
Algorithms
and

Data Structures

COS 226, Fall 2010

Kevin Wayne

Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · September 15, 2010 7:39:57 PM

Course Overview

‣ outline
‣ why study algorithms?
‣ usual suspects
‣ coursework
‣ resources

3

What is COS 226?

• Intermediate-level survey course.

• Programming and problem solving, with applications.

• Algorithm: method for solving a problem.

• Data structure: method to store information.

topic data structures and algorithms

data types stack, queue, union-find, priority queue

sorting quicksort, mergesort, heapsort, radix sorts

searching hash table, BST, red-black tree

graphs BFS, DFS, Prim, Kruskal, Dijkstra

strings KMP, regular expressions, TST, Huffman, LZW

geometry Graham scan, k-d tree, Voronoi diagram

COS 226 course overview

4

Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ...

Biology. Human genome project, protein folding, ...

Computers. Circuit layout, file system, compilers, ...

Computer graphics. Movies, video games, virtual reality, ...

Security. Cell phones, e-commerce, voting machines, ...

Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV, ...

Transportation. Airline crew scheduling, map routing, ...

Physics. N-body simulation, particle collision simulation, ...

…

Why study algorithms?

Old roots, new opportunities.

• Study of algorithms dates at least to Euclid.

• Some important algorithms were
discovered by undergraduates!

5

300 BCE

1920s

1940s
1950s
1960s
1970s
1980s
1990s
2000s

Why study algorithms?

6

To solve problems that could not otherwise be addressed.

Ex. Network connectivity. [stay tuned]

Why study algorithms?

7

For intellectual stimulation.

Why study algorithms?

“ For me, great algorithms are the poetry of computation. Just like

 verse, they can be terse, allusive, dense, and even mysterious. But

 once unlocked, they cast a brilliant new light on some aspect of

 computing. ” — F. Sullivan

“ An algorithm must be seen to be believed. ” — D. E. Knuth

They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models in scientific inquiry.

8

20th century science
(formula based)

€

E = mc2

€

F = ma

€

F = Gm1m2

r2

€

−
2

2m
∇2 + V (r)

⎡

⎣
⎢

⎤

⎦
⎥ Ψ(r) = E Ψ(r)

Why study algorithms?

“ Algorithms: a common language for nature, human, and computer. ” — A. Wigderson

21st century science
(algorithm based)

for (double t = 0.0; true; t = t + dt)
 for (int i = 0; i < N; i++)
 {
 bodies[i].resetForce();
 for (int j = 0; j < N; j++)
 if (i != j)
 bodies[i].addForce(bodies[j]);
 }

For fun and profit.

9

Why study algorithms?

• Their impact is broad and far-reaching.

• Old roots, new opportunities.

• To solve problems that could not otherwise be addressed.

• For intellectual stimulation.

• They may unlock the secrets of life and of the universe.

• For fun and profit.

10

Why study algorithms?

Why study anything else?

11

Lectures. Introduce new material.

Precepts. Discussion, problem-solving, background for programming assignment.

Computing laboratory. Undergrad TAs in Friend 017. See web for schedule.

The usual suspects

What When Where Who Office Hours

L01 TTh 11–12:20 Bowen 222 Kevin Wayne see web

P01 F 11–11:50 Friend 008 Bob Tarjan see web

P02 F 12:30–1:20 Friend 108 Yuri Pritykin see web

P02A F 12:30–1:20 Friend 109 Bob Tarjan see web

P03 F 1:30–2:20 Friend 008 Aman Dhesi see web

P03A F 1:30–2:20 CS 102 Siyu Yang see web

split into two
(stay tuned)

split into two
(stay tuned)

12

Programming assignments. 50%
Due at 11pm via electronic submission.

Exams. 20% + 30%

• Closed-book with cheatsheet.

• Midterm (in class on Tuesday, October 26).

• Final (scheduled by Registrar).

Exercises. To be done before precept.

