
AT LEAST ONE E-MAIL CONTACT: [charies weidon l o ® o _teviokey
BETWEEN EMPLOYEES ciopurchey @ o g umaines
caigdean @ st
susan baiey
denbaghman @ sophanio panus
danen schookcran e ndachuhes @ ey noton
£
aanongeen g a9 225 5 ey @ saovdctacn
oavey, @
davd delainey o, fletcher sturm g o oend - ® sholloy.corman
dota por trank ermis @ admaay ;
B geattsiorey @ ©7 bivians @ swa shackieton
d.matn g harry arora @ @ sally beck
h.lewis @ 8 |
drew fossum o [By The analy|5|s detected | @ ryan singer
an anomaly: a new e- |
4 momas | todhaystet
' vl mail address for this | »
uch qugley B & Jonlavorsio @ person, who had been | ® scottnesl @ rckbuy
Jrs— jettiing ® “phillip.allen” for 131 | i oo @ rchud sanders
jim.schwieger @ previous weeks. |
elzaberh sager g . | ® louise ktchon @ icharding
Ioo parks
‘errol mclaughlin ® kovin,presto ilip platter
) begeel @ @ jett dasovich oo
L.campbell g ey e ® phiipiove
o & = ® barry tycholz
qe.soberg @ Joba orney — ames steties @ pauithomas
[x.atten] 57 ® v poroia
gorald nemec @ g oS © viadi pmenov @ m.scon
dhan mokay @
areg whatey @ . X LTr— ® mpreso
jvan hemandez ®
hoiden saksbury @ hgnhomandez o ® tom donohoe ® monika causholk
oy townsend
james.derrick @ AN @ mie grigsby ® thomas martin ® miove
® susan perer:
jason witiams @ Yeviruscin @ sy © ke meconnell
jason wotle @ tarry.may ® @ 5.shively ® rmicheilo lokay
Loay ®
. ® scoft endrickson .
Jofkeyhodge @ Lmims® @ sandra brawner © wichelo.cmh
Joftrey shankman @ martin cuita’ ° @ robert bensc ® m_fomey
- mahew onhart o,
jeft.skilling ® eiistey ¥ O @ mattsmn
| famec @ e cason L B9 @ Seimp'sten © markwhit
ke mago: peter keavey
L mike swerzbin | paty s ® mark taylor
s @ moniqua sanchez m. thot © mark haodck
Company leaders e-mail " ® ® e eresne
less frequently, leaving ["reer ., o I Sources: Dr
some communication to omgrten® o o & hmiar oy €. Prisbe
subordinates. ohhodge ” @ o lztayor Park. Jghgs
sm @ L] e Hopins
Kam kessar ° T indy donoho University
hate symes b | g campoet
kay mann imberly watson
kenneth.lay *mved

Finding Patterns
In Corporate Chatter

Kevin's facebook friends (Princeton network)

YO

e Robert) \anderbet
» Thais Melo

© Debbie Peikes

? Norman vu

Sophie

Jahn,

Qingzhen Wapg

4bi Barogyy,
Marc Lo,

3

Hifung,

The evolution of FCC lobbying coalitions

Williamson & Associates

® «cer

Vermont PSB COTel. Association
o .

fermont DPS

Mo PUC e .
o a PSC
Home Telephone ° -
o 9PSC
. g 55oula Plan Suppoders | ona URC 8K Comrrbnicatens.
Rural Uslites Senvios . Mo sisK
o eon Montana PSC
UsoA 2
. M Yousfel Aernca
e N Pennsyania PSC r/
noclnvle Nesworks . New USKEQ
Oord Telephone I P~ 2 &
. Detocare AL
ACentact Communications Newvokpsc Esehelon @ZIER-T
®. Virtal Geosatelite . p Ciiia
: Giobal C A
HorSorgs Teghone (3003 s g
flonan Telephone T £ New Global Telecem
. % o P
CompTiA o
NCTA
e

A\ Rystec

s Feldcormmimigstips, || AstoTel

Natonsline

Aefo Coomuhications
v Josary Consulting
.

w
* North River
ShenTel Telephone Cos.
<€ embroke
lesbiene._ a5
SmantCity Networks) -

pocess Peint

CIMCO Commanicat

(GloseCal fimerica .

