
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · October 4, 2010 11:45:29 AM

2.3 Quicksort

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

2

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

• Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

• Quicksort honored as one of top 10 algorithms of 20th century
in science and engineering.

Mergesort.

• Java sort for objects.

• Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

Quicksort.

• Java sort for primitive types.

• C qsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

last lecture

this lecture

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

3 4

Quicksort

Basic plan.

• Shuffle the array.

• Partition so that, for some j

- element a[j] is in place
- no larger element to the left of j

- no smaller element to the right of j

• Sort each piece recursively.
Sir Charles Antony Richard Hoare

1980 Turing Award

Q U I C K S O R T E X A M P L E

K R A T E L E P U I M Q C X O S

E C A I E K L P U T M Q R X O S

A C E E I K L P U T M Q R X O S

A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

not greater not less

partitioning element

input

shu!e

partition

sort left

sort right

result

Quicksort overview

Quicksort partitioning

Basic plan.

• Scan i from left for an item that belongs on the right.

• Scan j from right for item item that belongs on the left.

• Exchange a[i] and a[j].

• Repeat until pointers cross.

5

 a[i]
 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 16 K R A T E L E P U I M Q C X O S

 1 12 K R A T E L E P U I M Q C X O S

 1 12 K C A T E L E P U I M Q R X O S

 3 9 K C A T E L E P U I M Q R X O S

 3 9 K C A I E L E P U T M Q R X O S

 5 6 K C A I E L E P U T M Q R X O S

 5 6 K C A I E E L P U T M Q R X O S

 6 5 K C A I E E L P U T M Q R X O S

 6 5 E C A I E K L P U T M Q R X O S

 6 5 E C A I E K L P U T M Q R X O S

Partitioning trace (array contents before and after each exchange)

initial values

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

!nal exchange

result

v

6

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)
{
 int i = lo, j = hi+1;
 while (true)
 {
 while (less(a[++i], a[lo]))
 if (i == hi) break;

 while (less(a[lo], a[--j]))
 if (j == lo) break;

 if (i >= j) break;
 exch(a, i, j);
 }

 exch(a, lo, j);
 return j;
}

swap with partitioning item

check if pointers cross

find item on right to
swap

find item on left to swap

swap

return index of item now known to be in place

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

7

Quicksort: Java implementation

public class Quick
{
 private static int partition(Comparable[] a, int lo, int hi)
 { /* see previous slide */ }

 public static void sort(Comparable[] a)
 {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }
}

shuffle needed for
performance guarantee

(stay tuned)

Quicksort trace

8

 lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Q U I C K S O R T E X A M P L E
 K R A T E L E P U I M Q C X O S
 0 5 15 E C A I E K L P U T M Q R X O S
 0 3 4 E C A E I K L P U T M Q R X O S
 0 2 2 A C E E I K L P U T M Q R X O S
 0 0 1 A C E E I K L P U T M Q R X O S
 1 1 A C E E I K L P U T M Q R X O S
 4 4 A C E E I K L P U T M Q R X O S
 6 6 15 A C E E I K L P U T M Q R X O S
 7 9 15 A C E E I K L M O P T Q R X U S
 7 7 8 A C E E I K L M O P T Q R X U S
 8 8 A C E E I K L M O P T Q R X U S
 10 13 15 A C E E I K L M O P S Q R T U X
 10 12 12 A C E E I K L M O P R Q S T U X
 10 11 11 A C E E I K L M O P Q R S T U X
 10 10 A C E E I K L M O P Q R S T U X
 14 14 15 A C E E I K L M O P Q R S T U X
 15 15 A C E E I K L M O P Q R S T U X

 A C E E I K L M O P Q R S T U X

no partition
 for subarrays

 of size 1

initial values

random shu!e

result

Quicksort trace (array contents after each partition)

Quicksort animation

9

http://www.sorting-algorithms.com/quick-sort

50 random elements

in order

current subarray

algorithm position

not in order

10

Quicksort: implementation details

Partitioning in-place. Using a spare array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier
than it might seem.

Staying in bounds. The (j == lo) test is redundant (why?),
but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) best
to stop on elements equal to the partitioning element.

11

Quicksort: empirical analysis

Running time estimates:

• Home PC executes 108 compares/second.

• Supercomputer executes 1012 compares/second.

