
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · December 3, 2009 8:40:48 AM

6.3 Substring Search

‣ brute force
‣ Knuth-Morris-Pratt
‣ Boyer-Moore
‣ Rabin-Karp

2

Substring search

Goal. Find pattern of length M in a text of length N.

Computer forensics. Search memory or disk for signatures,
e.g., all URLs or RSA keys that the user has entered.

typically N >> M

http://citp.princeton.edu/memory

Substring search

N E E D L E

I N A H A Y S T A C K N E E D L E I N A

match

pattern

text

3

Applications

• Parsers.

• Spam filters.

• Digital libraries.

• Screen scrapers.

• Word processors.

• Web search engines.

• Electronic surveillance.

• Natural language processing.

• Computational molecular biology.

• FBIs Digital Collection System 3000.

• Feature detection in digitized images.

• ...

4

Application: Spam filtering

Identify patterns indicative of spam.

• PROFITS

• L0SE WE1GHT

• herbal Viagra

• There is no catch.

• L0W M0RTGAGE RATES

• This is a one-time mailing.

• This message is sent in compliance with
 spam regulations.

• You're getting this message because you
 registered with one of our marketing partners.

Application: Electronic surveillance

5

Need to monitor all
internet traffic.

(security)
No way!
(privacy)

Well, we’re mainly
interested in

“ATTACK AT DAWN”

OK. Build a
machine that just

looks for that.

“ATTACK AT DAWN”
substring search

machine

 found

6

Application: Screen scraping

Goal. Extract relevant data from web page.

Ex. Find string delimited by and after first occurrence of
pattern Last Trade:.

http://finance.yahoo.com/q?s=goog

...
<tr>
<td class= "yfnc_tablehead1"
width= "48%">
Last Trade:
</td>
<td class= "yfnc_tabledata1">
<big>452.92</big>
</td></tr>
<td class= "yfnc_tablehead1"
width= "48%">
Trade Time:
</td>
<td class= "yfnc_tabledata1">
...

7

Screen scraping: Java implementation

Java library. The indexOf() method in Java's string library returns the index
of the first occurrence of a given string, starting at a given offset.

public class StockQuote
{
 public static void main(String[] args)
 {
 String name = "http://finance.yahoo.com/q?s=";
 In in = new In(name + args[0]);
 String text = in.readAll();
 int start = text.indexOf("Last Trade:", 0);
 int from = text.indexOf("", start);
 int to = text.indexOf("", from);
 String price = text.substring(from + 3, to);
 StdOut.println(price);
 }
}

% java StockQuote goog
256.44

% java StockQuote msft
19.68

8

‣ brute force
‣ Knuth-Morris-Pratt
‣ Boyer-Moore
‣ Rabin-Karp

Check for pattern starting at each text position.

9

Brute-force substring search

Brute-force substring search

 i j i+j 0 1 2 3 4 5 6 7 8 9 10

 A B A C A D A B R A C

 0 2 2 A B R A
 1 0 1 A B R A
 2 1 3 A B R A
 3 0 3 A B R A
 4 1 5 A B R A
 5 0 5 A B R A
 6 4 10 A B R A

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match

Check for pattern starting at each text position.

public static int search(String pat, String txt)
{
 int M = pat.length();
 int N = txt.length();
 for (int i = 0; i <= N - M; i++)
 {
 int j;
 for (j = 0; j < M; j++)
 if (txt.charAt(i+j) != pat.charAt(j))
 break;
 if (j == M) return i;
 }
 return N;
}

10

Brute-force substring search: Java implementation

index in text where
pattern starts

not found

Brute-force algorithm can be slow if text and pattern are repetitive.

Worst case. ~ M N char compares.
11

Brute-force substring search: worst case

Brute-force substring search (worst case)

 i j i+j 0 1 2 3 4 5 6 7 8 9

 A A A A A A A A A B

 0 4 4 A A A A B
 1 4 5 A A A A B
 2 4 6 A A A A B
 3 4 7 A A A A B
 4 4 8 A A A A B
 5 4 9 A A A A B

txt

pat

In typical applications, we want to avoid backup in text stream.

• Treat input as stream of data.

• Abstract model: StdIn.

Brute-force algorithm needs backup for every mismatch

Approach 1. Maintain buffer of size M (build backup into StdIn)
Approach 2. Stay tuned.

