3.1 Symbol Tables

put € keys

get right _Section

nodetgble

value b
method :

time Exercise =
. subtree °
|mplem°gntat|ons

=

(7]
values Sgiven
random'<g

implementation
n

usin
data manyg

clientoz2
wireeSuse

ssisearch

SJNd3J
243pI0
pasu

sajqel

Algorithms, 4" Edition Robert Sedgewick and Kevin Wayne

» API

» sequential search

» binary search

» ordered operations

Copyright © 2002-2010 October 11,2010 9:35:28 AM

Symbol tables

Key-value pair abstraction.
» Insert a value with specified key.
 Given a key, search for the corresponding value.

Ex. DNS lookup.
e Insert URL with specified IP address.
» Given URL, find corresponding IP address.

URL IP address

WWwWWw.cs.princeton.edu 128.112.136.11
www.princeton.edu 128.112.128.15
www.yale.edu 130.132.143.21
www.harvard.edu 128.103.060.55
WWWw.simpsons.com 209.052.165.60

T T

key value

Symbol table applications

dictionary find definition word definition
book index find relevant pages term list of page numbers
file share find song to download name of song computer ID
financial account process transactions account number transaction details
web search find relevant web pages keyword list of page names
compiler find properties of variables variable name type and value
routing table route Internet packets destination best route
DNS find IP address given URL URL IP address
reverse DNS find URL given IP address IP address URL
genomics find markers DNA string known positions
file system find file on disk filename location on disk

Symbol table APT

Associative array abstraction. Associate one value with each key.

public class ST<Key, Value>

STO create a symbol table

put key-value pair into the table

void put(Key key, Value val) (remove key from table if value is null)

value paired with key

Value get(Key key) (nul1 if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean 1isEmpty() is the table empty?
int size() number of key-value pairs in the table
Iterable<Key> keys(Q) all the keys in the table

API for a generic basic symbol table

alkeyl]

alkey]

val;

Conventions

e Values are not nuli.
* Method get() returns null if key not present.
 Method put () overwrites old value with new value.

Intended consequences.
» Easy to implement contains().

public boolean contains (Key key)
{ return get(key) !'= null; }

e Can implement lazy version of delete().

public void delete (Key key)
{ put(key, null); }

Keys and values

Value type. Any generic type.

specify Comparable in API.

Key type: several natural assumptions. /

e Assume keys are Comparable, US€ compareTo ().
* Assume keys are any generic type, use equals() to test equality.
e Assume keys are any generic type, use equals() to test equality

built-in to Java
and hashCode () To scramble key. < (stay tuned)

Best practices. Use immutable types for symbol table keys.
e Immutable in Java: String, Integer, Double, File, ...
* Mutable in Java: Date, StringBuilder, Url, ...

Equality test

All Java classes inherit a method equals().

Java requirements. For any references x, y and z:

e Reflexive: x.equals (x) IS true. _
equivalence

e Symmetric: x.equals(y) iff y.equals(x). relation

 Transitive: if x.equals (y) and y.equals(z), then x.equals(z).

e Non-null: x.equals (null) iS false.

do x and y refer to
/ the same object?

Default implementation. (x == y)
Customized implementations. Integer, Double, String, File, URL, Date, ...
User-defined implementations. Some care needed.

Implementing equals for user-defined types

Seems easy

public class Record
{

private final String name;
private final long val;
private final int id;

public boolean equals (Record y)
{

Record that = Ve
return (this.wval == that.val) &&
(this.id == that.id) &&

(this.name.equals (that.name)) ;

check that all significant
fields are the same

Implementing equals for user-defined types

Seems easy, but r.equir.es some care. typically unsafe to use equals () with inheritance
(would violate symmetry)

public final class Record
{
private final String name;

private final long val;
must be Object.

private final int id; L~ _
Why? Experts still debate.

public boolean equals (Object y)
{

optimize for true object equality

if (y == this) return true; N

if (y == null) return false; <«—ft— check for null

if (y.getClass() != this.getClass()) «_ L objects must be in the same class
return false; (religion: getClass () Vs. instanceof)

Record that = (Record) y;

return (this.val == that.val) && check that all significant
(this.id == that.id) && fields are the same
(this.name.equals (that.name)) ;

Equals design

"Standard" recipe for user-defined types.
» Optimization for reference equality.
e Check against null.
» Check that two objects are of the same type and cast.
« Compare each significant field:
- if field is a primitive type, use == @PPly rule recursively

it fi i i A .deepEqual
- if field is an ObJQCT, use equals () or use Arrays.deepEquals ()

e

- if field is a primitive array, apply to each element

Best practices.

o Compare fields mostly likely to differ first.
* No need to use calculated fields that depend on other fields.

