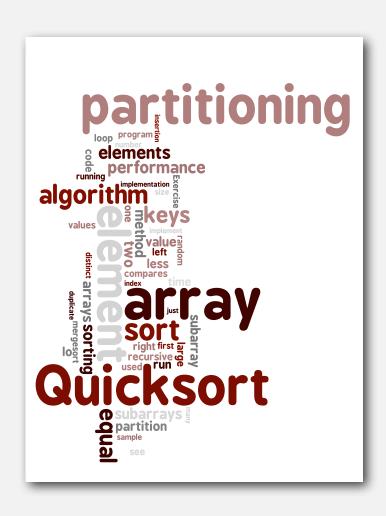
2.3 Quicksort



- quicksort
- selection
- duplicate keys
- system sorts

Two classic sorting algorithms

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of 20th century in science and engineering.

Mergesort.

last lecture

- Java sort for objects.
- Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

Quicksort.

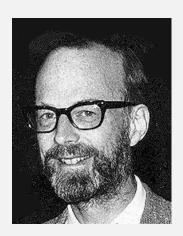
- Java sort for primitive types.
- C qsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

quicksortselection

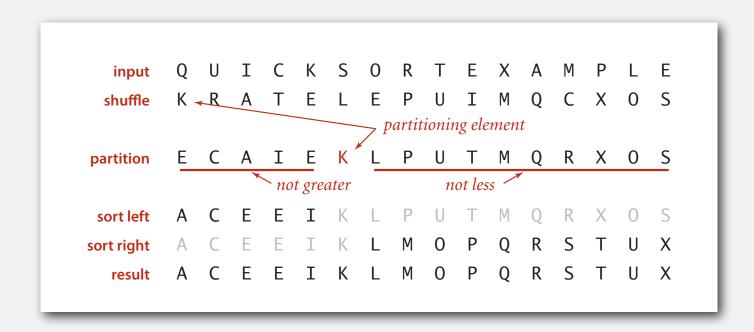
Quicksort

Basic plan.

- Shuffle the array.
- Partition so that, for some j
 - element a[j] is in place
 - no larger element to the left of j
 - no smaller element to the right of j
- Sort each piece recursively.



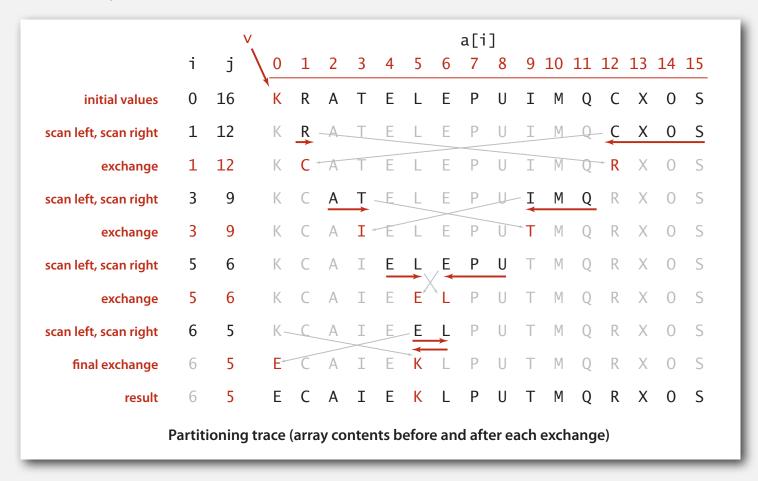
Sir Charles Antony Richard Hoare 1980 Turing Award



Quicksort partitioning

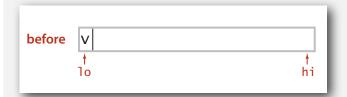
Basic plan.

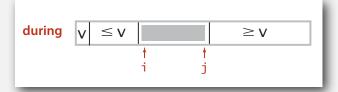
- Scan i from left for an item that belongs on the right.
- Scan j from right for item item that belongs on the left.
- Exchange a[i] and a[j].
- Repeat until pointers cross.