A B
 A A A A A B

Backup

12

“ATTACK AT DAWN”
substring search

machine

 found

A B
 A A A A A B

matched chars mismatch

shift pattern right one position

backup

Same sequence of char compares as previous implementation.

• i points to end of sequence of already-matched chars in text.
• j stores number of already-matched chars (end of sequence in pattern).

public static int search(String pat, String txt)
{
 int i, N = txt.length();
 int j, M = pat.length();
 for (i = 0, j = 0; i < N && j < M; i++)
 {
 if (txt.charAt(i) == pat.charAt(j)) j++;
 else { i -= j; j = 0; }
 }
 if (j == M) return i - M;
 else return N;
}

13

Brute-force substring search: alternate implementation

backup

14

Algorithmic challenges in substring search

Brute-force is often not good enough.

Theoretical challenge. Linear-time guarantee.

Practical challenge. Avoid backup in text stream. often no room or time to save text

fundamental algorithmic problem

Now is the time for all people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for many good people to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
people to come to the aid of their party. Now is the time for all of the good people to come to the aid of
their party. Now is the time for all good people to come to the aid of their party. Now is the time for
each good person to come to the aid of their party. Now is the time for all good people to come to the aid
of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
time for all good people to come to the aid of their party. Now is the time for many or all good people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for many good people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for a lot of good people to come to the aid of their
party. Now is the time for all of the good people to come to the aid of their party. Now is the time for
all good people to come to the aid of their attack at dawn party. Now is the time for each person to come
to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is
the time for all good Republicans to come to the aid of their party. Now is the time for all good people
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
party. Now is the time for all good people to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party.

15

‣ brute force
‣ Knuth-Morris-Pratt
‣ Boyer-Moore
‣ Rabin-Karp

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BAAAAAAAAA.

• Suppose we match 5 chars in pattern, with mismatch on 6th char.

• We know previous 6 chars in text are BAAAAB.

• Don't need to back up text pointer!

Remark. It is always possible to avoid backup (!)
16

Text pointer backup in substring searching

A B A A A A B A A A A A A A A A

 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A

 B A A A A A A A A A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

assuming {A, B} alphabet

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on match?
A. Easy: compare next pattern char to next text char.

17

A A A A B B B B C C C A B A B A C ? ? ? ? ? ? ? ? ? ?
 A B A B A C Y Y

matched chars current char
is match

pat.charAt(6)

 j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
 A 1 1 3 1 5 1
 dfa[][j] B 0 2 0 4 0 4
 C 0 0 0 0 0 6

current text char: c
current pattern index: j
next pattern index: dfa[c][j]

table giving pattern char to compare to the next text char

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left to right.

18

A A A A B B B B C C C A B A B A A ? ? ? ? ? ? ? ? ? ?
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C

✘

✔

✘

✘

✘

matched chars

table giving pattern char to compare to the next text char

 j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
 A 1 1 3 1 5 1
 dfa[][j] B 0 2 0 4 0 4
 C 0 0 0 0 0 6

pat.charAt(1)

current char
is match

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left to right.

19

A A A A B B B B C C C A B A B A B ? ? ? ? ? ? ? ? ? ?
 A B A B A C
 A B A B A C
 A B A B A C

✘

✔

matched chars

table giving pattern char to compare to the next text char

 j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
 A 1 1 3 1 5 1
 dfa[][j] B 0 2 0 4 0 4
 C 0 0 0 0 0 6

pat.charAt(4)

current char
is match

Fill in table columns by doing computation for each possible mismatch position.

A B A B A C

A
B
 A B A B A C
C
 A B A B A C

A B
A A
 A B A B A C
A C
 A B A B A C

A B A
A B B
 A B A B A C
A B C
 A B A B A C

A B A B
A B A A
 A B A B A C
A B A C
 A B A B A C

A B A B A
A B A B B
 A B A B A C
A B A B C
 A B A B A C

A B A B A C
A B A B A A
 A B A B A C
A B A B A B
 A B A B A C

j pat. dfa[][j]
 charAt(j) A B C

0 A 1

 0

 0

1 B 2

 1

 0

2 A 3

 0

 0

3 B 4

 1

 0

4 A 5

 0

 0

5 C 6

 1

 4

Pattern backup for A B A B A C in KMP substring search

backup is length of max overlap
of beginning of pattern
with known text chars

match (move to next char)
set dfa[pat.charAt(j)][j]

to j+1

known text chars
on mismatch

text (pattern itself)

mismatch
(back up in pattern)