10

ST test client for traces

Build ST by associating value i with i string from standard input.

public static void main(String[] args)
{
ST<String, Integer> st = new ST<String, Integer>();
String[] a = StdIn.readAll() .split("\\s+");
for (int i = 0; 1 < a.length; i++)
st.put(a[i], 1)
for (String s : st.keys())
StdOut.println(s + " " + st.get(s)); output

12
keys S EARCHEX A MP L E

values O 1 2 3 4 5 6 7 8 910 11 12
11

10

X LV X U =2 rTmanN0 x>

1

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input

and print out one that occurs with highest frequency.

% more

it
it
it
it
it
it
it
it
it
it

[o)

%
it

% java FrequencyCounter 8 < tale.txt

was
was
was
was
was
was
was
was
was
was

java

10

tinyTale. txt

the
the
the
the
the
the
the
the
the
the

FrequencyCounter 1 < tinyTale. txt

best of times

worst of times

age of wisdom

age of foolishness
epoch of belief
epoch of incredulity
season of light
season of darkness
spring of hope
winter of despair

business 122

%

java FrequencyCounter 10 < leipziglM. txt <«—

government 24763

e

tiny example
(60 words, 20 distinct)

real example
(135,635 words, 10,769 distinct)

real example
(21,191,455 words, 534,580 distinct)

12

Frequency counter implementation

public class FrequencyCounter

{

public static void main(String[] args)

{

int minlen = Integer.parselInt(args[0])

ST<String, Integer> st = new ST<String, Integer>(); N

while (!'StdIn.isEmpty())
{
String word = StdIn.readString() ; —
if (word.length() < minlen) continue;
if (!st.contains(word)) st.put(word, 1);
else st.put(word, st.
}
String max = "";
st.put(max, 0);
for (String word : st.keys())
if (st.get(word) > st.get(max))
max = word;
StdOut.println(max + " " + st.get(max))

ignore short strings

e

get(word) + 1);

create ST

read string and
update frequency

print a string
with max freq

13

» sequential search

14

Sequential search in a linked list

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.

Insert. Scan through all keys until find a match; if no match add to front.

keyvalue first

S

> X m I N X > m
o

O 00 N OO Uui »h W N B

u =
=
o

L 11
E 12

red nodes

STa], e

| E | 1 |_'| S | 0 | black nodes

are accessed

[Al2f—{E[1—~[s]0] e
[RI3f—~{A[2/~[E[1~[S]0]

[Cl4f—={RI3—[A[2/~[E][1[~[S]0] | |

(s e -RBIAL e[-[sTol-Gamed e
(H[s~{c[4f~{rR[3F~{A[2}~{E[E]

XL 7 =] S =4 ~{R]3[~{A|2[—~[E[6—~|S]0]

X[7} ~{H]5f~{c[a ~{R[3}~{A[E] N—
(M9 (X[7~ (H][S F~{Cl4]~{R[3[—~[A[8~[E]6[~S|0]

| PLLO—={M] 9 (X[7 ~{H]|5 [~ Cl4[—[R[3F~[A|8~{E|6[—~S]|0]
L1t P 10— M| 9 [X| 7|~ H| S [~ C[4 ~[R|3[~{A|8|—~[E[6 —[S]0]
[L[uf—~{P [aof~{M] o F{X[7}~ W[5 |~{c[a }-{R[3}~{A[8]~{E[i]

Trace of linked-list ST implementation for standard indexing client

15

Elementary ST implementations: summary

worst case daverage case

ordered operations

ST implementation _ _
: : . iteration? on keys
search insert | search hit insert

sequential search
(unordered list)

N N N / 2 N no equals ()

5737 —

]

©

Q.

1S S

S ™~ 2246
0 |

0 operations 14350

Costs for java FrequencyCounter 8 < tale.txt using SequentialSearchST

Challenge. Efficient implementations of both search and insert.