Quicksort: Java code for partitioning

```
private static int partition(Comparable[] a, int lo, int hi)
   int i = lo, j = hi+1;
   while (true)
      while (less(a[++i], a[lo]))
                                           find item on left to swap
          if (i == hi) break;
      while (less(a[lo], a[--j]))
                                               find item on right to
          if (j == lo) break;
                                                           swap
                                             check if pointers cross
      if (i >= j) break;
      exch(a, i, j);
                                                           swap
                                         swap with partitioning item
   exch(a, lo, j);
   return j;
              return index of item now known to be in place
```



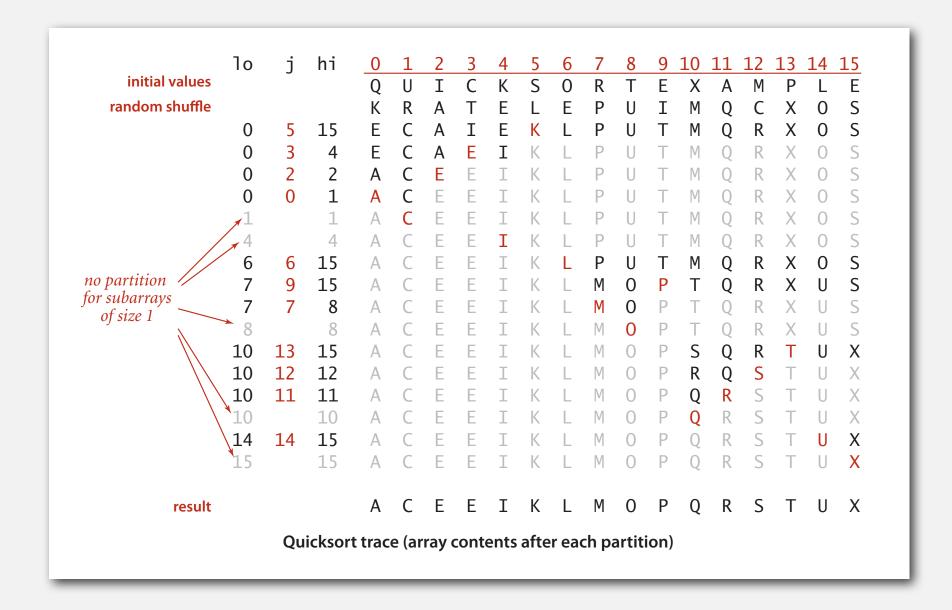


Quicksort: Java implementation

```
public class Quick
   private static int partition(Comparable[] a, int lo, int hi)
   { /* see previous slide */ }
   public static void sort(Comparable[] a)
      StdRandom.shuffle(a);
      sort(a, 0, a.length - 1);
   private static void sort(Comparable[] a, int lo, int hi)
      if (hi <= lo) return;</pre>
      int j = partition(a, lo, hi);
      sort(a, lo, j-1);
      sort(a, j+1, hi);
```

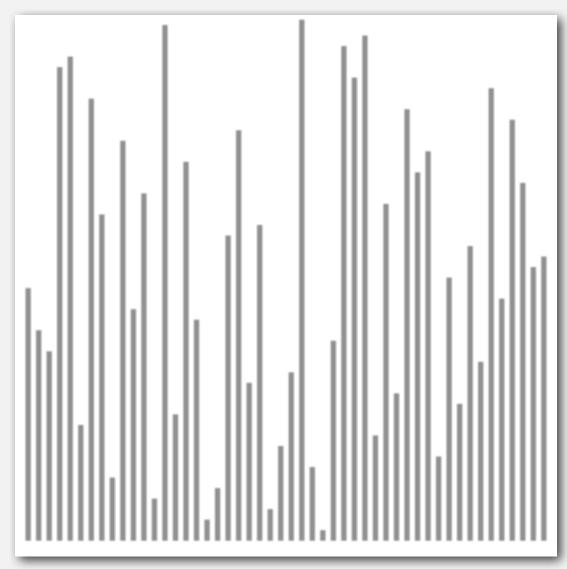
- shuffle needed for performance guarantee (stay tuned)

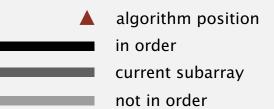
Quicksort trace



Quicksort animation

50 random elements





Quicksort: implementation details

Partitioning in-place. Using a spare array makes partitioning easier (and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The (j == 10) test is redundant (why?), but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) best to stop on elements equal to the partitioning element.

Quicksort: empirical analysis

Running time estimates:

- Home PC executes 10^8 compares/second.
- Supercomputer executes 10¹² compares/second.

