2.4 Priority Queues

J9pIsuod

elements
siqueue
““orderkey
implementation

largest S @
heap

i clie
Using algorithm=

"iikeys
3o
gsiniqapplications °
hod
énumberc';‘;;lgte m
-’
5.nodedata =
Q

tree 3

implementONE

maximumsz*
()

Queues

sort

Algorithms, 4" Edition Robert Sedgewick and Kevin Wayne

» API

» elementary implementations
» binary heaps

» heapsort

» event-based simulation

Copyright © 2002-2010 October 4, 2010 12:12:45 PM

Priority queue
Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.

Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

operation argument rfatzlzg

insert P
insert Q
insert E

remove max Q
insert X
insert A
insert M

remove max X
insert P
insert L
insert E

remove max P

Priority queue API

Requirement. Generic items are comparable,

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create a priority queue

MaxPQ(maxN) create a priority queue of initial capacity maxN

void insert(Key v) inserta key into the priority queue

Key max() return the largest key

Key delMax() return and remove the largest key
boolean isEmpty() is the priority queue empty?

int size() number of entries in the priority queue

API for a generic priority queue

Priority queue applications

* Event-driven simulation.
e Numerical computation.
e Data compression.

* Graph searching.

« Computational number theory.

 Artificial intelligence.
e Statistics.

e Operating systems.

» Discrete optimization.
« Spam filtering.

[customers in a line, colliding particles]
[reducing roundoff error]

[Huffman codes]

[Dijkstra's algorithm, Prim's algorithm]
[sum of powers]

[A* search]

[maintain largest M values in a sequence]
[load balancing, interrupt handling]

[bin packing, scheduling]

[Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Priority queue client example

Problem. Find the largest M items in a stream of N items.

e Fraud detection: isolate $$ transactions.
 File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N items.
Solution. Use a min-oriented priority queue.

cost of finding the largest M
MinPQ<String> pq = new MinPQ<String>() ;

in a stream of N items

while (!StdIn.isEmpt . . .
{ | i ‘mplementation

String s = StdIn.readString() ;

pg.insert(s) ; sort N log N
if (pg.size() > M)
pg.delMin() ; elementary PQ M N

}
binary heap N log M
while ('!'pg.isEmpty())

System.out.println (pg.delMin()) ; best in theory N

N

M

» elementary implementations

Priority queue: unordered and ordered array implementation

. return . contents contents
opemtzon argument

value %€ (unordered) (ordered)
insert P 1 P P
insert Q 2 P Q P Q
insert E 3 P Q E E P Q
remove max Q 2 P E E P
insert X 3 P E X E P X
insert A 4 P E X A A E P X
insert M 5 P E X A M A E M P
remove max X 4 P E M A A E M P
insert P 5 P E M A P A E M P P
insert L 6 P E M A P L A E L M P P
insert E 7 P E M A P L E A E E L M P
remove max P 6 E M A P L E A E E L M P

A sequence of operations on a priority queue

Priority queue: unordered array implementation

public class UnorderedMaxPQ<Key extends Comparable<Key>>

{
private Key[] pqg; // pql[i] = ith element on pgq

private int N; // number of elements on pq
public UnorderedMaxPQ (int capacity) - no generic
{ pPqg = (Key[]) new Comparable[capacity]; } h array creation

public boolean isEmpty ()
{ return N == 0; }

public void insert (Key x)
{ Ppq[N++] = x; '}

public Key delMax()
{
int max = 0;
for (int 1 = 1; i < N; i++)
if (less(max, i)) max = 1i;

less () and exch ()

A

as for sorting

exch (max, N-1);
return pg[--N];

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

order-of-growth of running time for priority queue with N items

implementation insert del max

unordered array 1 N

ordered array N]]

goal

» binary heaps

10

Binary free

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

complete tree with N = 16 nodes (height = 5)

Property. Height of complete tree with N nodes is 1 +|lg N|.
Pf. Height only increases when N is a power of 2.

1

A complete binary tree in nature

12

Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
* Keys in nodes.
* No smaller than children's keys.

Array representation. a[i]
e Take nodes in level order.

. s | SR
No explicit links needed! \\P\N\A

I H G

Heap representations

13

Binary heap properties

Proposition. Largest key is a[1], which is root of binary tree.

indices start at 1

/
Proposition. Can use array indices to move through tree.

e Parent of node at x is at kx/2.

e Children of node at x are at 2x and 2k+1.

I H G

Heap representations

14

Promotion in a heap

Scenario. Node's key becomes larger key than its parent's key.

To eliminate the violation:

» Exchange key in node with key in parent.