ARIC Vi
. oinOne
. . Powerhlet Glol H g
s CallSart |\ ATST: / M
SoBark ¢Tafipso Eye Tel Yy marsat
.m.: Brcnnati Bell Telephone MSV. WildBlue
\ . o
—_— S
JeasoPC = Bieschten ¢ wblic Service Telephone
Grangd Commuricationt .
s Charter Commurications Tonnes Telecommunicatons
L. . Qb , " St 3
Deito ot Proht House Network Veniure Communications Cooperative
Te integrar Amenca X e Solutions & Slox
Gz T |va Je S Fia DG Ve Sl Souh Sope
yoadem Tekphone | fi /e o2 Qe et wes "o s
Verizon Wirelpss Centennial dlecom R T i Core Co State of Hawaii
. Carolina West Wireless- . £ Ala:
N WVest o “: Alaska
Corr Wireless Cémmicatons, Celldar South % KMC Telecom
X P Telnet Worldwide: ® s Communications Advisory Counsel
v TC3 Telecom- . . . *. TDS Telecom
ZaCon : Conversent @ People’s Telephone
Alfance of Rural CMRS Cariers @
5\ LS Calltar ¥ A Cascade Utiites
G Ceffidar Ore NTCA lals Communications —® Talphone
- INE Colorado Cellular off & Rowe . 2 » S

Thir Celllar
v Mobi PCS
v

.
Telephone Montana PCS Fronter Win
« .

rbrooke Celluiar DS

FBN Indiana
' Free Conferencing
. Baraga Telephone 8.

cwest Wirele:

lowa Network Services

Biue Casa Communications.

2 Network ~

oy . Telscape

CenturyTel

Consoliéated Communications

A Nehalem Teleoorhrunications Trans Cascades Telephone

WIA
g & Oregon-idaho sl
ia O T kra Monoe Telephons g
1 * 57 Telephine 7 f:m:mrsfww
GrastLakak Communications * X\ Bas Ty Telephone
O - b

Stayon Telephone

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

chemical compound

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

molecule

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex
. dge
lcyclc huj e ff l
engt 5\
path of
« length 4
vertex of
degree 3™\
connected
components
9 10

Some graph-processing problems

Path. Is there a path between s and 1?
Shortest path. What is the shortest path between s and t?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there away to connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

» graph API

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

Caveat. Intuition can be misleading.

Two drawings of the same graph

Graph APT

public class Graph

Graph (int V)
Graph (In in)
void addEdge (int v, int w)
Iterable<Integer> adj(int v)
int V()
int E()

String toString()

create an empty graph with V vertices
create a graph from input stream
add an edge v-w
vertices adjacent to v
number of vertices
number of edges

SU‘I‘/?g !‘(’]))'(’S(’/lf(lfi()/l

In in = new In(args[0]); read graph from
Graph G = new Graph(in) ; input stream
for (int.v =0; v< ?.V(); v++) it QU Gy
for (int w : G.adj(w)) 1 edge (twice)
StdOut.println(v + "-" + w);

Graph representation

Vertex representation.
* This lecture: use integers between o and v-1.

* Applications: convert between names and integers with symbol table.

symbol table

=

2 arallel
sel]; loop Pe s

-,
SO

Anomalies.

Graph API: sample client

Graph input format.

=

tinyG. txt

V\"13 E % java Test tinyG.txt

13 <= 0-6

05 0 0-2

43

-1

2 ® o

9 12 O -

6 4 1-0

5 4 (3) (19 2-0

02 X4 A\ 3-5

11 12 o @ @ 3-4

9 10

(7) g 12-11

9 11 12-9

53
In in = new In(args[0]); read graph from
Graph G = new Graph (in) ; input stream
for (int v = 0; v < G.V(); v++) iRt @ el

for (int w : G.adj(w)) 1 edge (twice)
StdOut.println(v + "-" + w);

Typical graph-processing code Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

public static int degree(Graph G, int v)

int degree = 0;
for (int w : G.adj(v)) degree++;
return degree;

compute the degree of v

}

public static int maxDegree(Graph G) o
{
int max = 0;
for (int v = 0; v < G.VQ; v++)
if (degree(G, v) > max)
max = degree(G, Vv);

return max;

compute maximum degree

}

public static int avgDegree(Graph G)
{

compute average degree return 2 * G.EQ) / G.VO;

public static int numberOfSelfLoops(Graph G) o @
{
int count = 0;
0; v < G.VO; v++)

for (int v =

for Cint w : G.adj(v)) Q

if (v == w) count++;
return count/2;

o o Ul Ul DK

B
= o

©W VW VW I b dWWwOoOoOoo

[y
N

count self-loops

[y
[
[y
N

}

Adjacency-matrix graph representation Adjacency-list graph representation

Maintain a two-dimensional V-by-V boolean array:; Maintain vertex-indexed array of lists.
for each edge v-w in graph: adj[v]Iw]l = adj[w][v] = true. (use Bag abstraction)