16

» binary search

17

Binary search
Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k ?

keys[]

successful search for P 0 1 2 3 4 5 6 7 8 9

To hi m

0 9 4 A CEHLMTPT RS X entries in black

5 9 7 M P R S X/arean .hi]

5 6 5 MOP RN

6 6 6 p o~ entry in red is a[m]
unsuccessful search for Q \ loop exits with keys[m] = P: return 6

To hi m

0 9 4 A C EHL MP R S X

5 9 7 M P R S X

5 6 5 M P

7 6 6 P

™

loop exits with 1o > hi: return 7

Trace of binary search for rank in an ordered array

18

Binary search: Java implementation

public Value get (Key key)
{
if (isEmpty()) return null;
int i = rank (key);
if (1 < N && keys[i] .compareTo (key) ==
else return null;

private int rank (Key key)
{
int 1lo = 0, hi = N-1;
while (lo <= hi)
{
int mid = lo + (hi - lo) / 2;
int cmp = key.compareTo (keys[mid]) ;

if (cmp < 0) hi = mid - 1;
else if (cmp > 0) lo = mid + 1;
else return mid;

}

return lo;

0) return vals[i];

number of keys < key

19

Binary search: mathematical analysis
Proposition. Binary search uses ~Ig N compares to search any array of size N.

Pf. T(N) = number of compares to binary search in a sorted array of size M.
< T(N/2)) + 1
t

left or right half

Recall lecture 2.

20

Binary search: frace of standard indexing client

Problem. To insert, need to shift all greater keys over.

keys[] vals[]
key value 0O 1 2 3 4 5 6 7 8 9 N 0O 1 2 3 4 5 6 7 8 9
S 0 S 1 0
£ 1 £S5 entries in red 2 Lo nfgjzélest()l T;hbeligght
A 2 A E S _— wereinserted 3 2 1 0 /
R 3 R S 4 3 0
C 4 C E R S entries in gray 5 4 1 3 O - '
s 4R S ddnoioe 6 53 0 e
E 6 6 ®
X 7 X 7 7
A8 7
M 9 M R S X 8 9 3 0
P 10 P R S X 9 10 3 0 7
L 11 L M P R S X 10 11 10 3 0 7
E 12 10 (12)

ACEHL M P R S X 8 412 511 910 3 0 7

Elementary ST implementations: frequency counter

5737 —
]
5
o
3 .
S ™= 2246
0 |
0 operations 14350

Costs for java FrequencyCounter 8 < tale.txt using SequentialSearchST

5737 —

cost

~—484

operations

Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST

14350

22

Elementary ST implementations: summary

worst case average case .
. : ordered operations
ST implementation _ _
: : : iteration? on keys
search insert | search hit insert
N

sequential search N N N/2

no 1
(unordered list) equals ()

binary search

(ordered array) log N N log N N /2 yes compareTo ()

Challenge. Efficient implementations of both search and insert.

23

» ordered operations

24

Ordered symbol table APT

keys

values

min(O—>-09:00:00 Chicago
09:00:03 Phoenix

09:00: Houston
get(09:00:13) 9:00:59 Chicago

09
f1oor(09:05:00)— 09
09

select(7)—09

09
09
09
keys(09:15:00, 09:25:00)—=|09
09
09
09
ceiling(09:30:00)—= 09
09

max()—>09

size(09:15:00, 09:25:00) is 5
rank(09:10:25) s 7

:01:
:03:
:10:
:10:
:14:
:19:
:19:
:21:
122
122
:25:
:35:
:36:
:37:

10 Houston
13 Chicago
11 Seattle
25 Seattle
25 Phoenix
32 Chicago
46 Chicago
05 Chicago
43 Seattle
54 Seattle
52 Chicago
21 Chicago
14 Seattle
44 Phoenix

Examples of ordered symbol-table operations

25

Ordered symbol table APT

public class ST<Key extends (Comparable¥Key>, Value>

STO S~———"" (reate an ordered symbol table

void put(Key key, Value val) putkey-value pair into the table

Value

void

get(Key key)

delete(Key key)

