COS 226
 Algorithms and Data Structures
 Fall 2009
 Final Solutions

1. Analysis of algorithms.

(a) $\quad P$ Printing the keys in a binary search tree in ascending order.
U Finding a minimum spanning tree in a weighted graph.
P Finding all vertices reachable from a given source vertex in a graph.
P Checking whether a digraph has a directed cycle.
P Building the Knuth-Morris-Pratt DFA for a given string.
P Sorting an array of strings, accessing the data solely via calls to charAt().
I Sorting an array of strings, accessing the data solely via calls to compareTo().
I Finding the closest pair of points among a set of points in the plane, accessing the data solely via calls to distanceTo().
(b) $\quad A$ Insert into a red-black tree.
A. $\log N$ worst case
$\begin{array}{ll}C \text { Insert into a } 2 \mathrm{~d} \text {-tree. } & \text { B. } \log N \text { amortized }\end{array}$
B Insert into a binary heap.
C. $\log N$ average case on random inputs
(c) - The N^{3} one might be much easier to correctly implement, debug, and test.

- The N^{3} algorithm might be faster for the values of N of interest (e.g., because of the leading constant).
- The N^{3} algorithm might use less memory.
(d) 56 bytes.

Each Point object consumes 32 bytes (8 bytes for each of the three double instance variables; 8 bytes of object overhead).
Each Node object consumes 56 bytes (4 bytes for each of the 3 reference instance variables; 4 bytes for the int instance variable; 32 bytes for the Point3D object; 8 bytes of object overhead).

2. Breadth-first search.

(a) A B C D E G F H I
(b) d

3. Minimum spanning tree.

(a) 123567812
(b) $w \leq 8$
(c) 613257812
(d) Find the unique path between x and y in T. This takes $O(V)$ time using DFS because there are only $V-1$ edges in T. We claim the edge T remains an MST if and only if w is greater than or equal to the weight of every edge on the path.

- If any edge on the path has weight greater than w, we can decrease the weight of T by swapping the largest weight edge on the path with $x-y$. Thus, T does not remain an MST.
- If w is greater than or equal to the weight of every edge on the path, then the cycle property asserts that $x-y$ is not in some MST (because it is the largest weight edge on the cycle consisting of the path from x to y plus the edge $x-y$). Thus, T remains an MST.

4. Shortest paths.

(a) vertex: A C D F H E B G I
distance: $\begin{array}{llllllllll}0 & 1 & 12 & 20 & 25 & 28 & 34 & 40 & 53\end{array}$
(b) $A \rightarrow C, C \rightarrow D, C \rightarrow B, D \rightarrow F, F \rightarrow H, H \rightarrow E, E \rightarrow G, G \rightarrow I$

5. Ternary search tries.

(a) ear fo his hitch hold holdup hotel hum humble ill
(c) - faster, especially for search miss

- support character-based operations such as prefix match (autocomplete), longest prefix, and wildcard match

6. Substring search.

	0	1	2	3	4	5	6
a	1	2	2	4	5	6	2
b	0	0	0	0	0	0	7
c	0	0	3	0	0	3	3

7. Regular expressions.

8. Burrows-Wheeler transform.
(a) 5
$b b a b a c a a$
(b) b a b a b a a b a

9. Circular suffixes.

I only.

10. Tandem repeats.

(a) This problem is a generalization of substring search (is there at least one consecutive copy of b within s ?) so we need an algorithm that generalizes substring search.
Create the Knuth-Morris-Pratt DFA for k copies of b, where $k=\lfloor N / M\rfloor$. Now, simulate DFA on input s and record the largest state that it reaches. From this, we can identify the longest repeat.
(b) $M+N$.

11. Reductions.

(a) $\left\{-3 M, x_{1}+M, x_{2}+M, \ldots, x_{N}+M\right\}$

If we can force any solution to this 4Sum instance to choose $x_{l}=-3 M$ as one of the integers, then the remaining three integers are $x_{i}+M, x_{j}+M$, and $x_{k}+M$ and we have $x_{i}+x_{j}+x_{k}=0$.
We force any solution to this 4 Sum instance to choose $-3 M$ by choosing $M=1+$ $\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N}\right|\right\}$ to be large, thereby making $-3 M$ the only negative integer.
(b) None.

