1.4 Analysis of Algorithms

- observations
- mathematical models
- order-of-growth classifications
- dependencies on inputs
- memory

Algorithms, $4^{\text {th }}$ Edition

Programmer needs to develop
a working solution.

Client wants to solve problem efficiently.

Student might play any or all of these roles someday.

Theoretician wants to understand.

Basic blocking and tackling is sometimes necessary. [this lecture]

Running time

" As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise-By what course of calculation can these results be arrived at by the machine in the shortest time? " - Charles Babbage (1864)

Analytic Engine

Reasons to analyze algorithms

Primary practical reason: avoid performance bugs.

client gets poor performance because programmer did not understand performance characteristics

Discrete Fourier transform.

- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N^{2} steps.
- FFT algorithm: $N \log N$ steps, enables new technology.

Friedrich Gauss 1805

The challenge
Q. Will my program be able to solve a large practical input?

Key insight. [Knuth 1970s] Use scientific method to understand performance.

N -body simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N^{2} steps.
- Barnes-Hut algorithm: $N \log N$ steps, enables new research.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Feature of the natural world = computer itself.

3-sum. Given N distinct integers, how many triples sum to exactly zero?

```
% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5
% java ThreeSum < 8ints.txt
4
```

	$a[i]$	$a[j]$	$a[k]$	sum
1	30	-40	10	0
2	30	-20	-10	0
3	-40	40	0	0
4	-10	0	10	0

Context. Deeply related to problems in computational geometry.

Measuring the running time
Q. How to time a program?
A. Manual.

\% java ThreeSum < 1Kints.txt

70
\% java ThreeSum < 2Kints.txt
tick tick tick tick tick tick tick tick
 528
\% java ThreeSum < 4Kints.txt

 tick ticic tick tick $t i c k$ tick tick
ticik tick tick tick tick tick tick $t i k$ tick tick ticic tick tick ticic tick tiok
tick tick tick tick tick tick tick tiok tiok tick tick tiok tick tick tick tick
 tick tick tick tick tick tick tick tiik
tick tick tick tick tick tick tick tick
 tick tick tick tiock tick tick tiock tiok tick tick tick tick tick tick tick tick
tick tick tick tiok tick tick tick tick
 tick titck tick tiok titck tick tick titk
tick ticictick tick ticictich
tick tiok tick tick tiok tick tic tick tick tick ticictick titk ticictick
tick fick tick tick tick tiok tick tick
 tick tick tick tick tick tick tick tio
tick tick tick tick tick tick tick tick
Q. How to time a program?
A. Automatic.

public class	Stopwatch	
Stopwatch()	create a new stopwatch	
double	elapsedTime ()	time since creation (in seconds)

```
public static void main(String[] args)
{
    int[] a = StdArrayIO.readInt1D();
    Stopwatch stopwatch = new Stopwatch();
    StdOut.println(ThreeSum.count(a))
    double time = stopwatch.elapsedTime();
}
```

Empirical analysis

Run the program for various input sizes and measure running time.

\mathbf{N}	time (seconds) +
250	0.0
500	0.0
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1
16,000	$?$

Q. How to time a program?
A. Automatic.

public class	Stopwatch	
Stopwatch ()	create a new stopwatch	
double	elapsedTime()	time since creation (in seconds)

public class Stopwatch
$\{$
private final long start = System. currentTimeMillis();
public double elapsedTime()
\{
long now $=$ System.currentTimeMillis(); return (now - start) / 1000.0; \}
\}

Data analysis

Standard plot. Plot running time $T(N)$ vs. input size N.

Prediction and validation

Log-log plot. Plot running time vs. input size N using $\log -\log$ scale.

log-log plot | $51.2-1$ |
| :---: |
| 25.6 |
| 12.8 |

Regression. Fit straight line through data points: $a N^{b}$.

$$
\begin{aligned}
& \lg (T(N))=b \lg N+c \\
& b=2.999 \\
& c=-33.2103 \\
& T(N)=a N^{b}, \text { where } a=2^{c}
\end{aligned}
$$

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law hypothesis.

Run program, doubling the size of the input.

