Symbol table review

3.3 Balanced Search Trees

antee average case
, , ordered operations
implementation .
search iteration? on keys
bottom search | insert | delete hit insert delete
2 3 three
transformatlons sequential search no equals ()
new x (linked list) a
llnk (D 2-nodes
Wa e:<ssrs bi h
Y inary searc
hld = s Ig N N N Ig N N/2 N/2 T
Trées k ym (ordered array) 9 9 / / yes compareTo ()
balance
red- blackt » 2-3 search trees
Balanced r%e BST N N N 1.39IgN 1.39IgN ? yes compareTo ()
g.g - » red-black BSTs
Eleft £
d = » B-trees
m_:ieal" h|nsert Goal log N log N log N log N log N log N yes compareTo ()
mi
case pge
links
use
ssr, FOOL
]
Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black trees, B-trees.
introduced to the world
Algorithms, 4™ Edition - Robert Sedgewick and Kevin Wayne . Copyright © 2002-2010 + October 12,2010 6:05:07 AM in COS 226, Fall 2007

2-3 tree
Allow 1 or 2 keys per node.
* 2-node: one key, two children.

* 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

» 2-3 search trees

between E and J \null ll}’lk

Search ina 2-3 tree

» Compare search key against keys in node.
* Find interval containing search key.
* Follow associated link (recursively).

successful search for H unsuccessful search for B

H is less than M so

look to the left “\ m

B is less than M so

look to the left A m

H is between E and L so Bis lﬂi55 than E
look in the middle so look to the left
NGER

@
t

B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

found H so return value (search hit)

Insertion ina 2-3 ftree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.
* Move middle key in 4-node into parent.

/

why middle key? . i
inserting Z

()

search for Z ends
/ at this 3-node

replace 3-node with
temporary 4-node
/cnntaining z

replace 2-node
with new 3-node
.~ containing

dle key
® @

N/

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 tree

Case 1. Insert into a 2-node at bottom.
* Search for key, as usual.
* Replace 2-node with 3-node.

inserting K

Q

(L)
™

search for K ends here

AN replace 2-node with
new 3-node containing K

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node fo create temporary 4-node.
* Move middle key in 4-node into parent.

* Repeat up the tree, as necessary.

inserting D add middle key C to 3-node
to make temporary 4-node

search for D ends

at this 3-node \
& ©
add new key D to 3-node split 4-node into two 2-nodes

to make temporary 4-node

A CD

pass middle key to parent

1dd middle key E to 2-node
to make new 3-node ~

(EW
o @

5

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 free

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node fo create temporary 4-node.

* Move middle key in 4-node into parent.

* Repeat up the tree, as necessary.

 If you reach the root and it's a 4-node, split it into three 2-nodes.

inserting D add middle key C to 3-node

to make temporary 4-node
search for D ends

at this 3-node \
@ @

add new key D to 3-node
to make temporary 4-node

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
‘three ?jrzodes y
ALD "
Remark. Splitting the root increases height by 1.
2-3 tree construction trace
The same keys inserted in ascending order.
. (H)
insert A @ P G m
c oo
E G R m
(A) (B 0
(P R)
’ ©
S ()
(M R)
CH
L G 5%
(D
X ()
D
.

2-3 tree construction trace

Standard indexing client.

insertS @
E X
A
aee g ER
R ®
(R'S) P (M)
: CERG
C ® (H) (P)
) ®
@®
H
OR6,

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant humber of operations.

bcd
less between\ /between\ /between\ /between greater
than a aandb b and c candd dande than e
a c e
less between\ /between\ /between\ /between greater
than a aandb band c candd dande than e

Global properties ina 2-3 tree

Invariant. Symmetric order.
Invariant. Perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

root

frR =

(b
()

>

parent is a 2-node
left @ _, (o
oflc
right (3 GO
(b)

—

(d)

left

middle (a e)
b c

right

parent is a 3-node

(d e

o

(a b

. Sbde
OO,
., face
(b) (d)
. febd)
(0 Te)

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

e Worst case: IgN.
* Best case:
» Between 12 and 20 for a million nodes.

* Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

[all 2-nodes]
logs N =.6311g N. [all 3-nodes]

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
¢ Worst case:

» Best case:

ST implementations: summary

implementation

sequential search
(linked list)

binary search
(ordered array)

BST

2-3 tree

N

Ig N

clgN

) search _
searc insert | delete hit insert delete
N N N/2 N N/2

guarantee average case

N N Ig N N/2 N/2
N N 1.39IgN 1.391gN ?
clgN clgN clgN clgN clgN

ordered
iteration?

no

yes

yes

yes

operations
on keys

equals ()

compareTo ()

compareTo ()

compareTo ()

I\ g

constants depend upon
implementation

2-3 tree: implementation?