KMP substring search preprocessing (concept)

20

A B A B A C

A
B
 A B A B A C
C
 A B A B A C

A B
A A
 A B A B A C
A C
 A B A B A C

A B A
A B B
 A B A B A C
A B C
 A B A B A C

A B A B
A B A A
 A B A B A C
A B A C
 A B A B A C

A B A B A
A B A B B
 A B A B A C
A B A B C
 A B A B A C

A B A B A C
A B A B A A
 A B A B A C
A B A B A B
 A B A B A C

j pat. dfa[][j]
 charAt(j) A B C

0 A 1

 0

 0

1 B 2

 1

 0

2 A 3

 0

 0

3 B 4

 1

 0

4 A 5

 0

 0

5 C 6

 1

 4

Pattern backup for A B A B A C in KMP substring search

backup is length of max overlap
of beginning of pattern
with known text chars

match (move to next char)
set dfa[pat.charAt(j)][j]

to j+1

known text chars
on mismatch

text (pattern itself)

mismatch
(back up in pattern)

A B A B A C

A
B
 A B A B A C
C
 A B A B A C

A B
A A
 A B A B A C
A C
 A B A B A C

A B A
A B B
 A B A B A C
A B C
 A B A B A C

A B A B
A B A A
 A B A B A C
A B A C
 A B A B A C

A B A B A
A B A B B
 A B A B A C
A B A B C
 A B A B A C

A B A B A C
A B A B A A
 A B A B A C
A B A B A B
 A B A B A C

j pat. dfa[][j]
 charAt(j) A B C

0 A 1

 0

 0

1 B 2

 1

 0

2 A 3

 0

 0

3 B 4

 1

 0

4 A 5

 0

 0

5 C 6

 1

 4

Pattern backup for A B A B A C in KMP substring search

backup is length of max overlap
of beginning of pattern
with known text chars

match (move to next char)
set dfa[pat.charAt(j)][j]

to j+1

known text chars
on mismatch

text (pattern itself)

mismatch
(back up in pattern)

DFA is abstract string-searching machine.

• Finite number of states (including start and halt).

• Exactly one transition for each input symbol.

• Accept if sequence of transitions leads to halt state.

Deterministic finite state automaton (DFA)

21

If in state j reading char c:
halt if j is 6
else move to state dfa[c][j]

DFA corresponding to the string A B A B A C

match
transition

(increment)

mismatch
transition
(back up)

halt state

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

B C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]

pat.charAt(j)
j

A
B
C

graphical representation

internal representation

A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C

Trace of KMP substring search (DFA simulation) for A B A B A C

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 B C B A A B A C A A B A B A C A A

 0 0 0 0 1 1 2 3 0 1 1 2 3 4 5 6

found
return i - M = 9

mismatch:
 set j to dfa[txt.charAt(i)][j]
 implies pattern shift to align
 pat.charAt(j) with
 txt.charAt(i+1)

match:
 set j to dfa[txt.charAt(i)][j]
 = dfa[pat.charAt(j)][j]
 = j+1

read this char

in this state

go to this state

i

txt.charAt(i)

j

KMP substring search: trace

22

DFA corresponding to the string A B A B A C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]

pat.charAt(j)
j

A
B
C

KMP search: Java implementation

KMP implementation. Build machine for pattern, simulate it on text.

Key differences from brute-force implementation.

• Text pointer i never decrements.

• Need to precompute dfa[][] table from pattern.

Running time.

• Simulate DFA: at most N character accesses.

• Build DFA: at most M2 R character accesses (stay tuned for better method).
23

public int search(String txt)
{
 int i, j, N = txt.length();
 for (i = 0, j = 0; i < N && j < M; i++)
 j = dfa[txt.charAt(i)][j];
 if (j == M) return i - M;
 else return N;
}

KMP search: Java implementation

Key differences from brute-force implementation.

• Text pointer i never decrements.

• Need to precompute dfa[][] table from pattern.

• Could use input stream.

24

public int search(In in)
{
 int i, j;
 for (i = 0, j = 0; !in.isEmpty() && j < M; i++)
 j = dfa[in.readChar()][j];
 if (j == M) return i - M;
 else return i;
}

A B B B B C C C A B A B A ? ? ? ? ? ? ?
 A B A B A C

Q. What state X would the DFA be in if it were restarted to correspond to
shifting the pattern one position to the right?