* Repeat until heap order restored.

private void swim(int k)
{
while (k > 1 && less(k/2, k))
{
exch(k, k/2);

: k = k/2;Y\\

parent of node at k is at k/2

(g (@
@5 ‘G>\ violates heap order
G o (larger key than parent)

1

@@é@f%

Peter principle. Node promoted to level of incompetence.

15

Insertion in a heap

Insert. Add node at end, then swim it up.
Cost. At most Ig N compares.

insert

public void insert (Key x)
{

pal[++N] = x;

swim (N) ;

. add key to heap
violates heap order

16

Demotion in a heap

Scenario. Node's key becomes smaller than one (or both) of its children's keys.

To eliminate the violation:
« Exchange key in node with key in larger child.
* Repeat until heap order restored.

private void sink (int k) e e e o
{ children of node 2 @ 0
while (2*k <= N) at k are 2k and 2k+1

T @o

if (jJ < N && less(j, j+1)) j++;
if (!less(k, j)) break; 2 R)

exch(k, j); o > oo
k =3; 10
} (®) ©

Top-down reheapify (sink)

Power struggle. Better subordinate promoted.

17

Delete the maximum in a heap

Delete max. Exchange root with node at end, then sink it down.
Cost. At most 2 1g N compares.

remove the maximum @ - key to remove
(S) (R)
public Key delMax() e m haneys
{ G o G @ ~— with root

Key max = pql[l];

violates

exch(l, N--); @ " heap order
sink (1) ; 9 0
return max; G e G T remove node

} " from heap

sink down

18

Heap operations

insert P

insert Q

insert E

remove max (Q)

insert X

insert A

insert M

e,

A DAL
©

™)
©

(>
©

o e

remove max (X) G

insert P Q G
insert L Q G

insert E Q G

remove max (P)

19

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>
{

private Key[] pqg;

private int N;

public MaxPQ (int capacity)
{ pPqg = (Key[]) new Comparable[capacity+1];

public boolean isEmpty ()
{ return N == 0; }

public void insert (Key key)

{ /* see previous code */ }
public Key delMax ()
{ /* see previous code */ }

private void swim(int k)
{ /* see previous code */ }
private void sink(int k)

{ /* see previous code */ }

private boolean less(int i, int j)

{ return pqgq[i] .compareTo (pgq[j] < 0; }
private void exch(int i, int j)

{ Key t = pqlil; pqli] = pql3jl; pql]]l = t;

}

A

}

PQ ops

heap helper functions

array helper
functions

20

Priority queues implementation cost summary

order-of-growth of running time for priority queue with N items

implementation insert del max

unordered array N
ordered array N]]
binary heap log N log N 1

Hopeless challenge. Make all operations constant time.
Q. Why hopeless?

21

Binary heap considerations

Minimum-oriented priority queue.
. Replace less () With greater().
. Implemen’r greater ().

Dynamic array resizing.
e Add no-arg constructor.
* Apply repeated doubling and shrinking. «—— Ieads tolog N amortized time per op

Immutability of keys.
» Assumption: client does not change keys while they're on the PQ.
* Best practice: use immutable keys.

Other operations.

° RemOVC an ar'bITr'ar'y Item. > easy to implement with sink () and swim() [stay tuned]

* Change the priority of an item.

22

23

Heapsort

Basic plan for in-place sort.
* Create max-heap with all N keys.
* Repeatedly remove the maximum key.

start with array of keys
in arbitrary order ——>

build a max-heap

(in place) —>
LA
sorted result 2 E 3 E
(in place) — > . : ; ,
L M 0 P

Heapsort: heap construction

First pass. Build heap using bottom-up method.

for (int k = N/2; k >= 1; k--)
sink(a, k, N);

heap construction

starting point (arbitrary order)

sink(5, 11)

Fo

sink(4, 11)

©
® ®

sink(3, 11)
(X)
R @
sink(2, 11)
(T)
(P) (L)
M © ©® ®

sink(1, 11)

result (heap-ordered)

25

Heapsort: sortdown

Second pass.
 Remove the maximum, one at a time.