Staff discretion. To adjust borderline cases.

• Precept participation (including discussion of exercises).

• Meet your instructor.

• Report errata.

Check grades? Blackboard.

Coursework and grading

Final

Midterm

Programs

Course content.

• Course info.

• Programming assignments.

• Exercises.

• Lecture slides.

• Exam archive.

• Submit assignments.

Booksites.

• Brief summary of content.

• Download code from lecture.

13

Resources (web)

http://www.princeton.edu/~cos226

http://www.cs.princeton.edu/IntroProgramming

http://www.cs.princeton.edu/Algorithms4

Required readings.
Algorithms 4th edition, Fall 2010 edition. [only at Labyrinth books]

Recommended Java reference.
Introduction to Programming in Java. [Labyrinth books]

On reserve. Both textbooks are on reserve in the engineering library.
14

Resources (textbooks)

R O B E R T S E D G E W I C K | K E V I N W A Y N E

F O U R T H E D I T I O N

Algorithms

15

Lecture 1. Union find.
Precept 1. Meets tomorrow.
Lecture 2. Analysis of algorithms.

Exercise 1. Due in precept tomorrow.
Assignment 1. Due via electronic submission at 11pm on Wednesday.

Right course? See me after lecture.
Placed out of COS 126? Review Section 1.5 of Intro to Programming in Java
for input-output libraries and command-line interface.

Not registered? Go to any precept tomorrow.
Change precept? Use SCORE.

What's ahead?

see Colleen Kenny-McGinley in CS 210
if the only precept you can attend is closed

today

Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · September 15, 2010 6:09:06 PM

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

1.5 Union Find

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

2

Subtext of today’s lecture (and this course)

3

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Given a set of objects

• Union: connect two objects.

• Find: is there a path connecting the two objects?

4

Dynamic connectivity

6 5 1

4

87

32

0

union(3, 4)

union(8, 0)

union(2, 3)

union(5, 6)

 find(0, 2) no

 find(2, 4) yes

union(5, 1)

union(7, 3)

union(1, 6)

 find(0, 2) yes

 find(2, 4) yes

union(4, 8)

more difficult problem: find the path

5

Connectivity example

p

q

Q. Is there a path from p to q?

A. Yes.

Dynamic connectivity applications involve manipulating objects of all types.

• Pixels in a digital photo.

• Computers in a network.

• Variable names in Fortran.

• Friends in a social network.

• Transistors in a computer chip.

• Elements in a mathematical set.

• Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

• Use integers as array index.

• Suppress details not relevant to union-find.

6

Modeling the objects

can use symbol table to translate from object
names to integers: stay tuned (Chapter 3)

We assume "is connected to" is an equivalence relation:

• Reflexive: p is connected to p.

• Symmetric: if p is connected to q, then q is connected to p.

• Transitive: if p is connected to q and q is connected to r,
then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

7

Modeling the connections

{ 0 } { 1 4 5 } { 2 3 6 7 }

3 connected components

0 1 2 3

4 5 6 7

Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects with their union.

8

Implementing the operations

union(2, 5)

{ 0 } { 1 4 5 } { 2 3 6 7 }

3 connected components

0 1 2 3

4 5 6 7

{ 0 } { 1 2 3 4 5 6 7 }

2 connected components

0 1 2 3

4 5 6 7

9

Goal. Design efficient data structure for union-find.

• Number of objects N can be huge.

• Number of operations M can be huge.

• Find queries and union commands may be intermixed.

Union-find data type (API)

 public class UF public class UF

UF(int N)
create union-find data structure with

N objects and no connections

boolean find(int p, int q) are p and q in the same component?

void union(int p, int q) add connection between p and q

int count() number of components

10

• Read in value N.