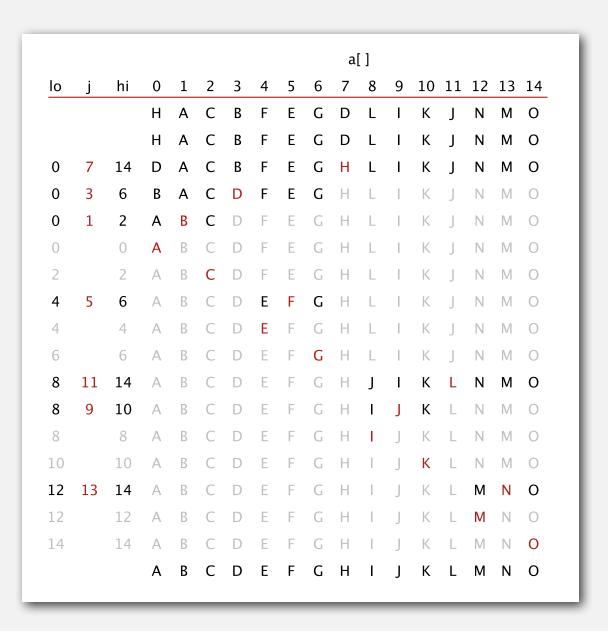
	insertion sort (N²)			mergesort (N log N)			quicksort (N log N)		
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.3 sec	6 min
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

Quicksort: best-case analysis

Best case. Number of compares is $\sim N \lg N$.



Quicksort: worst-case analysis

Worst case. Number of compares is $\sim \frac{1}{2} N^2$.

```
a[]
             4 5 6 7 8 9 10 11 12 13 14
     A B C D E F
                 G H
  14 A B C D E
               F
                 G H
         CDEFGH
                 G
                 G H
                 G
                 G H
12 14
         CDEFGH
```

Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf 1. C_N satisfies the recurrence $C_0 = C_1 = 0$ and for $N \ge 2$:

$$C_{N} = (N+1) + \frac{C_{0} + C_{1} + \ldots + C_{N-1}}{N} + \frac{C_{N-1} + C_{N-2} + \ldots + C_{0}}{N}$$
partitioning left partitioning probability

• Multiply both sides by N and collect terms:

$$NC_N = N(N+1) + 2(C_0 + C_1 + \dots + C_{N-1})$$

• Subtract this from the same equation for N-1:

$$NC_N - (N-1)C_{N-1} = 2N + 2C_{N-1}$$

• Rearrange terms and divide by N(N+1):

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

Repeatedly apply above equation:

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

$$= \frac{C_{N-2}}{N-1} + \frac{2}{N} + \frac{2}{N+1}$$

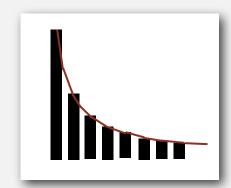
$$= \frac{C_{N-3}}{N-2} + \frac{2}{N-1} + \frac{2}{N} + \frac{2}{N+1}$$

$$= \frac{2}{1} + \frac{2}{2} + \frac{2}{3} + \ldots + \frac{2}{N+1}$$

Approximate sum by an integral:

$$C_N \sim 2(N+1) \left(1 + \frac{1}{2} + \frac{1}{3} + \dots \frac{1}{N}\right)$$

 $\sim 2(N+1) \int_1^N \frac{1}{x} dx$

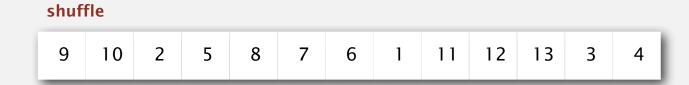


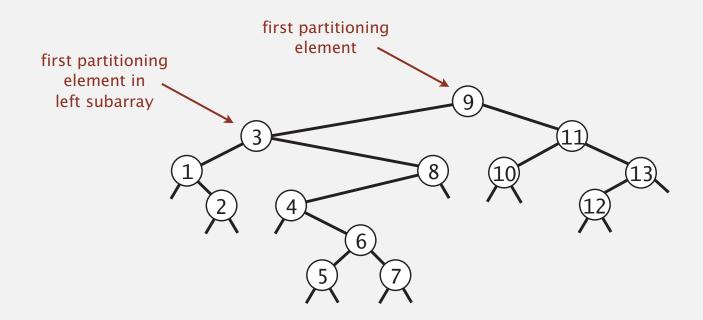
Finally, the desired result:

$$C_N \sim 2(N+1) \ln N \approx 1.39 N \lg N$$

Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf 2. Consider BST representation of keys 1 to N.





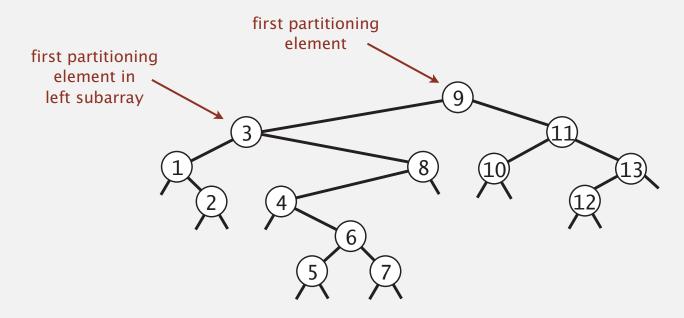
Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf 2. Consider BST representation of keys 1 to N.