* Leave in array, instead of nulling out.

while (N > 1)

{
exch(a, 1, N--);
sink(a, 1, N);

sortdown

exch(1, 11)
sink(1, 10)
(S)
® ®
®® @ x
h(1, 10
eSX1'an((1, 9)) e
(R)
E) ®
h(1l, 9
RIS R)
(E)
® ®

h(l, 8
Sk 3 ®
(0) E)
W) L ® ®

R

s 3 \
sin s
& 0

exch(1, 5)@/(9\@)
sink(1, 4)

&

h(1, 4
Skt B E
(A) ()
L
exch(1, 3) @

sink(1, 2)
&«

exch(l, 2
s?nkgl, 13 @

h@a, 7 1
Saea 8 O A
(M) 2E ’E
Q o p 4L SM 60 7

SR 9S 10T 11X

result (sorted)

P

26

Heapsort: Java implementation

public class Heap
{
public static void sort(Comparable[] pq)
{
int N = pqg.length;
for (int k = N/2; k >= 1; k--)
sink (pq, k, N);
while (N > 1)
{
exch(pq, 1, N);
sink(pgq, 1, --N);

private static void sink (Comparable[] pgq, int k, int N)
{ /* as before */ }

private static boolean less(Comparable[] pg, int i, int j)
{ /* as before */ }

private static vo exch (Comparable[] pgq, int i, int j)
{ /* as before */

but use 1-based indexing

27

Heapsort: trace

ali]

N k 0 1 2 3 4 5 6 7 8 91011
initial values S O R TEX AMP L E
11 5 L E E
11 4 T M P

11 3 X R A

11 2 T P L M O

11 1 X T S R A
heap-ordered X T S P L R A MO E E
10 1 T P S 0 L M E X
9 1 S P R E A T

8 1 R P E E A S

7 1 P O E M L R

6 1 O M E A L P

5 1 M L E A E O

4 1 L E E A M

3 1 E A E L

2 1 E A E

1 1 A E

sorted result A E E L M O P R S T X

Heapsort trace (array contents just after each sink)

Heapsort: mathematical analysis

Proposition. Heapsort uses at most 2 Nlg N compares and exchanges.

Significance. In-place sorting algorithm with Nlog N worst-case.
* Mergesort: no, linear extra space. <— in-place merge possible, not practical

° QUiCkSOF‘TZ no, QUGdI"ClTiC time in worst case. <«— N log N worst-case quicksort possible,

not practical

* Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:
* Inner loop longer than quicksort's.

* Makes poor use of cache memory.

* Not stable.

29

Heapsort animation

50 random elements

http://www.sorting-algorithms.com/heap-sort

A

algorithm position
in order
not in order

30

Sorting algorithms: summary

inplace? | stable? worst average best

3-way quick

X

X

N2/2 N2/2

N2/2 N2/4

N2/2 2NInN

N2/2 2NInN

NIg N NIg N

2NIgN 2NIgN

N Ig N N Ig N

N2/2

N exchanges

use for small N or partially ordered

tight code, subquadratic

N log N probabilistic guarantee
fastest in practice

improves quicksort in presence
of duplicate keys

N log N guarantee, stable

N log N guarantee, in-place

holy sorting grail

31

» event-based simulation

32

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave

according to the laws of elastic collision.

o @
°
o o° =
°
° ° . g
o ° ®
@ ®
o.. ...
°
= ..o. ©
® @
Y e
° o ®
E
»] o PY
» ®
° o ©
..o

33

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave
according to the laws of elastic collision.

Hard disc model.

* Moving particles interact via elastic collisions with each other and walls.

* Each particle is a disc with known position, velocity, mass, and radius.
* No other forces.

temperature, pressure, motion of individual
diffusion constant atoms and molecules

Significance. Relates macroscopic observables to microscopic dynamics.
e Maxwell-Boltzmann: distribution of speeds as a function of temperature.
 Einstein: explain Brownian motion of pollen grains.

34

Warmup: bouncing balls

Time-driven simulation. N bouncing balls in the unit square.

public class BouncingBalls
{
public static void main(String[] args)
{
int N = Integer.parselInt(args[0])
Ball balls[] = new Ball[N];
for (int 1 = 0; i < N; i++)
balls[i] = new Ball()
while (true)
{
StdDraw.clear() ;
for (int 1 = 0; i < N; i++)
{
balls[i] .move (0.5);
balls[i] .draw() ;

}
StdDraw.show (50) ; I

} main simulation loop

% java BouncingBalls 100

. o o : . *
° o®
. °o** s °
L ° o
° . .
[] Y : ° ¢
® °
o o‘ . ™
PY L]

35

Warmup: bouncing balls

public class Ball

{
private double rx, ry; // position
private double vx, vy; // velocity
private final double radius; // radius
public Ball()
{ /* initialize position and velocity */ }

public void move (double dt)
{

check for collision with walls

/

if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { v = -vx;
if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy;
rx = rx + vx*dt;
ry = ry + vy*dt;

}
public void draw()

{ StdDraw.filledCircle(rx, ry, radius),; }

Missing. Check for balls colliding with each other.
* Physics problems: when? what effect?

e CS problems: which object does the check? too many checks?