Direct implementation is complicated, because:

* Maintaining multiple node types is cumbersome.
* Need multiple compares to move down tree.

* Need to move back up the tree to split 4-nodes.
* Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

» red-black BSTs

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007) An equivalent definition

1. Represent 2-3 free as a BST. A BST such that:

* No node has two red links connected to it.

* Every path from root to null link has the same number of black links.
* Red links lean left.

2. Use "internal" left-leaning links as "glue" for 3-nodes.

less between greater greater

thana) (aandb than b than b

larger key is root

"perfect black balance"

less between
than a aandb

black links connect

1) s e 2-nodes and 3-nodes

nodes within a 3-node

2-3 tree corresponding red-black tree

20

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red-black tree

2-3 tree

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

private static final boolean RED true;
private static final boolean BLACK = false;

private class Node
{
Key key;
Value val;
Node left, right;
boolean color;

}

// color of parent link

private boolean isRed(Node x)

{
if (x == null) return false;
return x.color == RED;

null links are black

h.left.color
is RED Ny

(0
(A D)

G

Ve

h

(c]

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster because of better balance

public Val get (Key key)

{

Node x = root;
while (x '= null)
{
int cmp = key.compareTo (x.key) ;

if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else ' f (cmp == 0) return x.val;

}

return null;

Remark. Many other ops (e.g., ceiling, selection, iteration) are also identical.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

h.right.color
.~ is BLACK

could be right or left,
«— red or black

/X

less
than E
between greater
EandS than S

less
than E

/X

greater
than S
between
EandS

private Node rotateLeft (Node h)

{

assert (h !'= null) && isRed(h.right);

Node x = h.right;
h.right = x.left;
x.left = h;
x.color = h.color;
h.color = RED;
return x;

Invariants. Maintains symmetric order and perfect black balance.

22

24

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

X
~h ~
h
X e
greater) less
. than S than E
less between between\, / greater
than E Sand E S and E than S

private Node rotateRight (Node h)
{
assert (h !'= null) && isRed(h.left);
Node x = h.left;
h.left = x.right;
x.right = h;
x.color = h.color;
h.color = RED;
return x;

Invariants. Maintains symmetric order and perfect black balance.

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black tree operations.

insert C

(B
(A I

add new
node here

right link red
so rotate left

©)

(A)
ONO,
s &
Q 36 (Ao (RS)

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

red link attaches
middle node
to parent

__could be left
or right link

NoA T
black links split
to 2-nodes

less between\ /between greater less between\, /between\ / greater
than A Aand E EandS than S than A AandE)| EandS than S

private void flipColors (Node h)
{
assert !isRed(h) && isRed(h.left) && isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

Invariants. Maintains symmetric order and perfect black balance.

25

Insertion ina LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

left root right root
Ve Ve
search ends
““at this null link
™ search ends attached new node
at this null link e —with red link
root
Q red link to L root
e O new node
containing a rotated left
converts 2-node e to make a
to 3-node legal 3-node

26

28

Insertion in a LLRB tree

Case 1. Insert into a 2-node at the bottom.
» Do standard BST insert; color new link red.
* If new red link is a right link, rotate left.

insert C
QG [9) @e)
(R'S)
add ng e
node here
right linklrj{d
so rotate left
I _®
(A [9)
Q0 (R)
g L -~
QG 99 (A0 RS

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.
* Do standard BST insert; color new link red.

» Rotate to balance the 4-node (if needed).
* Flip colors fo pass red link up one level.

» Rotate to make lean left (if needed).

inserting H

(E)
SR —>

(R)

add new

node here /

both children red
so flip colors

two lefts in a row
so rotate right

right link red
so rotate left

29

31

Insertion ina LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger
0 search ends
— atthis
e null link

attached new
node with

d link
e G re

colors flipped
@ «~ to b)liflf
ONNO,

smaller

8°

™~ search ends
at this null link

()
(b]
e \atmched new

node with
red link

rotated

« right
()

o

@ colors flipped

«— to black

between

search ends
at this null link

S

attached new
node with
@ red link

(a) rotated left

rotated
right

lors flipped
G to black

}
off

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.
» Do standard BST insert; color new link red.
» Rotate to balance the 4-node (if needed).

* Flip colors fo pass red link up one level.

Rotate to make lean left (if needed).