N	time (seconds) +	ratio	\lg ratio
250	0.0		-
500	0.0	4.8	2.3
1,000	0.1	6.9	2.8
2,000	0.8	7.7	2.9
4,000	6.4	8.0	3.0
8,000	51.1	8.0	3.0

Hypothesis. Running time is about $a N^{b}$ with $b=\lg$ ratio.
Caveat. Cannot identify logarithmic factors with doubling hypothesis.

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Predictions.

- 51.0 seconds for $N=8,000$.
- 408.1 seconds for $N=16,000$.

Observations.

N	time (seconds) $+\mathrm{51.1}$
8,000	51.0
8,000	51.1
8,000	410.8
16,000	

validates hypothesis!

Doubling hypothesis
Doubling hypothesis. Quick way to estimate b in a power-law hypothesis.
Q. How to estimate a ?
A. Run the program!

N	time (seconds) +
8,000	51.1
8,000	51.0
8,000	51.1

$51.1=a \times 8000^{3}$

$$
\Rightarrow \quad a=9.98 \times 10^{-11}
$$

Hypothesis. Running time is about $9.98 \times 10^{-11} \times N^{3}$ seconds.
almost identical hypothesis
to one obtained via linear regression

System independent effects.

- Algorithm. \qquad determines exponent b
- Input data.

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other applications, ...

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

String s = StdIn.readString (); int $\mathrm{N}=$ s.length () ;
for (int $i=0 ; i<N ; i++)$
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}$; $\mathrm{j}++$) distance[i][j] =

N	time
1,000	0.11
2,000	0.35
4,000	1.6
8,000	6.5

Jenny $\sim c_{1} N^{2}$ seconds

Kenny $\sim \mathrm{c}_{2} \mathrm{~N}$ seconds

Mathematical models for running time

Total running time: sum of cost \times frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

operation	example	nanoseconds \dagger
integer add	$a+b$	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating-point add	$a+b$	4.6
floating-point multiply	$\mathrm{a} * \mathrm{~b}$	4.2
floating-point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math. $\operatorname{atan} 2(\mathrm{y}, \mathrm{x})$	129.0
...	...	\ldots

\dagger Running OS X on Macbook Pro 2.2 GHz with 2GB RAM

operation	example	nanoseconds \dagger
variable declaration	int a	c_{1}
assignment statement	$\mathrm{a}=\mathrm{b}$	C_{2}
integer compare	$\mathrm{a}<\mathrm{b}$	C3
array element access	a [i]	C_{4}
array length	a. length	C5
1D array allocation	new int[N]	$\mathrm{C}_{6} \mathrm{~N}$
2D array allocation	new int[N] [N]	$C_{7} \mathrm{~N}^{2}$
string length	s.length ()	C8
substring extraction	s.substring ($\mathrm{N} / 2, \mathrm{~N}$)	C9
string concatenation	$s+t$	$\mathrm{c}_{10} \mathrm{~N}$

Novice mistake. Abusive string concatenation.

Example: 2-sum

Q. How many instructions as a function of input size N ?

Cost model. Use some basic operation as a proxy for running time.
int count $=0$;
for (int $i=0 ; i<N ; i++)$
for (int $j=i+1 ; ~ j<N ; j++$)
if $(a[i]+a[j]==0)$
count++;

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don' \dagger care

operation	frequency	tilde notation
variable declaration	$N+2$	$\sim N$
assignment statement	$N+2$	$\sim N$
less than compare	$1 / 2(N+1)(N+2)$	$\sim 1 / 2 N^{2}$
equal to compare	$1 / 2 N(N-1)$	$\sim 1 / 2 N^{2}$
array access	$N(N-1)$	$\sim N^{2}$
increment	N to $2 N$	$\sim N$ to $\sim 2 N$

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don' \dagger care

$$
\begin{array}{lll}
\text { Ex 1. } & 1 / 6 N^{3}+20 N+16 & \sim 1 / 6 N^{3} \\
\text { Ex 2. } & 1 / 6 N^{3}+100 N^{4 / 3}+56 & \sim 1 / 6 N^{3} \\
\text { Ex 3. } & 1 / 6 N^{3}-\underbrace{1 / 2 N^{2}+1 / 3 N}_{\substack{\text { discard lower-order terms } \\
\text { (e.g., } \mathrm{N}=1000: 500 \text { thousand vs. } 166 \text { million) }}} & \sim 1 / 6 N^{3}
\end{array}
$$

Leading-term approximation

$$
\text { Technical definition. } f(N) \sim g(N) \text { means } \lim _{N \rightarrow \infty} \frac{f(N)}{g(N)}=1
$$

Q. Approximately how many array accesses as a function of input size N ?

Bottom line. Use cost model and tilde notation to simplify frequency counts.
Q. Approximately how many array accesses as a function of input size N ?