• Repeat:
- read in pair of integers

- write out pair if they are not already connected

Dynamic connectivity client

public static void main(String[] args)
{
 int N = StdIn.readInt();
 UF uf = new UF(N);
 while (!StdIn.isEmpty())
 {
 int p = StdIn.readInt();
 int q = StdIn.readInt();
 if (uf.find(p, q)) continue;
 uf.union(p, q);
 StdOut.println(p + " " + q);
 }
}

% more tiny.txt
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7

11

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

12

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q in same component iff they have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

Quick-find [eager approach]

0 1 2 3 4

5 6 7 8 9

13

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q in same component iff they have the same id.

Find. Check if p and q have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

id[3] = 9; id[6] = 6

3 and 6 in different components

Quick-find [eager approach]

5 and 6 are connected
2, 3, 4, and 9 are connected

14

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q in same component iff they have the same id.

Find. Check if p and q have the same id.

Union. To merge sets containing p and q, change all entries with id[p] to id[q].

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 6 6 6 6 6 7 8 6

problem: many values can change

Quick-find [eager approach]

5 and 6 are connected
2, 3, 4, and 9 are connected

id[3] = 9; id[6] = 6

3 and 6 in different components

15

Quick-find example

 id[]
p q 0 1 2 3 4 5 6 7 8 9
4 3 0 1 2 3 4 5 6 7 8 9
 0 1 2 3 3 5 6 7 8 9
3 8 0 1 2 3 3 5 6 7 8 9
 0 1 2 8 8 5 6 7 8 9
6 5 0 1 2 8 8 5 6 7 8 9
 0 1 2 8 8 5 5 7 8 9
9 4 0 1 2 8 8 5 5 7 8 9
 0 1 2 8 8 5 5 7 8 8
2 1 0 1 2 8 8 5 5 7 8 8
 0 1 1 8 8 5 5 7 8 8
8 9 0 1 1 8 8 5 5 7 8 8
5 0 0 1 1 8 8 5 5 7 8 8
 0 1 1 8 8 0 0 7 8 8
7 2 0 1 1 8 8 0 0 7 8 8
 0 1 1 8 8 0 0 1 8 8
6 1 0 1 1 8 8 0 0 1 8 8
 1 1 1 8 8 1 1 1 8 8
1 0 1 1 1 8 8 1 1 1 8 8
6 7 1 1 1 8 8 1 1 1 8 8

 id[p] and id[q]
match, so no change

 id[p] and id[q] differ, so
union() changes entries equal

to id[p] to id[q] (in red)

public class QuickFindUF
{
 private int[] id;

 public QuickFindUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean find(int p, int q)
 { return id[p] == id[q]; }

 public void union(int p, int q)
 {
 int pid = id[p];
 int qid = id[q];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = qid;
 }
}

16

change all entries with id[p] to id[q]

(N array accesses)

set id of each object to itself
(N array accesses)

Quick-find: Java implementation

check whether p and q

are in the same component
(2 array accesses)

Cost model. Number of array accesses (for read or write).

Quick-find defect.

• Union too expensive.

• Trees are flat, but too expensive to keep them flat.

• Ex. Takes N 2 array accesses to process sequence of
N union commands on N objects.

17

Quick-find is too slow

algorithm init union find

quick-find N N 1

Rough standard (for now).

• 109 operations per second.

• 109 words of main memory.

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

• 109 union commands on 109 objects.

• Quick-find takes more than 1018 operations.

• 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

• New computer may be 10x as fast.

• But, has 10x as much memory so problem may be 10x bigger.

• With quadratic algorithm, takes 10x as long!

18

a truism (roughly)
since 1950!

Quadratic algorithms do not scale

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

19

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

20

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Quick-union [lazy approach]

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

3

542

70 1 9 6 8

p

q

keep going until it doesn’t change

3's root is 9; 5's root is 6

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

21

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

Quick-union [lazy approach]

keep going until it doesn’t change

3

542

70 1 9 6 8

3's root is 9; 5's root is 6
3 and 5 are in different components

p

q

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. To merge sets containing p and q,
set the id of p's root to the id of q's root.