- A key is compared only with its ancestors and descendants.
- Probability i and j are compared equals 2/|j-i+1|.

2 and 6 are compared (when 3 is partition)

1 and 6 are not compared (because 3 is partition)



Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf 2. Consider BST representation of keys 1 to N.

- A key is compared only with its ancestors and descendants.
- Probability i and j are compared equals 2/|j-i+1|.

• Expected number of compares =
$$\sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{2}{j-i+1} = 2\sum_{i=1}^{N} \sum_{j=2}^{N-i+1} \frac{1}{j}$$

$$\leq 2N \sum_{j=1}^{N} \frac{1}{j}$$

$$\sim 2N \int_{x=1}^{N} \frac{1}{x} \, dx$$

$$= 2N \ln N$$

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

- $N + (N-1) + (N-2) + ... + 1 \sim \frac{1}{2} N^2$.
- More likely that your computer is struck by lightning bolt.

Average case. Number of compares is $\sim 1.39 N \lg N$.

- 39% more compares than mergesort.
- But faster than mergesort in practice because of less data movement.

Random shuffle.

- Probabilistic guarantee against worst case.
- Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array

- Is sorted or reverse sorted.
- Has many duplicates (even if randomized!)

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Can delay insertion sort until end.

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo + CUTOFF - 1)
   {
      Insertion.sort(a, lo, hi);
      return;
   }
   int j = partition(a, lo, hi);
   sort(a, lo, j-1);
   sort(a, j+1, hi);
}</pre>
```

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Can delay insertion sort until end.

Median of sample.

- Best choice of pivot element = median.
- Estimate true median by taking median of sample.

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo) return;

   int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
   swap(a, lo, m);

   int j = partition(a, lo, hi);
   sort(a, lo, j-1);
   sort(a, j+1, hi);
}</pre>
```

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Can delay insertion sort until end.

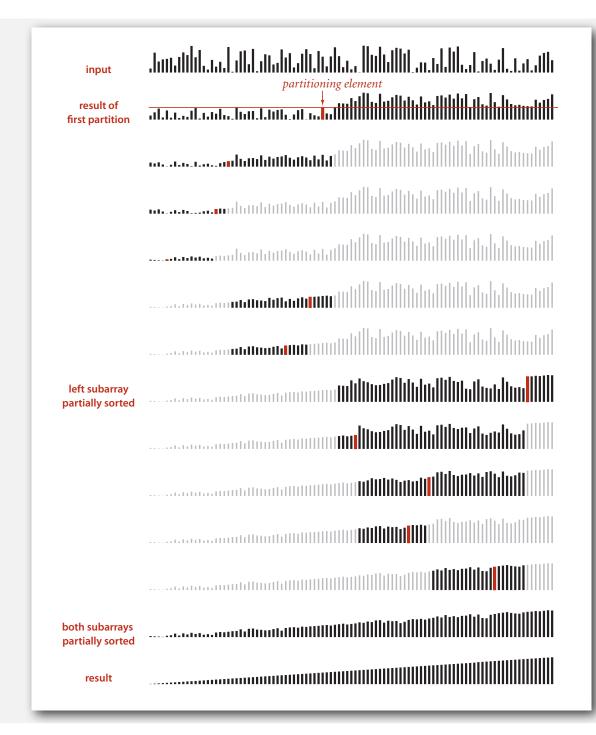
Median of sample.

- Best choice of pivot element = median.
- Estimate true median by taking median of sample.

Optimize parameters.

- ~ 12/7 N In N compares (slightly fewer) ~ 12/35 N In N exchanges (slightly more)
- Median-of-3 (random) elements.
- Cutoff to insertion sort for ≈ 10 elements.

Quicksort with median-of-3 and cutoff to insertion sort: visualization



- selectionduplicate keys

Selection

Goal. Find the k^{th} largest element.

Ex. Min (k = 0), max (k = N - 1), median (k = N/2).

Applications.

- Order statistics.
- Find the "top k."

Use theory as a guide.

- Easy $O(N \log N)$ upper bound. How?
- Easy O(N) upper bound for k = 1, 2, 3. How?
- Easy $\Omega(N)$ lower bound. Why?

Which is true?

- $\Omega(N \log N)$ lower bound? \leftarrow is selection as hard as sorting?

Quick-select

Partition array so that:

- Element a[j] is in place.
- No larger element to the left of j.
- No smaller element to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average. Pf sketch.

- Intuitively, each partitioning step roughly splits array in half: $N+N/2+N/4+...+1\sim 2N$ compares.
- Formal analysis similar to quicksort analysis yields:

$$C_N = 2N + k \ln (N/k) + (N-k) \ln (N/(N-k))$$

Ex. $(2 + 2 \ln 2) N$ compares to find the median.