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N) quicksort (N log N)quicksort (N log N)quicksort (N log N)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.3 sec 6 min

super instant 1 second 1 week instant instant instant instant instant instant

12

Quicksort: best-case analysis

Best case. Number of compares is ~ N lg N.

Worst case. Number of compares is ~ ½ N 2 .

13

Quicksort: worst-case analysis

Proposition. The average number of compares CN to quicksort an array of

N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf 1. CN satisfies the recurrence C0 = C1 = 0 and for N ≥ 2:

• Multiply both sides by N and collect terms:

• Subtract this from the same equation for N - 1:

• Rearrange terms and divide by N (N + 1):

14

Quicksort: average-case analysis

partitioning right partitioning
probability

left

CN

N + 1
=

CN−1

N
+

2
N + 1

NCN = N(N + 1) + 2(C0 + C1 + . . . + CN−1)

CN = (N + 1) +
C0 + C1 + . . . + CN−1

N
+

CN−1 + CN−2 + . . . + C0

N

NCN − (N − 1)CN−1 = 2N + 2CN−1

CN

N + 1
=

CN−1

N
+

2
N + 1

=
CN−2

N − 1
+

2
N

+
2

N + 1

=
CN−3

N − 2
+

2
N − 1

+
2
N

+
2

N + 1

=
2
1

+
2
2

+
2
3

+ . . . +
2

N + 1

• Repeatedly apply above equation:

• Approximate sum by an integral:

• Finally, the desired result:

15

Quicksort: average-case analysis

CN ∼ 2(N + 1)
�

1 +
1
2

+
1
3

+ . . .
1
N

�

∼ 2(N + 1)
� N

1

1
x

dx

CN ∼ 2(N + 1) lnN ≈ 1.39N lg N

previous equation

1

2

3

4

6

75

8

9

11

12

1310

Proposition. The average number of compares CN to quicksort an array of

N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf 2. Consider BST representation of keys 1 to N.

16

Quicksort: average-case analysis

9 10 2 5 8 7 6 1 11 12 13 3 4

shuffle

first partitioning
element

first partitioning
element in

left subarray

Proposition. The average number of compares CN to quicksort an array of

N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf 2. Consider BST representation of keys 1 to N.

• A key is compared only with its ancestors and descendants.

• Probability i and j are compared equals 2 / | j - i + 1|.

17

Quicksort: average-case analysis

first partitioning
element

first partitioning
element in

left subarray

1

2

3

4

6

75

8

9

11

12

1310

2 and 6 are compared
(when 3 is partition)

1 and 6 are not compared
(because 3 is partition)

Proposition. The average number of compares CN to quicksort an array of

N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf 2. Consider BST representation of keys 1 to N.

• A key is compared only with its ancestors and descendants.

• Probability i and j are compared equals 2 / | j - i + 1|.

• Expected number of compares =

18

Quicksort: average-case analysis

N�

i=1

N�

j=i+1

2
j − i + 1

= 2
N�

i=1

N−i+1�

j=2

1
j

≤ 2N

N�

j=1

1
j

∼ 2N

� N

x=1

1
x

dx

= 2N lnN

all pairs i and j

19

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

• N + (N - 1) + (N - 2) + … + 1 ~ ½ N 2.

• More likely that your computer is struck by lightning bolt.

Average case. Number of compares is ~ 1.39 N lg N.

• 39% more compares than mergesort.

• But faster than mergesort in practice because of less data movement.

Random shuffle.

• Probabilistic guarantee against worst case.

• Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array

• Is sorted or reverse sorted.

• Has many duplicates (even if randomized!)

Insertion sort small subarrays.

• Even quicksort has too much overhead for tiny subarrays.

• Can delay insertion sort until end.

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo + CUTOFF - 1)
 {
 Insertion.sort(a, lo, hi);
 return;
 }
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

20

Quicksort: practical improvements

21

Quicksort: practical improvements

Insertion sort small subarrays.

• Even quicksort has too much overhead for tiny subarrays.

• Can delay insertion sort until end.

Median of sample.

• Best choice of pivot element = median.

• Estimate true median by taking median of sample.

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;

 int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
 swap(a, lo, m);

 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

22

Quicksort: practical improvements

Insertion sort small subarrays.

• Even quicksort has too much overhead for tiny subarrays.

• Can delay insertion sort until end.

Median of sample.

• Best choice of pivot element = median.

• Estimate true median by taking median of sample.

