
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · December 15, 2009 8:49:32 AM

8.6  Reductions

‣ designing algorithms
‣ establishing lower bounds
‣ intractability
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Bird’s-eye view

Desiderata.  Classify problems according to computational requirements.

Frustrating news.  Huge number of problems have defied classification.

complexity order of growth examples

linear N min, max, median,
Burrows-Wheeler transform, ...

linearithmic N log N sorting, convex hull,
closest pair, farthest pair, ...

quadratic N2 ???

…

exponential cN ???
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Bird’s-eye view

Desiderata.  Classify problems according to computational requirements.

Desiderata'.
Suppose we could (couldn't) solve problem X efficiently.
What else could (couldn't) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to 
place it, and I shall move the world.  ”    — Archimedes
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Cost of solving X  =  total cost of solving Y  +  cost of reduction.

perhaps many calls to Y
on problems of different sizes

preprocessing and postprocessing

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Ex 1.  [element distinctness reduces to sorting]
To solve element distinctness on N integers:

• Sort N integers.

• Check adjacent pairs for equality.

Cost of solving element distinctness.  N log N  +  N

cost of sorting
cost of reduction

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Ex 2.  [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:

• For each point, sort other points by polar angle.

- check adjacent triples for collinearity

Cost of solving 3-collinear.  N2 log N  +  N2.

cost of sorting
cost of reduction

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y
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‣ designing algorithms
‣ establishing lower  bounds
‣ intractability
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Reduction:  design algorithms

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Design algorithm.  Given algorithm for Y, can also solve X.

Ex.

• Element distinctness reduces to sorting.

• 3-collinear reduces to sorting.

• PERT reduces to topological sort.  [see digraph lecture]

• h-v line intersection reduces to 1D range searching.  [see geometry lecture]

• Burrows-Wheeler transform reduces to suffix sort.  [see assignment 8]

Mentality.  Since I know how to solve Y, can I use that algorithm to solve X?

programmer’s version:  I have code for Y. Can I use it for X?



Sorting.  Given N distinct integers, rearrange them in ascending order.

Convex hull.  Given N points in the plane, identify the extreme points
of the convex hull (in counter-clockwise order).

Proposition.  Convex hull reduces to sorting.
Pf.  Graham scan algorithm.

Cost of convex hull.  N log N  +  N.
9

Convex hull reduces to sorting

convex hull sorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213
34435312

cost of reduction
cost of sorting

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to 
directed shortest path.
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Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to 
directed shortest path.

Pf.  Replace each undirected edge by two directed edges.
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Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to 
directed shortest path.

Cost of undirected shortest path.  E log E  +  E.
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cost of shortest 
path in digraph

cost of reduction



Caveat.  Reduction is invalid in networks with negative weights
(even if no negative cycles).

Remark.  Can still solve shortest path problem in undirected graphs
(if no negative cycles), but need more sophisticated techniques.
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Shortest path with negative weights

tva 7  -4

tvs 7  -4

reduction creates
negative cycles

reduces to weighted
non-bipartite matching (!)

7  -4

Some reductions involving familiar problems
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linear
programming

element
distinctness

sorting

directed shortest paths
(nonnegative)

bipartite
matching

 maximum flow 

convex hull
median

arbitrage

shortest paths
(no neg cycles)

Delaunay
triangulation

closest
pair 2d

Euclidean
MST 2d

furthest
pair 2d

undirected shortest paths
(nonnegative)
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‣ designing algorithms
‣ establishing lower  bounds
‣ intractability
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Bird's-eye view

Goal.  Prove that a problem requires a certain number of steps.
Ex.  Ω(N log N) lower bound for sorting.

Bad news.  Very difficult to establish lower bounds from scratch.

Good news.  Can spread Ω(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction
is not too high

argument must apply to all 
conceivable algorithms

1251432
2861534
3988818
4190745
13546464
89885444
43434213
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Linear-time reductions

Def.  Problem X linear-time reduces to problem Y if X can be solved with:

• Linear number of standard computational steps.

• Constant number of calls to Y.

Ex.  Almost all of the reductions we've seen so far.  [Which one wasn't?]

Establish lower bound:

• If X takes Ω(N log N) steps, then so does Y.

• If X takes Ω(N2) steps, then so does Y.

Mentality.

• If I could easily solve Y, then I could easily solve X.

• I can’t easily solve X.

• Therefore, I can’t easily solve Y.
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Lower bound for convex hull

Proposition.  In quadratic decision tree model, any algorithm for sorting
N integers requires Ω(N log N) steps.