Repeat case 1 or case 2 up the tree (if needed).

inserting P both children red
& so flip colors
(EX (S /
Q m \ * G m both children
red so

add new .

node here flip colors

‘ two lefts in a row
right link red so rotate right

so rotate left
N

both children red
so flip colors

30

32

LLRB tree construction trace LLRB tree construction trace

Standard indexing client. Standard indexing client (continued).

insert S @
S-e
: . e |
® 0
R
(R) : (W)

()
®

® P Lo o ‘
C Q)
(R) E L
} cd 5)
red black tree corresponding 2-3 tree . red black tree corresponding 2-3 tree
Insertion in a LLRB tree: Java implementation Insertion in a LLRB tree: visualization

Same code for both cases. ;g
* Right child red, left child black: rotate left. %hq N = 255

o h —
o Left child, left-left grandchild red: rotate right. e ;& :\'sz‘fo
* Both children red: flip colors. right opt=7.0

rotate i
colors

e o e ey e N .. QNMM MMM% WMM% RNMM:

(and color red)
int cmp = key.compareTo (h.key) ;
if (cmp < 0) h.left put(h.left, key, val);
else if (cmp > 0) h.right put (h.right, key, val);
else h.val = val;

if (isRed(h.right) && 'isRed(h.left)) h = rotateLeft(h); <—t— leanleft 255 insertions in ascending order
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight (h); «—+— balance 4-node

if (isRed(h.left) && isRed(h.right)) flipColors (h) ; <«—t— split4-node

return h;

only a few extra lines of code
} to provide near-perfect balance

35

Insertion in a LLRB tree: visualization Insertion in a LLRB tree: visualization

N =50
N = 255
max = 8
avg = 7.0

opt=7.0

AOOMARAREAARAR AN

50 random insertions

255 insertions in descending order

37 38

Insertion in a LLRB tree: visualization Balance in LLRB trees

Proposition. Height of tree is <2 1g N in the worst case.

N = 255 Pf.
;’:/ZX:;;) * Every path from root to null link has same number of black links.
opt=7.0 * Never two red links in-a-row.
' H‘l “l " ‘l ’ ' ‘l u I
W AL n ' | x n |
‘ | l] l I I\ ‘ ‘ l || ‘I ‘ |
l. . .
255 random insertions

Property. Height of tree is ~ 1.00 lg N in typical applications.

39 40

ST implementations: frequency counter

20—
-—13.9
0 |
0 operations 14350
Costs for java FrequencyCounter 8 < tale.txt using BST
20—
” —12
7
8 /_————
[
I
1
t
0 :
0 operations 14350
Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST

Why left-leaning trees?

old code (that students had to learn in the past)

private Node put(Node x, Key key, Value val, boolean sw)

if (x == null)
return new Node (key, value, RED);
int cmp = key.compareTo (x.key) ;

if (isRed(x.left) && isRed(x.right))
{
x.color = RED;
x.left.color = BLACK;
x.right.color = BLACK;
}
if (cmp < 0)
{
x.left = put(x.left, key, val, false);
if (isRed(x) && isRed(x.left) && sw)
x = rotateRight(x) ;
if (isRed(x.left) && isRed(x.left.left))
{
x = rotateRight (x);
x.color = BLACK; x.right.color = RED;
}
}
else if (cmp > 0)
{
x.right = put(x.right, key, val, true);
if (isRed(h) && isRed(x.right) && !sw)
x = rotateLeft(x);
if (isRed(h.right) && isRed(h.right.right))
{
x = rotateLeft(x);
x.color = BLACK; x.left.color = RED;
}
}
else x.val = val;
return x;

N .
extremely tricky

new code (that you have to learn)

public Node put(Node h, Key key, Value val)
{
if (h == null)
return new Node (key, val, RED);
int cmp = kery.compareTo (h.key) ;
if (cmp < 0)
h.left = put(h.left, key, val);
else if (cmp > 0)
h.right = put(h.right, key, val);
else h.val = val;

if (isRed(h.right) && 'isRed(h.left))
h = rotateLeft(h);

if (isRed(h.left) && isRed(h.left.left))
h = rotateRight(h) ;

if (isRed(h.left) && isRed(h.right))
flipColors (h) ;

return h;
) |

41

straightforward
(if you've paid attention)

Algorithms

Algorithms
~Jjava

43

implementation

sequential search

ST implementations: summary

guarantee

average case
ordered

iteration?
sear in delete search hit insert delete

on keys

N N N N/2 N N/2 L
(linked list) / / no equals ()
binary search IgN N N IgN N/2 N/2 es o)
(ordered array) 9 9 4 e
BST N N N 1.391Ig N 1.391Ig N ? yes compareTo ()
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo ()
red-black BST 2IgN 2IgN 2IgN 1.00IgN™ 1.00lgN™ 1.00IgN " yes compareTo ()

operations

* exact value of coefficient unknown but extremely close to 1

Why left-leaning red-black BSTs?