Bottom line. Use cost model and tilde notation to simplify frequency counts.

Mathematical models for running time
In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.

costs (depend on machine, compiler)

Bottom line. We use approximate models in this course: $T(N) \sim c N^{3}$.
Q. How to estimate a discrete sum?

A1. Take COS 340.
A2. Replace the sum with an integral, and use calculus!

Ex 1. $1+2+\ldots+N$.

$$
\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x d x \sim \frac{1}{2} N^{2}
$$

Ex 2. $1+1 / 2+1 / 3+\ldots+1 / N$.

$$
\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} d x=\ln N
$$

Ex 3. 3-sum triple loop. $\quad \sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=j}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} d z d y d x \sim \frac{1}{6} N^{3}$ 35

Good news. the small set of functions

$$
1, \log N, N, N \log N, N^{2}, N^{3}, \text { and } 2^{N}
$$

suffices to describe order-of-growth of typical algorithms.

growth rate	name	typical code framework	description	example	$\mathrm{T}(2 \mathrm{~N}) / \mathrm{T}(\mathrm{N})$
1	constant	$\mathrm{a}=\mathrm{b}+\mathrm{c}$;	statement	add two numbers	1
$\log \mathrm{N}$	logarithmic		divide in half	binary search	~ 1
N	linear	$\begin{gathered} \text { for (int } i=0 ; i<n ; i++) \\ f \ldots \end{gathered}$	loop	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N^{2}	quadratic	$\begin{aligned} & \text { for (int } i=0 ; i<N ; i++) \\ & \text { for }(\text { int } j=0 ; j<N ; j++) \\ & \{1 \ldots \end{aligned}$	double loop	check all pairs	4
N^{3}	cubic	$\begin{aligned} & \text { for (int } i=0 ; i<N ; i++) \\ & \text { for }(\text { int } j=0 ; j<N ; j++) \\ & \text { for (int } k=0 ; k<N ; k++) \\ & \{\cdots \end{aligned}$	triple loop	check all triples	8
2^{N}	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Practical implications of order-of-growth

growth rate	problem size solvable in minutes			
	1970s	1980s	1990s	2000s
1	any	any	any	any
$\log N$	any	any	any	any
N	millions	tens of millions	hundreds of millions	billions
$N \log N$	hundreds of thousands	millions	millions	hundreds of millions
N^{2}	hundreds	thousand	thousands	tens of thousands
N^{3}	hundred	hundreds	thousand	thousands
2^{N}	20	20s	20s	30

Binary search
Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33 .

Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33.

6	13	14	25	33	43	51	53	64	72	84	93	95	96	97
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\uparrow			\uparrow			\uparrow								
10				mid			hi							

Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33.

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33 .

Binary search: Java implementation

Trivial to implement?

- First binary search published in 1946; first bug-free one published in 1962.
- Java bug in Arrays .binarySearch() not fixed until 2006.

```
public static int binarySearch(int[] a, int key)
{
    int lo = 0, hi = a.length-1
    while (lo <= hi)
    {
        int mid = 10 + (hi - lo) / 2;
        if (key < a[mid]) hi = mid - 1;
        else if (key > a[mid]) lo = mid + 1;
        else return mid;
    }
    return -1;
```

\}

Invariant. If key appears in the array a[], then a[10] $\leq k e y \leq a[h i]$.

Binary search: mathematical analysis

Proposition. Binary search uses at most $1+\lg N$ compares to search in a sorted array of size N.

Def. $T(N) \equiv$ \# compares to binary search in a sorted subarray of size N.