Proposition.  Sorting linear-time reduces to convex hull.
Pf.  [see next slide]

Implication.  Any ccw-based convex hull algorithm requires Ω(N log N) ccw's. 

allows quadratic tests of the form:
 xi < xj or (xj - xi) (xk - xi) - (xj ) (xj - xi) < 0

a quadratic test

convex hullsorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213

Proposition.  Sorting linear-time reduces to convex hull.

• Sorting instance:  x1, x2, ... , xN.

• Convex hull instance:  (x1 , x12 ), (x2, x22 ), ... , (xN , xN2 ).

Pf.

• Region {x : x2 ≥ x} is convex  ⇒  all points are on hull.

• Starting at point with most negative x, counter-clockwise order of hull 
points yields integers in ascending order.
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Sorting linear-time reduces to convex hull

f (x) = x2

(xi , xi2 )

x

y
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Lower bound for 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,
are there 3 that all lie on the same line?

3-collinear

recall Assignment 3

3-sum

1251432
-2861534
3988818
-4190745
13546464
89885444
-43434213
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Lower bound for 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,
are there 3 that all lie on the same line?

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.
Pf.  [see next 2 slide]

Conjecture.  Any algorithm for 3-SUM requires Ω(N2) steps.
Implication.  No sub-quadratic algorithm for 3-COLLINEAR likely.

your N2 log N algorithm was pretty good

22

3-SUM linear-time reduces to 3-COLLINEAR

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance:  x1, x2, ... , xN .

• 3-COLLINEAR instance:  (x1 , x13 ), (x2, x23 ), ... , (xN , xN3 ).

Lemma.  If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), and (c, c3) are collinear.

(1, 1)

(2, 8)

(-3, -27) -3 + 2 + 1 = 0

f (x) = x3
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3-SUM linear-time reduces to 3-COLLINEAR

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance:  x1, x2, ... , xN .

• 3-COLLINEAR instance:  (x1 , x13 ), (x2, x23 ), ... , (xN , xN3 ).

Lemma.  If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), and (c, c3) are collinear.

Pf.  Three distinct points (a, a3), (b, b3), and (c, c3) are collinear iff:

0 =

������

a a3 1
b b3 1
c c3 1

������

= a(b3 − c3)− b(a3 − c3) + c(a3 − b3)

= (a− b)(b− c)(c− a)(a + b + c)

3-CONCURRENT.  Given N distinct lines, are there 3 that intersect at a point?

Lemma.  The 3 lines ai x + bi y = 1, aj x + bj y = 1, and ak x + bk y  = 1

are concurrent if and only if:
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Concurrent lines

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0.5

1

1.5

x = 1

-x +2y = 1

3x – 2y = 1

3 lines intersect at point

������

ai bi 1
aj bj 1
ak bk 1

������
= 0



Proposition.  3-COLLINEAR linear-time reduces to 3-CONCURRENT.

• 3-COLLINEAR instance:  (x1, y1) , ... ,  (xN, yN).

• 3-CONCURRENT instance:  a1 x + b1 y = 1 ,  … ,   aN x + bN y = 1,
where ai = xi and bi = yi.

Lemma.  The 3 points (xi, yi), (xj, yj), and (xk, yk) are collinear if and only if
the 3 lines ai x + bi y = 1, aj x + bj y = 1, and ak x + bk y = 1 are concurrent.

Pf.  [duality between points and lines]  
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3-COLLINEAR linear-time reduces to 3-CONCURRENT

3 points are collinear 3 lines are concurrent

������

ai bi 1
aj bj 1
ak bk 1

������
= 0

������

xi yi 1
xj yj 1
xk yk 1

������
= 0

More linear-time reductions and lower bounds
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Delaunay

 3-sum
(conjectured N2 lower bound) 

convex hull 2d

sorting 3-collinear

element distinctness
(N log N lower bound)

Euclidean MST 2d

closest pair 2d

3-concurrent

dihedral
rotation

min area triangle

Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q.  How to convince yourself no linear-time convex hull algorithm exists?
A1.  [hard way]  Long futile search for a linear-time algorithm.
A2.  [easy way]  Linear-time reduction from sorting.

Q.  How to convince yourself no sub-quadratic 3-COLLINEAR algorithm exists.
A1.  [hard way]  Long futile search for a sub-quadratic algorithm.
A2.  [easy way]  Linear-time reduction from 3-SUM.