(remove key from table if value is null)

value paired with key
(null if key is absent)

remove key (and its value) from table

boolean contains(Key key) is there a value paired with key?
boolean 1isEmpty() is the table empty?
int size() number of key-value pairs
Key minQ) smallest key
Key max() largest key
Key floor(Key key) largest key less than or equal to key
Key ceiling(Key key) smallest key greater than or equal to key
int rank(Key key) number of keys less than key
Key select(int k) key of rank k
void deleteMin() delete smallest key
void deleteMax() delete largest key
int size(Key To, Key hi) number of keys in [1o. .hi]
Iterable<Key> keys(Key To, Key hi) keys in [1o..hi], in sorted order
Iterable<Key> keys() all keys in the table, in sorted order

API for a generic ordered symbol table

26

Binary search: ordered symbol table operations summary

sequential binary
search search

search
insert
min / max

floor / ceiling

ordered iteration

worst-case running time of ordered symbol table operations

27

sojge)

3.2 Binary Search Trees

~fkeys

get right _Section

nodetgble

value »
method ;

time Exercise =
subtree

implemce_ntations
g

o
values Sgiven
random'<g

implementation
n

usin
data. manyg

client s g
s treeSuse

sstTsearch

-
(]
[a]
c
S
(%]

349p10

3
(]
(]
Q.

Algorithms, 4" Edition

Robert Sedgewick and Kevin Wayne

» BSTs

» ordered operations
» deletion

Copyright © 2002-2010 October 11,2010 9:37:18 AM

Binary search trees

Definition. A BST is a binary ftree in symmetric order.

A binary tree is either:
e Empty.
» Two disjoint binary trees (left and right).

Symmeftric order.

Each node has a key, and every node's key is:

* Larger than all keys in its left subtree.
* Smaller than all keys in its right subtree.

root

a left link /
b >
a subtree
\ \
% right child
‘\1/ of root
null links

Anatomy of a binary tree

parent of A and R

key
left link
of E \
Q 3 : T~ value
@ m associated
with R

\

keys smaller than € keys larger than E

Anatomy of a binary search tree

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:
* A Key and a value.

» A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node
{
private Key key;
private Value val;
private Node left, right;
public Node (Key key, Value val)
{
this.key = key;
this.val = val;

}

Key and Value are generic types; Key is Comparable

BST

Node———| key | val

\ /

Teft right

BST with smaller keys BST with larger keys

Binary search tree

BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value>
{

private Node root; <«—+— root of BST

private class Node
{ /* see previous slide */ }

public void put (Key key, Value val)
{ /* see next slides */ }

public Value get (Key key)
{ /* see next slides */ }

public void delete (Key key)
{ /* see next slides */ }

public Iterable<Key> iterator()
{ /* see next slides */ }

BST search

Get. Return value corresponding to given key, or null if no such key.

successful search for R unsuccessful search for T

R is less than S

so look to the left T is greater than S

black nodes could 50 look to the right

match the search key

® X

gray nodes cannot \

match the search ke .
R is greater than E Y T is less than X

s0 look to the right so look to the left

link is null
so T 1s not n tree
(search miss)

®\ found R
(search hit)

so return value

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

public Value get (Key key)
{
Node x = root;
while (x !'= null)
{
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;

}

return null;

Cost. Number of compares is equal to depth of node.

BST insert

Put. Associate value with key.

inserting L
Search for key, then two cases:
* Key in tree = reset value.
4 search for L ends 7
 Key not in tree = add new hode. at this null link
create new node —» @

/

\
/
~

reset links
on the way up

Insertion into a BST

BST insert: Java implementation

Put. Associate value with key.

concise, but tricky,
recursive code;
read carefully!

public void put (Key key, Value val)
{ root = put(root, key, wval); }

private Node put(Node x, Key key, Value val)
{
if (x == null) return new Node (key, val);
int cmp = key.compareTo (x.key) ;
if (cmp < 0)
x.left = put(x.left, key, val);
else if (cmp > 0)
x.right = put(x.right, key, val);
else if
x.val = val;
return x;

Cost. Number of compares is equal to depth of node.

BST trace: standard indexing client

key value key value

so@ A8 Ge
(AY3

changed /

value

e M 9
A 2 G black nodes
e are accessed
/ in search
(S)
R 3 red nodes
e — are new

(S) P 10
C 4 (E)
(A

(m

™ gray nodes
G are untouched

Tree shape

e Many BSTs correspond to same set of keys.
* Number of compares for search/insert is equal o depth of node.

best case typical case worst case

Remark. Tree shape depends on order of insertion.