Time-driven simulation

» Discretize time in quanta of size dt.
» Update the position of each particle after every dr units of time,

and check for overlaps.
» If overlap, roll back the clock to the time of the collision, update the
velocities of the colliding particles, and continue the simulation.

4

‘ ‘ ,

‘-__-) ‘___-) ’
Y

t t + dt t+ 2 dt t+ At
(collision detected) (roll back clock)

37

Time-driven simulation

Main drawbacks.

* ~ N2/2 overlap checks per time quantum.
» Simulation is too slow if dt is very small.
* May miss collisions if dt is too large.

(if colliding particles fail to overlap when we are looking)

dt too small: excessive computation dt too large: may miss collisions

“ @

38

Event-driven simulation

Change state only when something happens.

* Between collisions, particles move in straight-line trajectories.
* Focus only on times when collisions occur.

e Maintain PQ of collision events, prioritized by time.

* Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,
when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according
to laws of elastic collisions.

prediction (at timet)

particles hit unless one passes \
V'

intersection point before the other -
arrives (see Exercise 3.6.X)

~

N

resolution (at time t + dt)
velocities of both particles
change after collision

39

Particle-wall collision

Collision prediction and resolution.

 Particle of radius s at position (rx, ry).

* Particle moving in unit box with velocity (vx, vy).
e Will it collide with a vertical wall? If so, when?

resolution (at time t + dft)]
velo.c%'ty after colli.sifm =(-vev)
position after collision = (1-s, r,+v,dt)
prediction (at time t)]
dt = time to hit wall - .
. . — wall a
= distance/velocity (re»ry) = -
:(l_s_rx)/vx M;
v
|) l=s—r, |
J 1

Predicting and resolving a particle-wall collision

Particle-particle collision prediction

Collision prediction.

* Particle it radius s;, position (rxi; ry:), velocity (vxi, vy).

 Particle;: radius s;, position (rx;, 1)), velocity (vx;, vy).
o Will particles i andj collide? If so, when?

(vx;', vy,

__

(rx;', ryi)

time =t + At

(ij'; Vyjr)
A

41

Particle-particle collision prediction

Collision prediction.

 Particle i: radius si, position (rx;,), velocity (vxi, vy).
 Particle;: radius s;, position (rx;, 1)), velocity (vx;, vy).
* Will particles i and collide? If so, when?

o0 fAv-Ar=0
At = = ifd <0
Av-Ar + ~/d :
- otherwise
Av-Av

d =(Av-Ar)* = (Av-Av) (Ar-Ar = &%) 0=0,+0;

2 2
Av=(Avx, Avy) = (vx;—vx;, vy;—vy;) Av - Av = (AVX)2 + (AV)’)2
Ar=(Arx, Ary) = (rx;—rx;, ry;—ry;) Ar - Ar=(Arx)” + (Ary)

Av - Ar = (Avx)(Arx)+ (Avy)(Ary)

Important note: This is high-school physics, so we won’t be testing you on it!

42

Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

vxl-l = vx;, + Jx/m
Vyil = vy, + Jy/m, Newton's second law
' —F (momentum form)
VX, = VX; - Jx/mj
vyj/ = VY - Jy/mj
Iy = JArx, Jy = JAry’ 7 - 2m;m;(Av-Ar)
o o o(m;+m;)

impulse due to normal force
(conservation of energy, conservation of momentum)

Important note: This is high-school physics, so we won’t be testing you on it!

43

Particle data type skeleton

public class Particle

{

private
private
private
private
private

public

public
public

public
public
public

public
public
public

double rx, ry; // position
double vx, vy; // velocity
final double radius; // radius
final double mass; // mass
int count; // number of
Particle(...) { }

void move (double dt) { }

void draw () {1}

double timeToHit (Particle that) {

double timeToHitVerticalWall ()
double timeToHitHorizontalWall ()

-

void bounceOff (Particle that) {

void bounceOffVerticalWall ()
void bounceOffHorizontalWall ()

L I)

collisions

predict collision
with particle or wall

resolve collision
with particle or wall

44

Particle-particle collision and resolution implementation

public double timeToHit (Particle that)

{
if (this == that) return INFINITY;
double dx = that.rx - this.rx, dy = that.ry - this.ry;
double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
double dvdr = dx*dvx + dy*dvy; o
if(dvdr > 0) return INFINITY; < no collision
double dvdv = dvx*dvx + dvy*dvy;
double drdr = dx*dx + dy*dy;
double sigma = this.radius + that.ra
double d = (dvdr*dvdr) - dvdv *
if (d < 0) return INFINITY;
return -(dvdr + Math.sqrt(d)) / dvdv;

.
4

- sigma*sigma) ;

}

public void bounceOff (Particle that)
{
double dx = that.rx - this.rx, dy that.ry - this.ry;
double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
double dvdr = dx*dvx + dy*dvy;
double dist = this.radius + that.radius;
double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
double Jx = J * dx / dist;
double Jy = J * dy / dist;
this.vx += Jx this.mass;
this.vy += Jy this.mass;
that.vx -= Jx that.mass;
that.vy -= Jdy that.mass;
this.count++;
that.count++;

N NN N

Important note: This is high-school physics, so we won’t be testing you on it!