Establishing lower bounds:  summary

27 28

‣ designing algorithms
‣ establishing lower  bounds
‣ intractability
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Bird's-eye view

Def.  A problem is intractable if it can't be solved in polynomial time.
Desiderata.  Prove that a problem is intractable.

Two problems that require exponential time.

• Given a constant-size program, does it halt in at most K steps?

• Given N-by-N checkers board position, can the first player force a win? 

Frustrating news.  Few successes.

input size = c + lg K

using forced capture rule

30

Literal. A boolean variable or its negation.

Clause. An or of 3 distinct literals.

Conjunctive normal form.  An and of clauses.

3-SAT.  Given a CNF formula Φ consisting of k clauses over n literals,
does it have a satisfying truth assignment?

Applications.  Circuit design, program correctness, ...

3-satisfiability

xi   or   ¬xi

C1 = (¬x1 ∨ x2 ∨ x3)

Φ = (C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5)

(¬T  ∨ T  ∨ F ) ∧ (T  ∨ ¬T  ∨ F ) ∧ (¬T  ∨ ¬T  ∨ ¬F ) ∧ (¬T  ∨ ¬T ∨  T) ∧ ( ¬T ∨  F ∨ T)

x1   x2   x3   x4

T    T    F    T
yes instance

Φ  =  (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨¬ x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x4)

3-satisfiability is believed intractable

Q.  How to solve an instance of 3-SAT with n variables?
A.  Exhaustive search:  try all 2n truth assignments.

Q.  Can we do anything substantially more clever?

Conjecture (P ≠ NP).  3-SAT is intractable (no poly-time algorithm).

31 32

Polynomial-time reductions

Def.  Problem X poly-time (Cook) reduces to problem Y if X can be solved with:

• Polynomial number of standard computational steps.

• Polynomial number of calls to Y.

Establish intractability.  If 3-SAT poly-time reduces to Y, then Y is intractable.
(assuming 3-SAT is intractable)

Mentality.

• If I could solve Y in poly-time, then I could also solve 3-SAT in poly-time.

• 3-SAT is believed to be intractable.

• Therefore, so is Y.

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y



Def.  An independent set is a set of vertices, no two of which are adjacent.

IND-SET.  Given a graph G and an integer k, find an independent set of size k.

Applications.  Scheduling, computer vision, clustering, ...
33

Independent set

k = 9

Proposition.  3-SAT poly-time reduces to IND-SET.

Pf.  Given an instance Φ of 3-SAT, create an instance G of IND-SET:

• For each clause in Φ, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.
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3-satisfiability reduces to independent set

Φ  =  (x1 ∨ x2 ∨ x3)  ∧  (¬x1 ∨ ¬x2 ∨ x4)  ∧  (¬x1 ∨ x3 ∨ ¬x4)  ∧  (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Proposition.  3-SAT poly-time reduces to IND-SET.

Pf.  Given an instance Φ of 3-SAT, create an instance G of IND-SET:

• For each clause in Φ, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

• G has independent set of size k  ⇒  Φ satisfiable. 
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3-satisfiability reduces to independent set

set literals corresponding to vertices in independent to true;
set remaining literals in consistent manner

Φ  =  (x1 ∨ x2 ∨ x3)  ∧  (¬x1 ∨ ¬x2 ∨ x4)  ∧  (¬x1 ∨ x3 ∨ ¬x4)  ∧  (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Proposition.  3-SAT poly-time reduces to IND-SET.

Pf.  Given an instance Φ of 3-SAT, create an instance G of IND-SET:

• For each clause in Φ, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

• G has independent set of size k  ⇒  Φ satisfiable. 

• Φ satisfiable  ⇒  G has independent set of size k.
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3-satisfiability reduces to independent set

for each clause, take vertex corresponding to one true literal

Φ  =  (x1 ∨ x2 ∨ x3)  ∧  (¬x1 ∨ ¬x2 ∨ x4)  ∧  (¬x1 ∨ x3 ∨ ¬x4)  ∧  (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4



Proposition.  3-SAT poly-time reduces to IND-SET.

Implication.   Assuming 3-SAT is intractable, so is IND-SET.
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3-satisfiability reduces to independent set

Φ  =  (x1 ∨ x2 ∨ x3)  ∧  (¬x1 ∨ ¬x2 ∨ x4)  ∧  (¬x1 ∨ x3 ∨ ¬x4)  ∧  (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

ILP.  Given a system of linear inequalities, find an integral solution.