10

BST insertion: random order

Observation. If keys inserted in random order, tree stays relatively flat.

N = 255

max = 16
avg = 9.1
opt=7.0

Lo cp=—
—

1

BST insertion: random order visualization

Ex. Insert keys in random order.

N = 255

max = 16
avg = 9.1
opt=7.0

o o

12

Correspondence between BSTs and quicksort partitioning

QIU|I|C|/K|(S|O|R|T|E|X|A|M|P|L|E

E[R[A[T[E[s[L][P[U[I][M[Q[C[X[O[K
E[c[a[I[E[RJL][P[U[T[M[Q[R][X[O[S

Alc(BIE
2(©
®
E@D
®
LPORMQEXUT
L PO MQR
L(M)o P
@
®
©
®
Mulx
®
©

ACIE|IE|I|K|ILIM|O|P|Q|R|S|T|U|X

Remark. Correspondence is 1-1 if array has no duplicate keys.

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of
compares for a search/insert is ~21n N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order,
expected height of tree is ~4.311 In N.

But.. Worst-case height is M.

(exponentially small chance when keys are inserted in random order)

14

ST implementations: frequency counter

5737 —

cost

~—484
0—="—

: |
operations
0 p

14350
Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST

20—

~— 139

cost

. |
0 operations 14350

Costs for java FrequencyCounter 8 < tale.txt using BST

15

ST implementations: summary

guarantee average case
operations

implementation
on keys
/2

sequential search

(unordered list) N A A

N no equals ()

binary search

(lanee Ay lg N N g N N/2 yes compareTo ()

BST N N 1.391g N 1.391g N ? compareTo ()

» ordered operations

17

Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

max

Q. How to find the min / max?

18

Floor and ceiling

Floor. Largest key < to a given key.
Ceiling. Smallest key = to a given key.

floor(G)

floor(D)

Q. How to find the floor /ceiling?

19

Computing the floor

Case 1. [k equals the key at root]
The floor of k is k.

Case 2. [k is less than the key at root]
The floor of k is in the left subtree.

Case 3. [k is greater than the key at root]
The floor of k is in the right subtree

(if there is any key =< k in right subtree);
otherwise it is the key in the root.

finding f1oor (G)

GislessthanSs
m floor (G) must
on the left

G is greater than E so
floor (G) could be
on the right

®

/
e
floor (Q)in left
subtree is nu11

G,

result

20

Computing the floor

public Key floor (Key key)

{
Node x = floor (root, key);
if (x == null) return null;
return x.key;

}
private Node floor (Node x, Key key)

{

if (x == null) return null;
int cmp = key.compareTo (x.key) ;

if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);

if (t !'= null) return t;
else return x;

finding f1oor (G)

GislessthanSs
‘N’ floor (G) must
on the left

G is greater than E so
floor (G) could be
on the right

®

/
e
floor (Q)in left
subtree is nu11

G,

result

21

Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node.
To implement size(), return the count at the root.

node count N

Remark. This facilitates efficient implementation of rank() and select().

22

BST implementation: subtree counts

private class Node public int size()

{ { return size(root); }
private Key key;
private Value val; private int size (Node x)
private Node left; {
private Node right; if (x == null) return O;
private int N; return x.N;

} \ }

nodes in subtree

private Node put (Node x, Key key, Value val)
{

if (x == null) return new Node (key, val);

int cmp = key.compareTo (x.key) ;

if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else if x.val = val;

x.N =1 + size(x.left) + size(x.right);

return x;

Rank
Rank. How many keys < k?

Easy recursive algorithm (4 cases!) node count N

public int rank (Key key)
{ return rank(key, root); }

private int rank (Key key, Node x)
{
if (x == null) return O;
int cmp = key.compareTo (x.key) ;
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank (key,
else return size(x.left);

x.right) ;

24

Inorder traversal

e Traverse left subtree.
* Enqueue key.
* Traverse right subtree.

public Iterable<Key> keys ()

{
Queue<Key> q = new Queue<Key>() ;
inorder (root, queue) ;
return q;

private void inorder (Node x, Queue<Key> q)
{

if (x == null) return;

inorder (x.left, q);

q.enqueue (x.key) ;

inorder (x.right, q);

BST

key | val

/

Teft right

BST with smaller keys BST with larger keys

smaller keys, in order key larger keys, in order

™~

all keys, in order

Property. Inorder traversal of a BST yields keys in ascending order.