3

5

4

70 1

9

6 8

2

3

542

70 1 9 6 8

22

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

3's root is 9; 5's root is 6
3 and 5 are in different components

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 6

only one value changes
p

q

Quick-union [lazy approach]

p

q

keep going until it doesn’t change

23

Quick-union example

Quick-union trace (with corresponding forests of trees)

 id[]

p q 0 1 2 3 4 5 6 7 8 9

4 3 0 1 2 3 4 5 6 7 8 9

 0 1 2 3 3 5 6 7 8 9

3 8 0 1 2 3 3 5 6 7 8 9

 0 1 2 8 3 5 6 7 8 9

6 5 0 1 2 8 3 5 6 7 8 9

 0 1 2 8 3 5 5 7 8 9

9 4 0 1 2 8 3 5 5 7 8 9

 0 1 2 8 3 5 5 7 8 8

2 1 0 1 2 8 3 5 5 7 8 8

 0 1 1 8 3 5 5 7 8 8

8 9 0 1 1 8 3 5 5 7 8 8

5 0 0 1 1 8 3 5 5 7 8 8

 0 1 1 8 3 0 5 7 8 8

7 2 0 1 1 8 3 0 5 7 8 8

 0 1 1 8 3 0 5 1 8 8

6 1 0 1 1 8 3 0 5 1 8 8

 1 1 1 8 3 0 5 1 8 8

1 0 1 1 1 8 3 0 5 1 8 8

6 7 1 1 1 8 3 0 5 1 8 8

24

Quick-union example

Quick-union trace (with corresponding forests of trees)

 id[]

p q 0 1 2 3 4 5 6 7 8 9

4 3 0 1 2 3 4 5 6 7 8 9

 0 1 2 3 3 5 6 7 8 9

3 8 0 1 2 3 3 5 6 7 8 9

 0 1 2 8 3 5 6 7 8 9

6 5 0 1 2 8 3 5 6 7 8 9

 0 1 2 8 3 5 5 7 8 9

9 4 0 1 2 8 3 5 5 7 8 9

 0 1 2 8 3 5 5 7 8 8

2 1 0 1 2 8 3 5 5 7 8 8

 0 1 1 8 3 5 5 7 8 8

8 9 0 1 1 8 3 5 5 7 8 8

5 0 0 1 1 8 3 5 5 7 8 8

 0 1 1 8 3 0 5 7 8 8

7 2 0 1 1 8 3 0 5 7 8 8

 0 1 1 8 3 0 5 1 8 8

6 1 0 1 1 8 3 0 5 1 8 8

 1 1 1 8 3 0 5 1 8 8

1 0 1 1 1 8 3 0 5 1 8 8

6 7 1 1 1 8 3 0 5 1 8 8

Quick-union trace (with corresponding forests of trees)

 id[]

p q 0 1 2 3 4 5 6 7 8 9

4 3 0 1 2 3 4 5 6 7 8 9

 0 1 2 3 3 5 6 7 8 9

3 8 0 1 2 3 3 5 6 7 8 9

 0 1 2 8 3 5 6 7 8 9

6 5 0 1 2 8 3 5 6 7 8 9

 0 1 2 8 3 5 5 7 8 9

9 4 0 1 2 8 3 5 5 7 8 9

 0 1 2 8 3 5 5 7 8 8

2 1 0 1 2 8 3 5 5 7 8 8

 0 1 1 8 3 5 5 7 8 8

8 9 0 1 1 8 3 5 5 7 8 8

5 0 0 1 1 8 3 5 5 7 8 8

 0 1 1 8 3 0 5 7 8 8

7 2 0 1 1 8 3 0 5 7 8 8

 0 1 1 8 3 0 5 1 8 8

6 1 0 1 1 8 3 0 5 1 8 8

 1 1 1 8 3 0 5 1 8 8

1 0 1 1 1 8 3 0 5 1 8 8

6 7 1 1 1 8 3 0 5 1 8 8

Quick-union: Java implementation

public class QuickUnionUF
{
 private int[] id;

 public QuickUnionUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean find(int p, int q)
 {
 return root(p) == root(q);
 }

 public void union(int p, int q)
 {
 int i = root(p), j = root(q);
 id[i] = j;
 }
}

set id of each object to itself
(N array accesses)

chase parent pointers until reach root
(depth of i array accesses)

check if p and q have same root
(depth of p and q array accesses)

change root of p to point to root of q
(depth of p and q array accesses)

25

26

Cost model. Number of array accesses (for read or write).