Context.  Cornerstone problem in operations research.
Remark.  Finding a real-valued solution is tractable (linear programming).
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Integer linear programming

3x1 + 5x2 + 2x3 + x4 + 4x5  ≥  10

5x1 + 2x2 + 4x4 + 1x5  ≤  7

x1 + x3 + 2x4  ≤  2

3x1 + 4x3 + 7x4  ≤  7

 x1 + x4  ≤  1

 x1 + x3 + x5  ≤  1

all xi  =  { 0, 1 }

linear inequalities

integer variables

Proposition.  IND-SET poly-time reduces to ILP.
Pf.  Given an instance G, k of IND-SET, create an instance of ILP as follows: 

Intuition.  xi = 1 if and only if vertex vi is in independent set.
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Independent set reduces to integer linear programming

x1 + x2 + x3 + x4 + x5  =  3

x1 + x2  ≤  1

x2 + x3  ≤  1

x1 + x3  ≤  1

 x1 + x4  ≤  1

 x3 + x5  ≤  1

all xi  =  { 0, 1 }

number of vertices
selected

at most one vertex
selected from each edge

v2 v3 v5

v4v1

binary variables

is there an independent set of size 3 ?

is there a feasible solution?

Proposition.  3-SAT poly-time reduces to IND-SET.
Proposition.  IND-SET poly-time reduces to ILP.

Transitivity.  If X poly-time reduces to Y and Y poly-time reduces to Z,
then X-poly-time reduces to Z.

Implication.   Assuming 3-SAT is intractable, so is ILP. 

40

3-satisfiability reduces to integer linear programming
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More poly-time reductions from 3-satisfiability

3-SAT

VERTEX COVER

HAM-CYCLECLIQUE

IND-SET3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

Dick Karp
'85 Turing award

3-SA
T reduces to ILP

TSP

BIN-PACKING

Conjecture.  3-SAT is intractable.
Implication.  All of these problems are intractable.

Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q.  How to convince yourself that a new problem is (probably) intractable?
A1.  [hard way]  Long futile search for an efficient algorithm (as for 3-SAT).
A2.  [easy way]  Reduction from 3-SAT.

Caveat.  Intricate reductions are common.

42

43

Search problems

Search problem.  Problem where you can check a solution in poly-time.

Ex 1.  3-SAT.

Ex 2.  IND-SET.

x1 = true,  x2 = true,  x3 = true,  x4 = true

v2 v3 v5

v4v1

Φ  =  (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ x4)

{ v2 ,  x4,  v5 }

k = 3
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P vs. NP

P.  Set of search problems solvable in poly-time.
Importance.  What scientists and engineers can compute feasibly. 

NP.  Set of search problems.
Importance.  What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion.  No.
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Cook’s theorem

Def.  An NP is NP-complete if all problems in NP poly-time to reduce to it.

Cook's theorem.  3-SAT is NP-complete.
Corollary.  3-SAT is tractable if and only if P = NP.

Two worlds.

NP

P NPC

P ≠ NP

P = NP

P = NP

46

Implications of Cook’s theorem

3-SAT

IND-SET VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

Stephen Cook
'82 Turing award

All of these problems (and many, many more)
poly-time reduce to 3-SAT
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Implications of Karp + Cook

3-SAT

VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems are NP-complete; they are 
manifestations of the same really hard problem.

IND-SET

ILP

+

48

Implications of NP-completeness
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Birds-eye view:  review

Desiderata.  Classify problems according to computational requirements.

Frustrating news.  Huge number of problems have defied classification.

complexity order of growth examples

linear N min, max, median,
Burrows-Wheeler transform, ...

linearithmic N log N sorting, convex hull.
closest pair, farthest pair, ...

quadratic N2 ???

…

exponential cN ???
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Birds-eye view:  revised

Desiderata.  Classify problems according to computational requirements.

Good news.  Can put problems in equivalence classes.

complexity order of growth examples

linear N min, max, median,
Burrows-Wheeler transform, ...

linearithmic N log N sorting, convex hull.
closest pair, farthest pair, ...

3-SUM complete probably N2 3-SUM, 3-COLLINEAR,
3-CONCURRENT, ...

…

NP-complete probably cN 3-SAT, IND-SET, ILP, ...
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Summary

Reductions are important in theory to:

• Establish tractability.

• Establish intractability.

• Classify problems according to their computational requirements.

Reductions are important in practice to:

• Design algorithms.

• Design reusable software modules.

- stack, queue, priority queue, symbol table, set, graph
- sorting, regular expression, Delaunay triangulation

- minimum spanning tree, shortest path, maximum flow, linear programming

• Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems

- use heuristics for intractable problems