Remark. Quick-select uses $\sim \frac{1}{2} N^2$ compares in worst case, but (as with quicksort) the random shuffle provides a probabilistic guarantee.

Theoretical context for selection

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a compare-based selection algorithm whose worst-case running time is linear.

Time Bounds for Selection

by .

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of n numbers is shown to be at most a linear function of n by analysis of a new selection algorithm -- PICK. Specifically, no more than 5.4305 n comparisons are ever required. This bound is improved for

Remark. But, constants are too high \Rightarrow not used in practice.

Use theory as a guide.

- Still worthwhile to seek practical linear-time (worst-case) algorithm.
- Until one is discovered, use quick-select if you don't need a full sort.

Generic methods

In our select() implementation, client needs a cast.

The compiler complains.

```
% javac Quick.java
Note: Quick.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
```

Q. How to fix?

Generic methods

Pedantic (safe) version. Compiles cleanly, no cast needed in client.

```
generic type variable
public class QuickPedantic
                             (value inferred from argument a[])
    public static <Key extends Comparable<Key>> Key select(Key[] a, int k)
    { /* as before */ }
                                                       return type matches array type
    public static <Key extends Comparable<Key>> void sort(Key[] a)
    { /* as before */ }
    private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
    { /* as before */ }
    private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
    {    /* as before */ }
    private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
    { Key swap = a[i]; a[i] = a[j]; a[j] = swap; }
              can declare variables of generic type
```

http://www.cs.princeton.edu/algs4/23quicksort/QuickPedantic.java.html

Remark. Obnoxious code needed in system sort; not in this course (for brevity).

- quicksort
- selection
- duplicate keys
- > system sorts

Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

- Sort population by age.
- Find collinear points.

 see Assignment 3
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.

```
Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54
  key
```

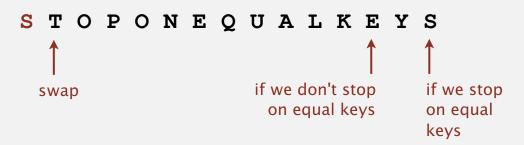
Duplicate keys

Mergesort with duplicate keys. Always between $\frac{1}{2} N \lg N$ and $N \lg N$ compares.

Quicksort with duplicate keys.

- Algorithm goes quadratic unless partitioning stops on equal keys!
- 1990s C user found this defect in qsort().

several textbook and system implementation also have this defect



Duplicate keys: the problem

Mistake. Put all keys equal to the partitioning element on one side. Consequence. $\sim \frac{1}{2} N^2$ compares when all keys equal.

BAABABB BCCC AAAAAAAAAAA

Recommended. Stop scans on keys equal to the partitioning element. Consequence. $\sim N \lg N$ compares when all keys equal.

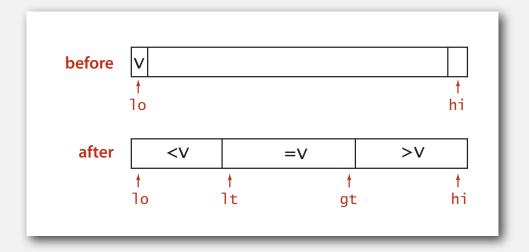
BAABABCCBCB AAAAAAAAAA

Desirable. Put all keys equal to the partitioning element in place.

3-way partitioning

Goal. Partition array into 3 parts so that:

- Elements between 1t and gt equal to partition element \mathbf{v} .
- No larger elements to left of 1t.
- No smaller elements to right of gt.



Dutch national flag problem. [Edsger Dijkstra]

- Conventional wisdom until mid 1990s: not worth doing.
- New approach discovered when fixing mistake in C library qsort().
- Now incorporated into qsort() and Java system sort.

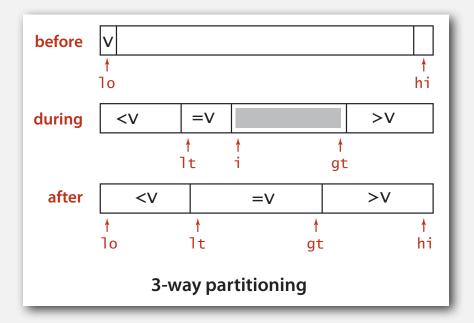
Dijkstra 3-way partitioning algorithm

3-way partitioning.