Optimize parameters.

• Median-of-3 (random) elements.

• Cutoff to insertion sort for ≈ 10 elements.

~ 12/7 N ln N compares (slightly fewer)
~ 12/35 N ln N exchanges (slightly more)

Quicksort with median-of-3 and cutoff to insertion sort: visualization

23

partitioning element

Quicksort with median-of-3 partitioning and cuto! for small subarrays

input

result

result of
"rst partition

left subarray
partially sorted

both subarrays
partially sorted

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

24

25

Selection

Goal. Find the kth largest element.
Ex. Min (k = 0), max (k = N - 1), median (k = N / 2).

Applications.

• Order statistics.

• Find the “top k.”

Use theory as a guide.

• Easy O(N log N) upper bound. How?

• Easy O(N) upper bound for k = 1, 2, 3. How?

• Easy Ω(N) lower bound. Why?

Which is true?

• Ω(N log N) lower bound?

• O(N) upper bound?

is selection as hard as sorting?

is there a linear-time algorithm for all k?

Partition array so that:

• Element a[j] is in place.

• No larger element to the left of j.

• No smaller element to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

public static Comparable select(Comparable[] a, int k)
{
 StdRandom.shuffle(a);
 int lo = 0, hi = a.length - 1;
 while (hi > lo)
 {
 int j = partition(a, lo, hi);
 if (j < k) lo = j + 1;
 else if (j > k) hi = j - 1;
 else return a[k];
 }
 return a[k];
}

26

Quick-select

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

if a[k] is here
set hi to j-1

if a[k] is here
set lo to j+1

27

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.
Pf sketch.

• Intuitively, each partitioning step roughly splits array in half:
N + N / 2 + N / 4 + … + 1 ~ 2N compares.

• Formal analysis similar to quicksort analysis yields:

Ex. (2 + 2 ln 2) N compares to find the median.

Remark. Quick-select uses ~ ½ N 2 compares in worst case, but
(as with quicksort) the random shuffle provides a probabilistic guarantee.

CN = 2 N + k ln (N / k) + (N – k) ln (N / (N – k))

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a
compare-based selection algorithm whose worst-case running time is linear.

Remark. But, constants are too high ⇒ not used in practice.

Use theory as a guide.

• Still worthwhile to seek practical linear-time (worst-case) algorithm.

• Until one is discovered, use quick-select if you don’t need a full sort.
28

Theoretical context for selection

L

i

i
L

L

L

Time Bounds for Selection

bY .

Manuel Blum, Robert W. Floyd, Vaughan Watt,

Ronald L. Rive&, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of

n numbers is shown to be at most a linear function of n by analysis of

a new selection algorithm -- PICK. Specifically, no more than

5.4305 n comparisons are ever required. This bound is improved for

extreme values of i , and a new lower bound on the requisite number

of comparisons is also proved.

This work was supported by the National Science Foundation under grants
GJ-992 and GJ-33170X.

1

29

Generic methods

In our select() implementation, client needs a cast.

The compiler complains.

Q. How to fix?

 % javac Quick.java
 Note: Quick.java uses unchecked or unsafe operations.
 Note: Recompile with -Xlint:unchecked for details.

 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 Double median = (Double) Quick.select(a, N/2);

unsafe cast
required in client

30

Generic methods

Pedantic (safe) version. Compiles cleanly, no cast needed in client.

Remark. Obnoxious code needed in system sort; not in this course (for brevity).

public class QuickPedantic
{
 public static <Key extends Comparable<Key>> Key select(Key[] a, int k)
 { /* as before */ }

 public static <Key extends Comparable<Key>> void sort(Key[] a)
 { /* as before */ }

 private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
 { /* as before */ }

 private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
 { /* as before */ }

 private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
 { Key swap = a[i]; a[i] = a[j]; a[j] = swap; }

}

generic type variable
(value inferred from argument a[])

return type matches array type

can declare variables of generic type

http://www.cs.princeton.edu/algs4/23quicksort/QuickPedantic.java.html

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

31 32

Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

• Sort population by age.

• Find collinear points.

• Remove duplicates from mailing list.

• Sort job applicants by college attended.

 Typical characteristics of such applications.

• Huge array.

• Small number of key values.

see Assignment 3

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key

33

Duplicate keys

Mergesort with duplicate keys. Always between ½ N lg N and N lg N compares.