A. Use the (partially constructed) DFA to find X!

Consequence.

• We want the same transitions as X for the next state on mismatch.
copy dfa[][X] to dfa[][j]

• But a different transition (to j+1) on match.
set dfa[pat.charAt(j)][j] to j+1

A B B B B C C C A B A B A ? ? ? ? ? ? ?
 0 0 1 2 3

Efficiently constructing the DFA for KMP substring search

25

 j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
 A 1 1 3 1 5 ?
 dfa[][j] B 0 2 0 4 0 ?
 C 0 0 0 0 0 ?

 j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
 A 1 1 3 1 5 1
 dfa[][j] B 0 2 0 4 0 4
 C 0 0 0 0 0 6

matched chars next char

X

Efficiently constructing the DFA for KMP substring search

Build table by finding answer to Q for each pattern position.

Observation. No need to restart DFA.

• Remember last restart state in X.

• Use DFA to update X.

• X = dfa[pat.charAt(j)][X]

26

DFA simulations to compute
restart states for A B A B A C

 A B A B A
 0 0 1 2 3

 A B A B
 0 0 1 2

 A B A
 0 0 1

 A B
 0 0

 A
 0

restart
states

1

2

3

4

5
dfa['A'][2]

dfa['B'][1]

dfa['A'][0]

Q. What state X would the DFA be in if it were restarted to
correspond to shifting the pattern one position to the right?

DFA corresponding to the string A B A B A C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]

pat.charAt(j)
j

A
B
C

Constructing the DFA for KMP substring search: example

27

Constructing the DFA for KMP substring search for A B A B A C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

B C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]

pat[j]
j

A
B
C

X

X j

X

X

X

X

j

j

j

j

j

0 1 2 3 4 5A B A A

B,C

A

CB,CC

B,C A

B

 0 1 2 3 4
 A B A B A
 1 1 3 1 5
 0 2 0 4 0
 0 0 0 0 0

dfa[][j]

pat[j]
j

A
B
C

X

0 1 2 3 4A B A

A

CB,CC

B,C A

B

 0 1 2 3
 A B A B
 1 1 3 1
 0 2 0 4
 0 0 0 0

dfa[][j]

pat[j]
j

A
B
C

X

0 1 2 3A B A

B,CC

B,C A

 0 1 2
 A B A
 1 1 3
 0 2 0
 0 0 0

dfa[][j]

pat[j]
j

A
B
C

X

0 1 2A B
C

B,C A 0 1
 A B
 1 1
 0 2
 0 0

dfa[][j]

pat[j]
j

A
B
C

X

0 1A

B,C 0
 A
 1
 0
 0

dfa[][j]

pat[j]
j

A
B
C

copy dfa[][X] to dfa[][j]

dfa[pat[j]][j] = j+1;

X = dfa[pat[j]][X]];

Constructing the DFA for KMP substring search for A B A B A C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

B C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]
A
B
C

X

X j

X

X

X

X

j

j

j

j

j

0 1 2 3 4 5A B A A

B,C

A

CB,CC

B,C A

B

 0 1 2 3 4
 A B A B A
 1 1 3 1 5
 0 2 0 4 0
 0 0 0 0 0

dfa[][j]
A
B
C

X

0 1 2 3 4A B A

A

CB,CC

B,C A

B

 0 1 2 3
 A B A B
 1 1 3 1
 0 2 0 4
 0 0 0 0

dfa[][j]
A
B
C

X

0 1 2 3A B A

B,CC

B,C A

 0 1 2
 A B A
 1 1 3
 0 2 0
 0 0 0

dfa[][j]
A
B
C

X

0 1 2A B
C

B,C A 0 1
 A B
 1 1
 0 2
 0 0

dfa[][j]
A
B
C

X

0 1A

B,C 0
 A
 1
 0
 0

dfa[][j]

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

A
B
C

copy dfa[][X] to dfa[][j]

dfa[pat.charAt(j)][j] = j+1;

X = dfa[pat.charAt(j)][X]];

Constructing the DFA for KMP substring search: example

28

Constructing the DFA for KMP substring search for A B A B A C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