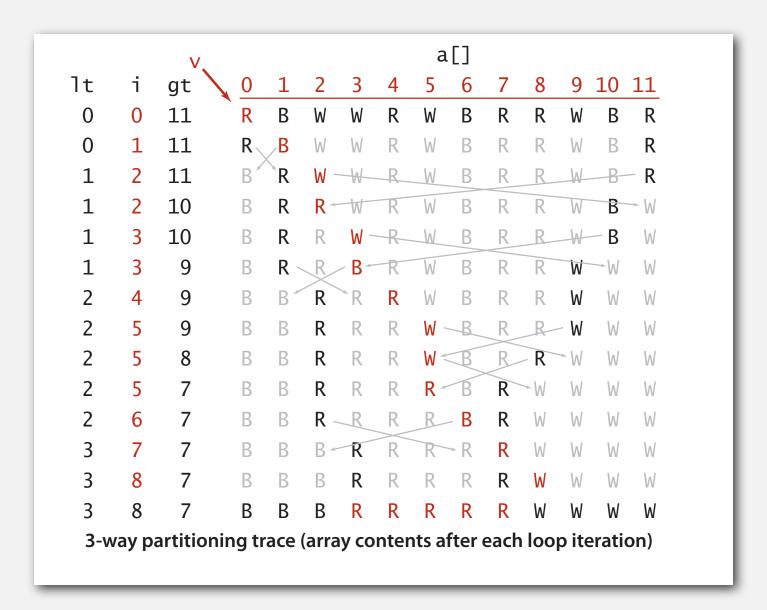
- Let v be partitioning element a [10].
- Scan i from left to right.
 - a[i] less than v: exchange a[1t] with a[i] and increment both 1t and i
 - a[i] greater than w: exchange a[gt] with a[i] and decrement gt
 - a[i] equal to v: increment i

All the right properties.

- In-place.
- Not much code.
- Small overhead if no equal keys.



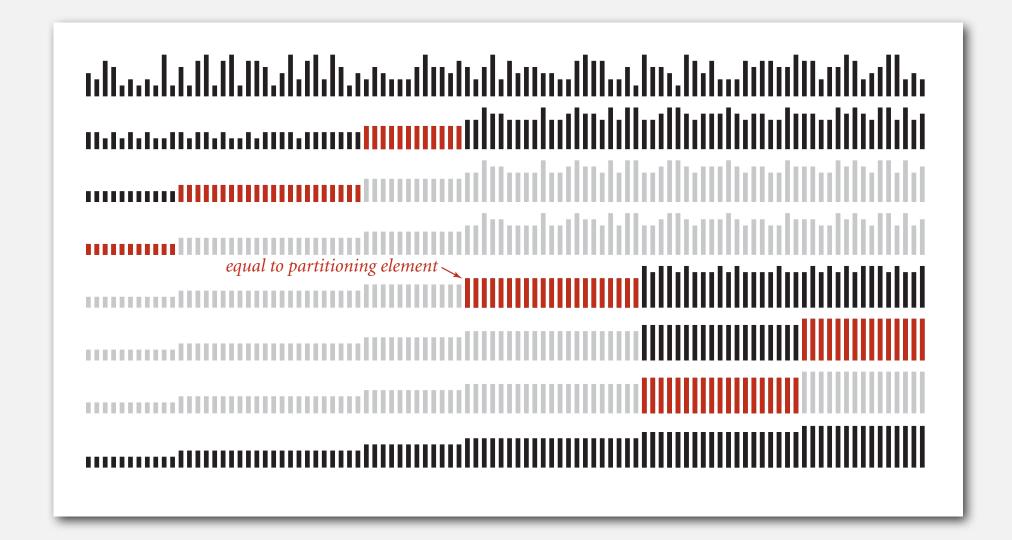
3-way partitioning: trace



3-way quicksort: Java implementation

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo) return;</pre>
   int lt = lo, gt = hi;
   Comparable v = a[lo];
   int i = lo;
   while (i <= gt)</pre>
      int cmp = a[i].compareTo(v);
      if
                (cmp < 0) exch(a, lt++, i++);
      else if (cmp > 0) exch(a, i, gt--);
      else
                           i++;
                                              before
   sort(a, lo, lt - 1);
                                                   10
                                                                            hi
   sort(a, gt + 1, hi);
                                             during
                                                    <V
                                                          =V
                                                                         >V
                                                         1t
                                                                      gt
                                                      <V
                                               after
                                                               =V
                                                                        >V
                                                          1t
                                                                             hi
                                                                   gt
```

3-way quicksort: visual trace



Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the i^{th} one occurs x_i times, any compare-based sorting algorithm must use at least

$$\lg\left(\frac{N!}{x_1!\;x_2!\;\cdots\;x_n!}\right)\;\sim\;-\sum_{i=1}^nx_i\lg\frac{x_i}{N}\;\;\longleftarrow\; \begin{array}{c} N\lg N \text{ when all distinct;}\\ \text{linear when only a constant number of distinct keys} \end{array}$$
 compares in the worst case.

Proposition. [Sedgewick-Bentley, 1997]

proportional to lower bound

Quicksort with 3-way partitioning is entropy-optimal.

Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces running time from linearithmic to linear in broad class of applications.

- selection
- duplicate keys
- > comparators
 - system sorts

Sorting applications

Sorting algorithms are essential in a broad variety of applications:

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- · List RSS feed in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
- Load balancing on a parallel computer.

. . .

obvious applications

problems become easy once elements are in sorted order

non-obvious applications

Every system needs (and has) a system sort!

Java system sorts

Java uses both mergesort and quicksort.

- Arrays.sort() Sorts an array of comparable or of any primitive type.
- Uses tuned quicksort for primitive types; tuned mergesort for objects.