Quick-find defect.

• Union too expensive (N array accesses).

• Trees are flat, but too expensive to keep them flat.

Quick-union defect.

• Trees can get tall.

• Find too expensive (could be N array accesses).

worst case

† includes cost of finding root

Quick-union is also too slow

algorithm init union find

quick-find N N 1

quick-union N N † N

27

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Weighted quick-union.

• Modify quick-union to avoid tall trees.

• Keep track of size of each tree (number of objects).

• Balance by linking small tree below large one.

28

Improvement 1: weighting

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

Weighted quick-union

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

29

Weighted quick-union examples

Weighted quick-union traces (forests of trees)

reference input

p q

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

worst-case input

p q

0 1

2 3

4 5

6 7

0 2

4 6

0 4

Weighted quick-union traces (forests of trees)

reference input

p q

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

worst-case input

p q

0 1

2 3

4 5

6 7

0 2

4 6

0 4

30

Quick-union and weighted quick-union example

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

31

Data structure. Same as quick-union, but maintain extra array sz[i]
to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to:

• Merge smaller tree into larger tree.

• Update the sz[] array.

 int i = root(p);
 int j = root(q);
 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
 else { id[j] = i; sz[i] += sz[j]; }

Weighted quick-union: Java implementation

return root(p) == root(q);

Running time.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

32

Weighted quick-union analysis

3

x

5

4

2

7

0

1

8

9

6

N = 10
depth(x) = 3 ≤ lg N

33

Running time.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.
Pf. When does depth of x increase?
Increases by 1 when tree T1 containing x is merged into another tree T2.

• The size of the tree containing x at least doubles since | T 2 | ≥ | T 1 |.

• Size of tree containing x can double at most lg N times. Why?

Weighted quick-union analysis

 T2

T1

x

34

Running time.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

† includes cost of finding root

Weighted quick-union analysis

algorithm init union find

quick-find N N 1

quick-union N N † N

weighted QU N lg N † lg N 10

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

2

41211

0

9

78

136

5

2

54

7

8

1211

0

1

3

6

9

35

root(9)

Improvement 2: path compression

p

10

Standard implementation: add second loop to find() to set the id[]
of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other
node in path point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

36

only one extra line of code !

public int root(int i)
{
 while (i != id[i])
 {
 id[i] = id[id[i]];
 i = id[i];
 }
 return i;
}

Path compression: Java implementation

37

Weighted quick-union with path compression example

Weighted quick-union with path compression traces (forests of trees)

reference input

p q

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

worst-case input

1 linked to 6 because of
path compression

7 linked to 6 because of
path compression

38

Proposition. Starting from an empty data structure,
any sequence of M union-find operations on N objects
makes at most proportional to N + M lg* N array accesses.

• Proof is very difficult.

• Can be improved to N + M α(M, N).

• But the algorithm is still simple!

Linear-time algorithm for M union-find ops on N objects?

• Cost within constant factor of reading in the data.

• In theory, WQUPC is not quite linear.

• In practice, WQUPC is linear.

Amazing fact. No linear-time algorithm exists.

see COS 423

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

Weighted quick-union with path compression: amortized analysis

lg* function

in "cell-probe" model of computation

because lg* N is a constant in this universe

Bob Tarjan
(Turing Award '86)

Bottom line. WQUPC makes it possible to solve problems that
could not otherwise be addressed.