25

Inorder traversal

e Traverse left subtree.
* Enqueue key.
* Traverse right subtree.

inorder (S) S
inorder (E) S E
inorder (4) S EA
enqueue A A :
inorder (C) SEAC I 1 1
enqueue C C | : | : :
enqueue E E I I I I I
inorder (R) S ER I I I I I I I
inorder (H) SERH : : : : " : : :
enqueue H H 1 1 1 1 I I I I
inorder (M) SERHM A CEHMRS X
enqueue M M
print R R
enqueue S S
inorder (X) S X
enqueue X X

recursive calls queue function call stack

BST: ordered symbol table operations summary

sequential binary
search search
lg N

N

ordered iteration N log N

worst-case running time of ordered symbol table operations

h = height of BST
(proportional to log N
if keys inserted in random order)

27

28

ST implementations: summary

guarantee average case :
ordered operations

implementation : :
search iteration? on keys
search | insert delete hit insert delete
N N N N/2 N N/2

sequential search

(linked list) no equals ()
binary search N N Ig N N/2 N/2 es mpareTo ()

(ordered array) 9 9 y compare®o
BST N N N 1.391gN 1.391gN 2727 yes compareTo ()

Next. Deletion in BSTs.

29

BST deletion: lazy approach

To remove a node with a given key:

e Set its value 1o nuil.

» Leave key in tree to guide searches (but don't consider it equal to search key).

delete |

A
»

Cost. 2 1n N’ per insert, search, and delete (if keys in random order),

where N'is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

30

Deleting the minimum

To delete the minimum key:

 Go left until finding a node with a null left link.
* Replace that node by its right link.
e Update subtree counts.

public void deleteMin ()
{ root = deleteMin(root); }

private Node deleteMin (Node x)

{
if (x.left == null) return x.right;
xX.left = deleteMin(x.left);
x.N =1 + size(x.left) + size(x.right);
return x;

go left until
reaching null

left link

N\

return that
node’s right link

.
|

available for
garbage collection

update links and node counts
after recursive calls

o

31

Hibbard deletion

To delete a node with key 4: search for node ¢ containing key *.

Case 0. [O children] Delete ¢ by setting parent link to null.

deleting C update counts after

recursive calls vi

®
T

replace with

null link

node to delete

available for
garbage
/ collection

32

Hibbard deletion

To delete a node with key 4: search for node ¢ containing key *.

Case 1. [1 child] Delete 7 by replacing parent link.

deleting R

(S
R

node to delete

G

update counts after

recursiv%r 7
g

I ith
reﬁgge;}:zk available for

/ garbage

collection

33

Hibbard deletion

To delete a node with key 4: search for node ¢ containing key *.

Case 2. [2 children]

 Find successor x of . <—— X has nolleft child
* Delete the minimum in t's right subtree. <—— but don't garbage collect x
e Put xint's spot. «—— stillaBST
node to delete
N
"X
search for key E t.1§ft /O%;Mi n(t.right)
t
Y 7
X 5
N\
<« successor
min(t.right)
go right, then / update links and
go left until node counts after
reaching null recursive calls
left link

Hibbard deletion: Java implementation

public void delete (Key key)
{ root = delete(root, key); }

private Node delete (Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x.left = delete(x.left, key);
else if (cmp > 0) x.right = delete(x.right, key):

search for key

else {
if (x.right == null) return x.left; < no right child
Node t = x;
x = min(t.right); - replace with
x.right = deleteMin(t.right) ; = successor

x.left = t.left;
}
x.N = size(x.left) + size(x.right) + 1;
return x;

update subtree
counts

AN

35

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

N =150

max = 16
avg = 9.3
opt = 6.4

Surprising consequence. Trees not random (1) = sqrt (V) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

36

ST implementations: summary

guarantee average case
: . ordered operations
implementation : :
: search : iteration? on keys
search | insert | delete hit insert delete
sequential
search N N N N/2 N N/2 no equals ()
(linked list)
MERY SEEMED 7 N N Ig N N/2 N/2 es compareTo ()
(ordered array) g 9 y P
BST N N N 1.39IgN 1.391IgN VN yes compareTo ()

\
other operations also become +/N
if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.

37