Collision system: event-driven simulation main loop

Initialization.
 Fill PQ with all potential particle-wall collisions.
 Fill PQ with all potential particle-particle collisions.

\

“potential” since collision may not happen if
some other collision intervenes

Main loop.
* Delete the impending event from PQ (min priority =).

If the event has been invalidated, ignore it.

Update the velocities of the colliding particle(s).

colliding particle(s) and insert events onto PQ.

two particles on a collision course

>

third particle interferes: no collision

O//
e

An invalidated event

N

Advance all particles to time ¢, on a straight-line trajectory.

Predict future particle-wall and particle-particle collisions involving the

46

Event data type

Conventions.

* Neither particle nu11 = particle-particle collision.

* One particle nu11 = particle-wall collision.

e Both particles nu11 = redraw event.

private class Event implements Comparable<Event>

{

private double time; // time of event
private Particle a, b; // particles involved in event
private int countA, countB; // collision counts for a and b

public Event (double t, Particle a, Particle b) { } D E—

public int compareTo (Event that)
{ return this.time - that.time; }

public boolean isValid()
{ }

Create event

ordered by time

invalid if
intervening
collision

47

Collision system implementation: skeleton

public class CollisionSystem
{

private MinPQ<Event> pq; // the priority queue
private double t = 0.0; // simulation clock time
private Particle[] particles; // the array of particles

public CollisionSystem(Particle[] particles) { }

private void predict(Particle a) add to PQ all particle-wall and particle-
{ particle collisions involving this particle
if (a == null) return;
for (int 1 = 0; i < N; i++)
{
double dt = a.timeToHit (particles[i])
pg.insert (new Event(t + dt, a, particles[i])):
}
pg.insert (new Event(t + a.timeToHitVerticalWall () , a, null));
pg.insert (new Event(t + a.timeToHitHorizontalWall(), null, a));

private void redraw() { }

public void simulate() { /* see next slide */ '}

48

Collision system implementation: main event-driven simulation loop

public void simulate ()

{

pd = new MinPQ<Event> () ;

for(int 1 = 0; i < N; i++) predict(particles[i]);
pg.insert (new Event (0, null, null));

while (!'pg.isEmpty())

{

Event event =

if('event.isValid()) continue; <«

pg.delMin() ;

Particle a = event.a;
Particle b = event.b;
for(int i = 0; i < N;

it++)

particles[i] .move (event

t = event.time;

if (a !'=
else if (a !=
else if (a ==
else if (a ==

predict (a) ;
predict (b) ;

null
null
null
null

&& b
&& b
&& b
&& b

.time - t); D amm—

null) a.bounceOff (b) ; «—
null) a.bounceOffVerticalWall ()
null) b.bounceOffHorizontalWall() ;
null) redraw();

initialize PQ with
collision events and
redraw event

get next event

update positions
and time

process event

predict new events
based on changes

49

Simulation example 1

100

% java CollisionSystem
® ®
®
o o
@] ®
..
Q
®
L
¢ J.
® ®
® o
= ®
o
Y -]
L ®
®
o ? L
¢ °
o
@ ..
.‘0 o
[J

50

Simulation example 2

% jJava CollisionSystem < billiards.txt

51

Simulation example 3

% java CollisionSystem < brownian.txt

o ° ®
o ® o * o... ¢ °
" % * e) ¢ ° 9
® .. g @ ® o
Y @
e, ° 5 ° e o
o o 2@ oo °*
@] @ ° @ o L.°
= ® = & 4 o © o
® o * - ° I = ..
.o. ® o (Y
o °® o ‘ e 3 o ..o
@ o
o0 o @
P - o © o © °.
@ ‘. L o] o
o’ ® o o ‘e o e e
o o e o ° = :
e % ° o .: . °.,°
° " e o o
.. [16) o .. °
& .: oo o ® o
@ .. ° Y @
® 9 0.. & o oo.
e ®© e e, .. = °®

52

Simulation example 4

% java CollisionSystem < diffusion. txt

3
L
=
»

00000000000

53