Quicksort with duplicate keys.

• Algorithm goes quadratic unless partitioning stops on equal keys!

• 1990s C user found this defect in qsort().

several textbook and system
implementation also have this defect

S T O P O N E Q U A L K E Y S

swap if we don't stop
on equal keys

if we stop
on equal
keys

Duplicate keys: the problem

Mistake. Put all keys equal to the partitioning element on one side.
Consequence. ~ ½ N 2 compares when all keys equal.

Recommended. Stop scans on keys equal to the partitioning element.
Consequence. ~ N lg N compares when all keys equal.

Desirable. Put all keys equal to the partitioning element in place.

34

B A A B A B B B C C C A A A A A A A A A A A

B A A B A B C C B C B A A A A A A A A A A A

A A A B B B B B C C C A A A A A A A A A A A

Goal. Partition array into 3 parts so that:

• Elements between lt and gt equal to partition element v.

• No larger elements to left of lt.

• No smaller elements to right of gt.

Dutch national flag problem. [Edsger Dijkstra]

• Conventional wisdom until mid 1990s: not worth doing.

• New approach discovered when fixing mistake in C library qsort().

• Now incorporated into qsort() and Java system sort.
35

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

36

Dijkstra 3-way partitioning algorithm

3-way partitioning.

• Let v be partitioning element a[lo].

• Scan i from left to right.
- a[i] less than v: exchange a[lt] with a[i] and increment both lt and i
- a[i] greater than v: exchange a[gt] with a[i] and decrement gt
- a[i] equal to v: increment i

All the right properties.

• In-place.

• Not much code.

• Small overhead if no equal keys.

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

37

3-way partitioning: trace

 a[]
lt i gt 0 1 2 3 4 5 6 7 8 9 10 11
 0 0 11 R B W W R W B R R W B R
 0 1 11 R B W W R W B R R W B R
 1 2 11 B R W W R W B R R W B R
 1 2 10 B R R W R W B R R W B W
 1 3 10 B R R W R W B R R W B W
 1 3 9 B R R B R W B R R W W W
 2 4 9 B B R R R W B R R W W W
 2 5 9 B B R R R W B R R W W W
 2 5 8 B B R R R W B R R W W W
 2 5 7 B B R R R R B R W W W W
 2 6 7 B B R R R R B R W W W W
 3 7 7 B B B R R R R R W W W W
 3 8 7 B B B R R R R R W W W W
 3 8 7 B B B R R R R R W W W W

v

3-way partitioning trace (array contents after each loop iteration)

private static void sort(Comparable[] a, int lo, int hi)
{
 if (hi <= lo) return;
 int lt = lo, gt = hi;
 Comparable v = a[lo];
 int i = lo;
 while (i <= gt)
 {
 int cmp = a[i].compareTo(v);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
}

38

3-way quicksort: Java implementation

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

39

3-way quicksort: visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

40

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the ith one occurs
xi times, any compare-based sorting algorithm must use at least

compares in the worst case.

Proposition. [Sedgewick-Bentley, 1997]
Quicksort with 3-way partitioning is entropy-optimal.
Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces running
time from linearithmic to linear in broad class of applications.

N lg N when all distinct;
linear when only a constant number of distinct keys

proportional to lower bound

lg
�

N !
x1! x2! · · · xn!

�
∼ −

n�

i=1

xi lg
xi

N

‣ selection
‣ duplicate keys
‣ comparators
‣ system sorts

41

Sorting algorithms are essential in a broad variety of applications:
• Sort a list of names.

• Organize an MP3 library.

• Display Google PageRank results.

• List RSS feed in reverse chronological order.

• Find the median.

• Find the closest pair.

• Binary search in a database.

• Identify statistical outliers.

• Find duplicates in a mailing list.

• Data compression.

• Computer graphics.

• Computational biology.

• Supply chain management.

• Load balancing on a parallel computer.
. . .

Every system needs (and has) a system sort!
42

obvious applications

problems become easy once
elements
are in sorted order

non-obvious applications

Sorting applications

43

Java system sorts

Java uses both mergesort and quicksort.

• Arrays.sort() sorts an array of Comparable or of any primitive type.

• Uses tuned quicksort for primitive types; tuned mergesort for objects.