two entries

for each edge
0 \ 0 adi[]
2 3

~

o v a
©O O 0O 0o 0o O H H O OZFRHO

0 4 5 6 7 8 9 10 11 12 5
o o 1 1 o0 0 o0 0 0 ’
° ° o 1 0 0 0 0 0 0 0 0 0 ° o 5
2 0 0 0o 0 0 o0) j
3 1IN\ 0 0 o0 o 0o o ;
N1 o0 0 o 0o o ° o :
0 0 o o 0 o / ‘
:
: o oo &) ; > gt
0 - ‘&
0 0 o 0o o
0 o o 101
0 o 1 0o o
0 0o 1 0o 1
0 0o 1 1 0

©O O O O O OO 0o © © 0 o r
©O ©O 0O o o ©o 0o © © © o

© ©O 0o ©o o 0o 0o B K o/o
©O 0o 0o o ©o 0o K K

©O O O H O OO0 © © © © ©°

oooo!o

©o o o o o

Adjacency-list graph representation: Java implementation

public class Graph
{

private final int V;
private Bag<Integer>[] adj;

public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

public void addEdge(int v, int w)
{

adj[v].add (w) ;

adj[w] .add(v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

Graph representations

In practice. Use adjacency-lists representation.

adjacency lists
(use Bag data type)

create empty graph
with v vertices

add edge v-w

(parallel edges allowed)

iterator for vertices adjacent to v

21

* Algorithms based on iterating over vertices adjacent to v.

* Real-world graphs tend to be “sparse.”

\ huge number of vertices,
small average vertex degree

sparse (E=200)

Two graphs (V =50)

dense (E=1000)

Graph representations

In practice. Use adjacency-lists representation.

* Algorithms based on iterating over vertices adjacent to v.
* Real-world graphs tend to be "sparse.”

representation

\ huge number of vertices,
small average vertex degree

list of edges

adjacency matrix

adjacency lists

V2

E+V

add edge edge between iteratg over vertices
v and w? adjacent to v?
1 E E
1* 1 \"
1 degree(v) degree(v)

* disallows parallel edges

22

» depth-first search

24

Maze exploration

Maze graphs.
* Vertex = intersection.
+ Edge = passage.

o=l o

intersection passage

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.

* Unroll a ball of string behind you.

25

* Mark each visited intersection and each visited passage.

* Retfrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur;

Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

Trémaux maze exploration

Algorithm.

* Unroll a ball of string behind you.
* Mark each visited intersection and each visited passage.

* Retrace steps when no unvisited options.

~

M

-—

Maze exploration

26

28

Maze exploration

gl

|

CJ

Tty

1l

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

public class Search

Search (Graph G, int s) find vertices connected to s
boolean marked(int v) is vertex v connected to s?

int count() how many vertices connected to s?

Typical client program.

¢ Create a Graph.

* Pass the craph to a graph-processing routine, e.g., search.
* Query the graph-processing routine for information.

Search search = new Search(G, s);
for (int v = 0; v < G.V(); v++)
if (search.marked(v))

print all vertices
StdOut.println(v) ; T

connected to s

31

Depth-first search

Goal. Systematically search through a graph.

Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

vertices w adjacent to v.

Typical applications. [ahead]

* Find all vertices connected to a given source vertex.

* Find a path between two vertices.

Depth-first search (warmup)

Goal. Find all vertices connected to s.
Idea. Mimic maze exploration.

Algorithm.

* Use recursion (ball of string).

* Mark each visited vertex.

* Return (retrace steps) when no
unvisited options.

Data structure.

* boolean[] marked to mark visited vertices.

dfs(0)

anek o

dfs(1)
check 0 e
check 2
1 done
O—=@
dfs(3) M

dfs(5)

check 3 @ﬁ ?
| crck o £®4

dfs(4)
check 3

s e %GD \Glﬁ
check 2 @

3 done
check 4
2 done
check 1
check 5
0 done

marked[] adj[]

BRI nawNnRo nawNRO BRI wawNRO

wawNRO

T

S —— - =

R

wawnEo wawNEo PRSI wawNEo wawneo

wawNEO

wwunoon
onaRNE

wwunoon

onamNE

onamNE

Depth-first search (warmup)

public class DepthFirstSearch
{

private boolean[] marked; hm

public DepthFirstSearch(Graph G, int s)
{

marked = new boolean[G.V()];

dfs (G, s); <«

private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w :
if ('marked([w])
dfs (G, w);

public boolean marked(int v)
{ return marked[v]; }

G.adj (v))]

Depth-first search application: preparing for a date

true if connected to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether
vertex v is connected to s

33

PREPPRING FOR ADATE:, [T TV AT 1

2) DANCING

OKAYWHATKINDS OF ~ HM, UHICH SNAKES ARE
VM STURTONS N DUERDIUES GWHYRN DANGERIS! LETS g [ME RESEARCH (orpeinG
MIGHT I FREPARE FERY i) A) SNAKEBITE VENOMS 15 SCATIERED
oo | 5 e 0D s T D WaNTE SLL e

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional fo the
sum of their degrees.