Simplified code.
* Left-leaning restriction reduces number of cases.
* Short inner loop.

Same ideas simplify implementation of other operations.
* Delete min/max. 2008
* Arbitrary delete. 1978

Improves widely-used balanced search frees.

* AVL trees, splay trees, randomized BSTs, ...

o 2-3 trees, 2-3-4 trees. 192
* Red-black BSTs.

Bottom line. Left-leaning red-black BSTs are among the simplest balanced
BSTs to implement and among the fastest in practice.

42

44

War story: red-black BSTs

Telephone company contracted with database provider to build real-time
database to store customer information.

Database implementation.
» Red-black BST search and insert; Hibbard deletion.
 Exceeding height limit of 80 triggered error-recovery process.

allows for up to 240 keys

Extended telephone service outage.
* Main cause = height bounded exceeded!

* Telephone company sues database provider.
* Legal testimony:

“ If implemented properly, the height of a red-black BST
with N keys is at most 2 Ilg N. ” — expert witness

Ml

File system model

Page. Contiguous block of data (e.g., a file or 4096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time o access
data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

45

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.
* At least 2 key-link pairs at root.

* At least M /2 key-link pairs in other nodes.
 External nodes contain client keys.

choose M as large as possible so
that M links fit in a page, e.g., M= 1000

* Internal nodes contain copies of keys to guide search.

sentinel key internal 3-node
each red key is a copy
of min key in subtree >
external

3-node external 5-node (full)

[*IBC |[DEF

external 4-node

IEIRE] [KIMNTo [P J[QR.T [[UTwXTY |

/
client keys (black)

all nodes except the root are 3-, 4- or 5-nodes
are in external nodes

Anatomy of a B-tree set (M = 6)

47

46

Searching in a B-tree

e Start at root.

* Find interval for search key and take corresponding link.

* Search terminates in external node.

searching for E

follow this link because
E is between * and K ~__

follow this link because
_—E isbetween D and H

search for E in 7

this external node

Searching in a B-tree set (M = 6)

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys

requires between logy-1 N and loguz N probes.

Pf. All internal nodes (besides root) have between M /2 and M - 1 links.

In practice. Number of probes is at most 4. <

Optimization. Always keep root page in memory.

M =1000; N = 62 billion
logmz N < 4

49

Insertion in a B-tree

* Search for new key.
* Insert at bottom.

* Split nodes with M key-link pairs on the way up the tree.

inserting A *THIKIQU
B CEF[HI] J[KIMIN 0P J[QRTT] [UTWIX
*ABCEF
new key (A) causes *[CIH|K| QU new key (C) causes
overflow and split overflow and split
[*IA'B | [CCETF

root split causes
a new root to be created

Inserting a new key into a B-tree set

Building a large B tree

full page, about to split

external nodes
(line segment of length proportional
to number of keys in that node)

52

50

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

e Java: java.util.TreeMap, java.util.TreeSet.

o C++ STL: map, multimap, multiset.

* Linux kernel: completely fair scheduler, 1inux/rbtree.n.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.

e Windows: HPFS.
¢ Mac: HFS, HFS+.
 Linux: ReiserFS, XFS, Ext3FS, JFS.

* Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

Red-black BSTs in the wild

48

FADE IN:

ACT FOUR

INT. FBI EQ - NIGHT

Antonio is at THE COMPUTER as Jess explains herself to Nicole
and Pollock. The CONFERENCE TABLE is covered with OPEN

REFERENCE

BOOKS, TOURIST GUIDES, MAPS and REAMS OF PRINTOUTS.

JESS
It was the red door again.
POLLOCK

I thought the red door was the storage
container.

But it wasn't red anymore. It was

black.

ANTONIO
So red turning to black means...
what?

POLLOCK

Budget deficits? Red ink, black
ink?

NICOLE
Yes. I'm sure that's what it is.
But maybe we should come up with a
couple other options, just in case.

Antonio refers to his COMPUTER SCREEN, which is filled with
mathematical equations.

Nicole is
something.

ANTONIO
It could be an algorithm from a binary
search tree. A red-black tree tracks
every simple path from a node to a
descendant leaf with the same number
of black nodes.

JESS
Does that help you with girls?

tapping away at a computer keyboard. She finds

48

Red-black BSTs in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.

54