```
import java.util.Arrays;

public class StringSort
{
    public static void main(String[] args)
    {
        String[] a = StdIn.readAll().split("\\s+");
        Arrays.sort(a);
        for (int i = 0; i < N; i++)
            StdOut.println(a[i]);
    }
}</pre>
```

Q. Why use different algorithms, depending on type?

War story (C qsort function)

AT&T Bell Labs (1991). Allan Wilks and Rick Becker discovered that a qsort() call that should have taken a few minutes was consuming hours of CPU time.

At the time, almost all qsort() implementations based on those in:

- Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.
- BSD Unix (1983): quadratic time to sort random arrays of 0s and 1s.

Engineering a system sort

Basic algorithm = quicksort.

- Cutoff to insertion sort for small subarrays.
- Partitioning scheme: Bentley-McIlroy 3-way partitioning. [ahead]
- Partitioning element.
 - small arrays: middle element
 - medium arrays: median of 3
 - large arrays: Tukey's ninther [next slide]

Engineering a Sort Function

JON L. BENTLEY
M. DOUGLAS McILROY
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY

We recount the history of a new qsort function for a C library. Our function is clearer, faster and more robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a novel solution to Dijkstra's Dutch National Flag problem; and it swaps efficiently. Its behavior was assessed with timing and debugging testbeds, and with a program to certify performance. The design techniques apply in domains beyond sorting.

Now widely used. C, C++, Java,

Tukey's ninther

Tukey's ninther. Median of the median of 3 samples, each of 3 elements.

- Approximates the median of 9.
- Uses at most 12 compares.

nine evenly spaced elements	R	L	A	P	M	С	G	A	x	Z	K	R	В	R	J	J	E
groups of 3	R	A	M		G	x	K		В	J	E						
medians	М	K	E														
ninther	ĸ																

- Q. Why use Tukey's ninther?
- A. Better partitioning than random shuffle and less costly.

Bentley-McIlroy 3-way partitioning

Partition elements into four parts:

- No larger elements to left of i.
- No smaller elements to right of j.
- Equal elements to left of p.
- Equal elements to right of q.

Afterwards, swap equal keys into center.

All the right properties.

- In-place.
- Not much code.
- Linear time if keys are all equal.
- Small overhead if no equal keys.

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Q. Based on all this research, Java's system sort is solid, right?

more disastrous consequences in C

- A. No: a killer input.
- Overflows function call stack in Java and crashes program.
- Would take quadratic time if it didn't crash first.

```
% more 250000.txt

0
218750
222662
11
166672
247070
83339
...
250,000 integers
between 0 and 250,000
```