Pf.
e Correctness:

source set of marked
vertices

- if w marked, then w connected to s (why?)
- if w connected to s, then w marked

(if w unmarked, then consider last edge
no such edge

set of «— can exist

unmarked

vertices “_

on a path from s to w that goes from a
marked vertex to an unmarked one)

* Running time: each vertex
connected to s is visited once.

34

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

O FALLRM HAR
‘(2)Fo0D TOO BXPENSIVE ‘ N-——x-—‘

b) GARTER SNAKE. ?

& CPFERERD A SPREADSHEET T ORGANIZE IT:
o
‘O

xkecd

http://xked.com/761/

IMHERETOPKK. BY Dy, THE INND
YOUUP. YOURE TAIPAN HAS THE DBOLEST
NOT DRESSED? VENOM OF @Y SNAKE!

E
LS

T REALY NEED ToSToP
USING DEPTH-FIRST SEARCHES.

35

Q. How difficult?

36

Depth-first search application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

» Vertex: pixel.

» Edge: between two adjacent red pixels.
* Blob: all pixels connected to given pixel.

recolor red blob to blue

Paths in graphs

Goal. Does there exist a path from s to ¢ ?

37

39

Depth-first search application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

 Vertex: pixel.

* Edge: between two adjacent red pixels.
* Blob: all pixels connected to given pixel.

recolor red blob to blue

Paths in graphs: union-find vs. DFS

Goal. Does there exist a path from s to ¢ ?

PIERTACESSing fime

union-find V + E log* V log*V t \

DFS E+V 1 E+V

Union-find. Can intermix queries and edge insertions.
Depth-first search. Constant time per query.

38

40

Pathfinding in graphs

Goal. Does there exist a path from s to 1? If yes, find any such path.

!

s

Depth-first search (pathfinding)

Goal. Find paths to all vertices connected
to a given source s.
Idea. Mimic maze exploration.

Algorithm.
* Use recursion (ball of string).
* Mark each visited vertex by keeping
* frack of edge taken to visit it.
* Return (retrace steps) when
no unvisited options.

Data structures.

* boolean[] marked to mark visited vertices.

e int[] edgeTo to keep tree of paths.
* (edgeTo[w] == v) means that edge v-w
was taken to visit w the first time

dfs(0)

N

dfs(2)
check 0

K

dfs(1)
check 0
check 2
1 done

dfs(3)

N

N

dfs(5)
check 3
check 0
5 done

@
G

7 19
A

dfs(4)
check 3
check 2

4 done

check 2

N

©
()

3 done
check 4
2 done
check 1
check 5
0 done

N

edgeTo[]

0

Pathfinding in graphs

Goal. Does there exist a path from s to t? If yes, find any such path.

public class Paths
Paths (Graph G, int s) find paths in G from source s
boolean hasPathTo (int v) is there a path from s to v?
Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Union-find. Not much help.
Depth-first search. After linear-time preprocessing, can recover path itself
in time proportional to its length.

easy modification
(stay tuned)

41 42

Depth-first search (pathfinding)

public class DepthFirstPaths
{
private boolean[] marked; parent-link representation
private int[] edgeTo; “T of DFS tree
private final int s;

public DepthFirstPaths (Graph G, int s)
{

marked = new boolean[G.V()];
edgeTo = new int[G.V()];
this.s = s;

dfs (G, s);

}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w])
{
edgeTo[w] = v; <«———— set parent link
dfs (G, w);

}

public boolean hasPathTo (int v)
public Iterable<Integer> pathTo(int v)

<«<—+——— ahead

44

Depth-first search (pathfinding trace)

edgeTo[]

dfs(0) 0

K

tinyCG. txt standard drawing

v

dfs(2)
check 0

h e%o °

dfs(1)
drawing with both edges check 0

check 2
1 done

!
(9
)

@ﬁ
[

NUuARNWA G \

dfs(3)

adjacency lists

dfs(5)
check 3
check 0
5 done

@ije @i:e@{—
Ay

dfs(4)
check 3
check 2
4 done
check 2
3 done
check 4
2 done
check 1
check 5
0 done

N

45

Depth-first search summary

Enables direct solution of simple graph problems.
v * Does there exists a path between s and 7 ?
V'« Find path between s and .