Q. Why use different algorithms, depending on type?

 import java.util.Arrays;

 public class StringSort
 {
 public static void main(String[] args)
 {
 String[] a = StdIn.readAll().split("\\s+");
 Arrays.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
 }

44

War story (C qsort function)

AT&T Bell Labs (1991). Allan Wilks and Rick Becker discovered that a qsort()
call that should have taken a few minutes was consuming hours of CPU time.

At the time, almost all qsort() implementations based on those in:

• Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.

• BSD Unix (1983): quadratic time to sort random arrays of 0s and 1s.

Why is qsort() so slow?

Basic algorithm = quicksort.

• Cutoff to insertion sort for small subarrays.

• Partitioning scheme: Bentley-McIlroy 3-way partitioning. [ahead]

• Partitioning element.
- small arrays: middle element

- medium arrays: median of 3

- large arrays: Tukey's ninther [next slide]

Now widely used. C, C++, Java, ….
45

Engineering a system sort

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(11), 1249–1265 (NOVEMBER 1993)

Engineering a Sort Function

JON L. BENTLEY
M. DOUGLAS McILROY

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY
We recount the history of a new qsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

KEY WORDS Quicksort Sorting algorithms Performance tuning Algorithm design and implementation Testing

INTRODUCTION
C libraries have long included a qsort function to sort an array, usually implemented by
Hoare’s Quicksort.1 Because existing qsorts are flawed, we built a new one. This paper
summarizes its evolution.
Compared to existing library sorts, our new qsort is faster—typically about twice as

fast—clearer, and more robust under nonrandom inputs. It uses some standard Quicksort
tricks, abandons others, and introduces some new tricks of its own. Our approach to build-
ing a qsort is relevant to engineering other algorithms.
The qsort on our home system, based on Scowen’s ‘Quickersort’,2 had served faith-

fully since Lee McMahon wrote it almost two decades ago. Shipped with the landmark Sev-
enth Edition Unix System,3 it became a model for other qsorts. Yet in the summer of
1991 our colleagues Allan Wilks and Rick Becker found that a qsort run that should have
taken a few minutes was chewing up hours of CPU time. Had they not interrupted it, it
would have gone on for weeks.4 They found that it took n 2 comparisons to sort an ‘organ-
pipe’ array of 2n integers: 123..nn.. 321.
Shopping around for a better qsort, we found that a qsort written at Berkeley in 1983

would consume quadratic time on arrays that contain a few elements repeated many
times—in particular arrays of random zeros and ones.5 In fact, among a dozen different
Unix libraries we found no qsort that could not easily be driven to quadratic behavior; all
were derived from the Seventh Edition or from the 1983 Berkeley function. The Seventh

0038-0644/93/111249–17$13.50 Received 21 August 1992
! 1993 by John Wiley & Sons, Ltd. Revised 10 May 1993

46

Tukey's ninther

Tukey's ninther. Median of the median of 3 samples, each of 3 elements.

• Approximates the median of 9.

• Uses at most 12 compares.

Q. Why use Tukey's ninther?
A. Better partitioning than random shuffle and less costly.

LR A P M C AG X JK R BZ E

A MR X KG J EB

K EM

Kninther

medians

groups of 3

nine evenly
spaced elements R J

47

Bentley-McIlroy 3-way partitioning

Partition elements into four parts:

• No larger elements to left of i.

• No smaller elements to right of j.

• Equal elements to left of p.

• Equal elements to right of q.

Afterwards, swap equal keys into center.

All the right properties.

• In-place.

• Not much code.

• Linear time if keys are all equal.

• Small overhead if no equal keys.

v = v < v > v = v

lo p i j q hi

48

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Q. Based on all this research, Java’s system sort is solid, right?

A. No: a killer input.

• Overflows function call stack in Java and crashes program.

• Would take quadratic time if it didn’t crash first.

more disastrous consequences in C

% more 250000.txt
0
218750
222662
11
166672
247070
83339
...

% java IntegerSort 250000 < 250000.txt
Exception in thread "main"
java.lang.StackOverflowError
 at java.util.Arrays.sort1(Arrays.java:562)
 at java.util.Arrays.sort1(Arrays.java:606)
 at java.util.Arrays.sort1(Arrays.java:608)
 at java.util.Arrays.sort1(Arrays.java:608)
 at java.util.Arrays.sort1(Arrays.java:608)
 ...