Binary search recurrence. $T(N) \leq T(N / 2)+1$ for $N>1$, with $T(1)=1$. \uparrow
Pf sketch.

$$
\begin{aligned}
T(N) & \leq T(N / 2)+1 \\
& \leq T(N / 4)+1+1 \\
& \leq T(N / 8)+1+1+1 \\
& \ldots \\
& \leq T(N / N)+1+1+\ldots+1 \\
& =1+\lg N
\end{aligned}
$$

given
apply recurrence to first term
apply recurrence to first term
stop applying, $T(1)=1$

An $N^{2} \log N$ algorithm for 3-sum

Step 1. Sort the N numbers.

Step 2. For each pair of numbers a[i] and a[j], binary search for - (a[i] $+a[j])$.

Analysis. Order of growth is $N^{2} \log N$.

- Step 1: N^{2} with insertion sort.
- Step 2: $N^{2} \log N$ with binary search.

```
input
    30 -40 -20 -10 40 0 10
sort
-40
binary search
(-40, -20) 60
(-40, -10) 30
(-40, 0) 40
(-40, 5) 35
(-40, 10) 30
(-40, 40) 0
(-10, 0) 10
(-20, 10) 10, a[i] <a[j] <a[k]
(-20, 10) 10) & to avoid
(10,30)
(10, 40) -50
( 30, 40)
```


Comparing programs

Hypothesis. The $N^{2} \log N$ three-sum algorithm is significantly faster in practice than the brute-force N^{3} one.

N	time (seconds)	N	time (seconds)
1,000	0.1	1,000	0.14
2,000	0.8	2,000	0.18
4,000	6.4	4,000	0.34
8,000	51.1	8,000	0.96
ThreeSum.java		16,000	3.67
		32,000	14.88

ThreeSumDeluxe.java

Bottom line. Typically, better order of growth \Rightarrow faster in practice.

> dependencies on inputs

Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- Need a model for "random" input.
- Provides a way to predict performance.

$$
\begin{aligned}
& \text { Ex 1. Array accesses for brute-force } 3 \text { sum. } \\
& \text { Best: } \quad \sim 1 / 2 N^{3} \\
& \text { Average: } \sim 1 / 2 N^{3} \\
& \text { Worst: } \sim 1 / 2 N^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 2. Compares for binary search. } \\
& \text { Best: } \quad \sim 1 \\
& \text { Average: } \sim \lg N \\
& \text { Worst: } \quad \sim \lg N
\end{aligned}
$$

Best case. Lower bound on cost.
Worst case. Upper bound on cost.
Average case. "Expected" cost.

Actual data might not match input model?

- Need to understand input to effectively process it.
- Approach 1: design for the worst case.
- Approach 2: randomize, depend on probabilistic guarantee.

We use tilde notation whenever possible.

- Big-Oh notation suppresses leading constant.
- Big-Oh notation only provides upper bound (not lower bound).

Bit. 0 or 1.
Byte. 8 bits.
Megabyte (MB). 1 million bytes.
Gigabyte (GB). 1 billion bytes.

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

for primitive types

Typical memory requirements for objects in Java
Object overhead. 8 bytes.
Reference. 4 bytes.

Ex 1. A Complex object consumes 24 bytes of memory.

Object overhead. 8 bytes.

Reference. 4 bytes.

Ex 2. A virgin string of length N consumes $\sim 2 N$ bytes of memory.

\}

8 bytes (object overhead) 4 bytes (int)
private int offset; private int count; private int hash; private char[] value;

object overhead	
value	
offset	\leftarrow reference
count	
hash	

$$
2 \mathrm{~N}+40 \text { bytes }
$$

Q. How much memory does weightedQuickUnionuF use as a function of N ?

```
public class WeightedQuickUnionUF
{
    private int[] id;
    private int[] sz;
    public WeightedQuickUnionUF(int N)
    pub
        id = new int[N];
        sz = new int[N]
        for (int i = 0; i < N; i++) id[i] = i;
        for (int i = 0; i < N; i++) sz[i] = 1;
    }
    public boolean find(int p, int q)
    { ... }
    public void union(int p, int q)
    { ... }
}
```

Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use tilde notation to simplify analysis.
- Model enables us to explain behavior.

Scientific method.

- Mathematical model is independent of a particular system:
applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.