Ex. [109 unions and finds with 109 objects]

• WQUPC reduces time from 30 years to 6 seconds.

• Supercomputer won't help much; good algorithm enables solution.
39

M union-find operations on a set of N objects

algorithm worst-case time

quick-find M N

quick-union M N

weighted QU N + M log N

QU + path compression N + M log N

weighted QU + path compression N + M lg* N

Summary

40

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

41

• Percolation.

• Games (Go, Hex).
✓ Network connectivity.

• Least common ancestor.

• Equivalence of finite state automata.

• Hoshen-Kopelman algorithm in physics.

• Hinley-Milner polymorphic type inference.

• Kruskal's minimum spanning tree algorithm.

• Compiling equivalence statements in Fortran.

• Morphological attribute openings and closings.

• Matlab's bwlabel() function in image processing.

Union-find applications

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1 - p).

• System percolates if top and bottom are connected by open sites.

42

Percolation

N = 8

does not percolatepercolates

open site connected to top

blocked
site

open
site

no open site connected to top

does not percolatepercolates

open site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to top

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1 - p).

• System percolates if top and bottom are connected by open sites.

43

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation

Depends on site vacancy probability p.

44

Likelihood of percolation

p low (0.4)
does not percolate

p medium (0.6)
percolates?

p high (0.8)
percolates

When N is large, theory guarantees a sharp threshold p*.

• p > p*: almost certainly percolates.

• p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

45

Percolation phase transition

N = 100

• Initialize N-by-N whole grid to be blocked.

• Declare random sites open until top connected to bottom.

• Vacancy percentage estimates p*.

46

Monte Carlo simulation

N = 20

empty open site

(not connected to top)

full open site

(connected to top)

blocked site

47

How to check whether system percolates?

• Create an object for each site.

• Sites are in same set if connected by open sites.

• Percolates if any site in top row is in same set as any site in bottom row.

UF solution to find percolation threshold

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 28 29 29 31

32 33 25 35 36 37 38 39

40 41 25 43 36 45 46 47

48 49 25 51 36 53 47 47

56 57 58 59 60 61 62 47

empty open site

(not connected to top)

full open site

(connected to top)

blocked site

brute force algorithm: check all N 2 pairs

N = 8

Q. How to declare a new site open?

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 28 29 29 31

32 33 25 35 36 37 38 39

40 41 25 43 36 45 46 47

48 49 25 51 36 53 47 47

56 57 58 59 60 61 62 47

48

open this site

UF solution to find percolation threshold

empty open site

(not connected to top)

full open site

(connected to top)

blocked site

N = 8

Q. How to declare a new site open?
A. Take union of new site and all adjacent open sites.

49

UF solution to find percolation threshold

empty open site

(not connected to top)

full open site

(connected to top)

blocked site

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

56 57 58 59 60 61 62 47

open this site

N = 8

50

Q. How to avoid checking all pairs of top and bottom sites?

UF solution: a critical optimization

empty open site

(not connected to top)

full open site

(connected to top)

blocked site

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

56 57 58 59 60 61 62 47N = 8

Q. How to avoid checking all pairs of top and bottom sites?
A. Create a virtual top and bottom objects;
 system percolates when virtual top and bottom objects are in same set.

-1-1-1-1-1-1-1-1

-1 -1 2 3 4 5 -1 7

8 9 10 10 12 13 -1 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 64

48 49 25 51 25 53 64 64

64 57 58 59 60 61 62 64

6464646464646464

51

UF solution: a critical optimization

virtual top row

virtual bottom row

empty open site

(not connected to top)

full open site

(connected to top)

blocked site

N = 8

52

Q. What is percolation threshold p* ?
A. About 0.592746 for large square lattices.

Fast algorithm enables accurate answer to scientific question.

percolation constant known
 only via simulation

Percolation threshold

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

N = 100

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

53

Subtext of today’s lecture (and this course)