Java's sorting library crashes, even if
you give it as much stack space as Windows allows

250,000 integers
between 0 and 250,000

49

Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea. [A Killer Adversary for Quicksort]

• Construct malicious input on the fly while running system quicksort,
in response to the sequence of keys compared.

• Make partitioning element compare low against all keys not seen during
selection of partitioning element (but don't commit to their relative order).

• Not hard to identify partitioning element.

Consequences.

• Confirms theoretical possibility.

• Algorithmic complexity attack: you enter linear amount of data;
server performs quadratic amount of work.

Good news. Attack is not effective if sort() shuffles input array.

Q. Why do you think Arrays.sort() is deterministic?

50

System sort: Which algorithm to use?

Many sorting algorithms to choose from:

Internal sorts.

• Insertion sort, selection sort, bubblesort, shaker sort.

• Quicksort, mergesort, heapsort, samplesort, shellsort.

• Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

String/radix sorts. Distribution, MSD, LSD, 3-way string quicksort.

Parallel sorts.

• Bitonic sort, Batcher even-odd sort.

• Smooth sort, cube sort, column sort.

• GPUsort.

51

System sort: Which algorithm to use?

Applications have diverse attributes.

• Stable?

• Parallel?

• Deterministic?

• Keys all distinct?

• Multiple key types?

• Linked list or arrays?

• Large or small records?

• Is your array randomly ordered?

• Need guaranteed performance?

Elementary sort may be method of choice for some combination.
Cannot cover all combinations of attributes.

Q. Is the system sort good enough?
A. Usually.

many more combinations of
attributes than algorithms

52

Sorting summary

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

???

x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x N 2 / 2 2 N ln N N lg N N log N probabilistic guarantee
fastest in practice

x N 2 / 2 2 N ln N N improves quicksort in presence of
duplicate keys

x N lg N N lg N N lg N N log N guarantee, stable

x x N lg N N lg N N lg N holy sorting grail

53

Which sorting algorithm?

original sorted? ? ? ? ? ?

lifo
fifo
data
type
hash
heap
sort
link
list
push
find
root
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

find
fifo
data
exch
hash
heap
less
left
leaf
lifo
push
root
list
tree
null
path
node
link
sort
type
sink
swim
next
swap

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
left
node
null
path
tree
exch
less
next
sink
swap
swim

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
sort
tree
null
path
node
type
root
push
sink
swim
next
swap

data
fifo
lifo
type
hash
heap
link
sort
find
list
push
root
leaf
null
path
tree
exch
left
less
node
next
sink
swap
swim

hash
fifo
data
link
leaf
heap
exch
node
lifo
left
find
path
list
next
less
root
sink
swim
null
sort
type
tree
push
swap

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
next
node
null
path
push
root
sink
sort
swap
swim
tree
type

lifo
fifo
data
type
hash
heap
sort
link
list
push
find
root
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

find
fifo
data
exch
hash
heap
less
left
leaf
lifo
push
root
list
tree
null
path
node
link
sort
type
sink
swim
next
swap

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
left
node
null
path
tree
exch
less
next
sink
swap
swim

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
sort
tree
null
path
node
type
root
push
sink
swim
next
swap

data
fifo
lifo
type
hash
heap
link
sort
find
list
push
root
leaf
null
path
tree
exch
left
less
node
next
sink
swap
swim

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
next
node
null
path
push
root
sink
sort
swap
swim
tree
type

54

Which sorting algorithm?

lifo
fifo
data
type
hash
heap
sort
link
list
push
find
root
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
next
node
null
path
push
root
sink
sort
swap
swim
tree
type

original sorted

find
fifo
data
exch
hash
heap
less
left
leaf
lifo
push
root
list
tree
null
path
node
link
sort
type
sink
swim
next
swap

quicksort

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
left
node
null
path
tree
exch
less
next
sink
swap
swim

mergesort

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

insertion

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
sort
tree
null
path
node
type
root
push
sink
swim
next
swap

selection

data
fifo
lifo
type
hash
heap
link
sort
find
list
push
root
leaf
null
path
tree
exch
left
less
node
next
sink
swap
swim

merge BU

hash
fifo
data
link
leaf
heap
exch
node
lifo
left
find
path
list
next
less
root
sink
swim
null
sort
type
tree
push
swap

hash
fifo
data
link
leaf
heap
exch
node
lifo
left
find
path
list
next
less
root
sink
swim
null
sort
type
tree
push
swap

shellsort