* Connected components (stay tuned).

 Euler tour (see book).

* Cycle detection (see book).

* Bipartiteness checking (see book).

Basis for solving more difficult graph problems.

* Biconnected components (beyond scope).
* Planarity testing (beyond scope).

47

Depth-first search (pathfinding iterator)

edgeTo[] is a parent-link representation of a tree rooted at s.

<:>_. e edgeTo[] 0
0
©

[V R VO NI
wwNoN

oN WU x
oNnwulo

public boolean hasPathTo (int v)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v)

{
if ('hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>() ;
for (int x = v; x != s; x = edgeTo[x])

path.push (x) ;

path.push(s) ;
return path;

46

» breadth-first search

48

Breadth-first search Breadth-first search (pathfinding)

Depth-first search. Put unvisited vertices on a stack. g marked) edgeTol] adi[]

T

Breadth-first search. Put unvisited vertices on a queue.

wawNRo
nawNEoO
wwunoon
onaRNR

a rivate void bfs(Graph G, int s)
Shortest path. Find path from s to ¢ that uses fewest number of edges. 1(’ F NG 5 ot o o
1 1T 10 102
Queue<Integer> q = new Queue<Integer>(); s ©; HE HEEE1
g.enqueue (s) ; é ©: O) 4P Slo 5136
——————— marked[s] = true;
BFS (from source vertex s) \: while (!q.isEmpty()) HINO: N B T e 2o
t H | © HEREEIE R
Put s onto a FIFO queue, and mark s as visited. int v = q.dequeue(); O=C=—@ it o 536
il th . . for (int w : G.adj(v))
Repeat until the queue is empty: if (imarked[w]) . @ 5 e e ,
3
- remove the least recently added vertex v \y< 7/\ { H © % i g § % 013
' .. . g.enqueue (w) ; Gy 4T 42 432
- add each of v's unvisited neighbors to the queue, 4& marked[w] = true; ® @ st slo si30
and mark them as visited. edgeTo[w] = v; IO, 3D oT o 0
< } ‘ LRI
M | §%Ld i
} 5T 50 5
TRSR i
s
Intuition. BFS examines vertices in increasing distance from s.
49
Breadth-first search properties Breadth-first search application: routing
Proposition. BFS computes shortest path (number of edges) from s Fewest number of hops in a communication network.

in a connected graph in time proportional to E + V.
Pf.
* Correctness: queue always consists of zero or more vertices of distance &

from s, followed by zero or more vertices of distance & + 1.

* Running time: each vertex connected fo s is visited once.

v SATELLITE CIRCUIT
O P

a e
& PLURIBUS 1MP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE IMP NAMCS, NOT [NECESSARILY) HOST NAMES

ARPANET, July 1977

standard drawing dist=0 dist=1 dist =2

Breadth-first search application: Kevih Bacon numbers

Kevin Bacon numbers.

ano The Oracle of Bacon.

Lalelcla il s @) ¢ o/ = velaisipane=t - @

(1) The Curtis |_see of Music COS 126 568 ACM Amarés Wang 514 McCiancy | Memepage Stocks COSIZ6FO7 TP ASS (1742)+ Eschaten

THE ORACLE

OF BACON

Buzz Mauro
Sweet Droams 2005)
Tluna‘ﬁamruz
Interior de un :hndo (2005)
Amn;&:uu
Carltas s.w (2004) |

Paula L;ms m
C——

Kevin Bacon

http://oracleofbacon.org

e Bacen 10 Suzz Moo Tind b) (Vire cmoms 5>

Endless Games board game

De
Uma Thurman
acted in
Be Cool (2005)
vith
Scott Adsit

ted in

The Infort

nt! (2009)

with
Matt Damon

SixDegrees iPhone App

Kevin Bacon graph

* Include a vertex for each performer and for each movie.

* Connect a movie to all performers that appear in that movie.

* Compute shortest path from s = Kevin Bacon.

The Stepford
Wives
John
Gielgud

Portrait Tloyd

of a Lady The Eagle aridyes
Nicole Has Landed
Kidnan

Kathleen
Quinlan

performer
vertex

Jie Bi11
movie Paxton

vertex
Paul
Herbert
Serretta
Wilson

54