```
% java IntegerSort 250000 < 250000.txt
Exception in thread "main"
java.lang.StackOverflowError
    at java.util.Arrays.sort1(Arrays.java:562)
    at java.util.Arrays.sort1(Arrays.java:606)
    at java.util.Arrays.sort1(Arrays.java:608)
    at java.util.Arrays.sort1(Arrays.java:608)
    at java.util.Arrays.sort1(Arrays.java:608)
    ...</pre>
```

Java's sorting library crashes, even if you give it as much stack space as Windows allows

Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea. [A Killer Adversary for Quicksort]

 Construct malicious input on the fly while running system quicksort, in response to the sequence of keys compared.

- Make partitioning element compare low against all keys not seen during selection of partitioning element (but don't commit to their relative order).
- Not hard to identify partitioning element.

Consequences.

- Confirms theoretical possibility.
- Algorithmic complexity attack: you enter linear amount of data;
 server performs quadratic amount of work.

Good news. Attack is not effective if sort() shuffles input array.

Q. Why do you think Arrays.sort() is deterministic?

System sort: Which algorithm to use?

Many sorting algorithms to choose from:

Internal sorts.

- Insertion sort, selection sort, bubblesort, shaker sort.
- Quicksort, mergesort, heapsort, samplesort, shellsort.
- Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

String/radix sorts. Distribution, MSD, LSD, 3-way string quicksort.

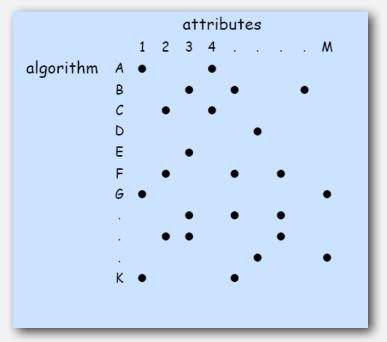
Parallel sorts.

- Bitonic sort, Batcher even-odd sort.
- Smooth sort, cube sort, column sort.
- GPUsort.

System sort: Which algorithm to use?

Applications have diverse attributes.

- Stable?
- Parallel?
- Deterministic?
- Keys all distinct?
- Multiple key types?
- Linked list or arrays?
- Large or small records?
- Is your array randomly ordered?
- Need guaranteed performance?



many more combinations of attributes than algorithms

Elementary sort may be method of choice for some combination.

Cannot cover all combinations of attributes.

- Q. Is the system sort good enough?
- A. Usually.

Sorting summary

	inplace?	stable?	worst	average	best	remarks
selection	x		N ² / 2	N ² / 2	N ² /2	N exchanges
insertion	x	x	N ² / 2	N ² / 4	N	use for small N or partially ordered
shell	x		?	?	N	tight code, subquadratic
quick	x		N ² /2	2 N In N	N lg N	N log N probabilistic guarantee fastest in practice
3-way quick	x		N ² / 2	2 N In N	N	improves quicksort in presence of duplicate keys
merge		x	N lg N	N lg N	N lg N	N log N guarantee, stable
???	х	х	N lg N	N lg N	N lg N	holy sorting grail

Which sorting algorithm?

lifo	find	data	data	data	data	hash	data
fifo	fifo	fifo	fifo	exch	fifo	fifo	exch
data	data	find	find	fifo	lifo	data	fifo
type	exch	hash	hash	find	type	link	find
hash	hash	heap	heap	hash	hash	leaf	hash
heap	heap	lifo	lifo	heap	heap	heap	heap
sort	less	link	link	leaf	link	exch	leaf
link	left	list	list	left	sort	node	left
list	leaf	push	push	less	find	lifo	less
push	lifo	root	root	lifo	list	left	lifo
find	push	sort	sort	link	push	find	link
root	root	type	type	list	root	path	list
leaf	list	leaf	leaf	sort	leaf	list	next
tree	tree	left	tree	tree	null	next	node
null	null	node	null	null	path	less	null
path	path	null	path	path	tree	root	path
node	node	path	node	node	exch	sink	push
left	link	tree	left	type	left	swim	root
less	sort	exch	less	root	less	null	sink
exch	type	less	exch	push	node	sort	sort
sink	sink	next	sink	sink	next	type	swap
swim	swim	sink	swim	swim	sink	tree	swim
next	next	swap	next	next	swap	push	tree
swap	swap	swim	swap	swap	swim	swap	type
original	?	?	?	?	?	?	sorted

Which sorting algorithm?

lifo	find	data	data	data	data	— hash	data
fifo	fifo	fifo	fifo	exch	fifo	fifo	exch
data	data	find	find	fifo	lifo	data	fifo
type	exch	hash	hash	find	type	link	find
hash	hash	heap	heap	hash	hash	leaf	hash
heap	heap	lifo	lifo	heap	heap	heap	heap
sort	less	link	link	leaf	link	exch	leaf
link	left	list	list	left	sort	node	left
list	leaf	push	push	less	find	— lifo	less
push	lifo	root	root	lifo	list	left	lifo
find	push	sort	sort	link	push	find	link
root	root	type	type	list	root	path	list
leaf	list	leaf	leaf	sort	leaf	list	next
tree	tree	left	tree	tree	null	next	node
null	null	node	null	null	path	less	null
path	path	null	path	path	tree	root	path
node	node	path	node	node	exch	— sink	push
left	link	tree	left	type	left	swim	root
less	sort	exch	less	root	less	null	sink
exch	type	less	exch	push	node	sort	sort
sink	sink	next	sink	sink	next	_ type	swap
swim	swim	sink	swim	swim	sink	tree	swim
next	next	swap	next	next	swap	push	tree
swap	swap	swim	swap	swap	swim	swap	type
original	quicksort	mergesort	insertion	selection	merge BU	shellsort	sorted