B C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]
A
B
C

X

X j

X

X

X

X

j

j

j

j

j

0 1 2 3 4 5A B A A

B,C

A

CB,CC

B,C A

B

 0 1 2 3 4
 A B A B A
 1 1 3 1 5
 0 2 0 4 0
 0 0 0 0 0

dfa[][j]
A
B
C

X

0 1 2 3 4A B A

A

CB,CC

B,C A

B

 0 1 2 3
 A B A B
 1 1 3 1
 0 2 0 4
 0 0 0 0

dfa[][j]
A
B
C

X

0 1 2 3A B A

B,CC

B,C A

 0 1 2
 A B A
 1 1 3
 0 2 0
 0 0 0

dfa[][j]
A
B
C

X

0 1 2A B
C

B,C A 0 1
 A B
 1 1
 0 2
 0 0

dfa[][j]
A
B
C

X

0 1A

B,C 0
 A
 1
 0
 0

dfa[][j]

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

A
B
C

copy dfa[][X] to dfa[][j]

dfa[pat.charAt(j)][j] = j+1;

X = dfa[pat.charAt(j)][X]];

Constructing the DFA for KMP substring search: Java implementation

For each j:

• Copy dfa[][X] to dfa[][j] for mismatch case.

• Set dfa[pat.charAt(j)][j] to j+1 for match case.

• Update X.

Running time. M character accesses.
29

public KMP(String pat)
{
 this.pat = pat;
 M = pat.length();
 dfa = new int[R][M];
 dfa[pat.charAt(0)][0] = 1;
 for (int X = 0, j = 1; j < M; j++)
 {
 for (int c = 0; c < R; c++)
 dfa[c][j] = dfa[c][X];
 dfa[pat.charAt(j)][j] = j+1;
 X = dfa[pat.charAt(j)][X];
 }
}

copy mismatch cases
set match case
update restart state

30

KMP substring search analysis

Proposition. KMP substring search accesses no more than M + N chars
to search for a pattern of length M in a text of length N.

Pf. We access each pattern char once when constructing the DFA,
and each text char once (in the worst case) when simulating the DFA.

Remark. Takes time and space proportional to R M to construct dfa[][],
but with cleverness, can reduce time and space to M.

31

Knuth-Morris-Pratt: brief history

Brief history.

• Inspired by esoteric theorem of Cook.

• Discovered in 1976 independently by two theoreticians and a hacker.

- Knuth: discovered linear-time algorithm
- Pratt: made running time independent of alphabet

- Morris: trying to build a text editor

• Theory meets practice.

Don Knuth Vaughan PrattJim MorrisStephen Cook

32

‣ brute force
‣ Knuth-Morris-Pratt
‣ Boyer-Moore
‣ Rabin-Karp

Robert Boyer J. Strother Moore

Intuition.

• Scan characters in pattern from right to left.

• Can skip M text chars when finding one not in the pattern.

Boyer-Moore: mismatched character heuristic

33

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search

 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 H A Y S T A C K N E E D L E I N A
 0 5 N E E D L E
 6 5 N E E D L E
 8 5 N E E D L E
 8 0
 return i = 8

 pattern

 text

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[].

34

 right = new int[R];
 for (int c = 0; c < R; c++)
 right[c] = -1;
 for (int j = 0; j < M; j++)
 right[pat.charAt(j)] = j;

Boyer-Moore skip table computation

c right[c]

 N E E D L E
 0 1 2 3 4 5
A -1 -1 -1 -1 -1 -1 -1 -1
B -1 -1 -1 -1 -1 -1 -1 -1
C -1 -1 -1 -1 -1 -1 -1 -1
D -1 -1 -1 -1 3 3 3 3
E -1 -1 1 2 2 2 5 5
... -1
L -1 -1 -1 -1 -1 4 4 4
M -1 -1 -1 -1 -1 -1 -1 -1
N -1 0 0 0 0 0 0 0
... -1

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[].

35

Mismatched character heuristic (mismatch in pattern)

 increment i by j - right[’N’]
 to line up text with N in pattern

 reset j to M-1

. N L E
 N E E D L E

i

j

j

 reset j to M-1
j

i+j

. N L E
 N E E D L E

i

basic idea

 lining up text with rightmost E
would shift pattern left

 could do better with
KMP-like table

 could do better with
KMP-like table

. E L E
 N E E D L E

i

j

i+j

. E L E
 N E E D L E

 so increment i by 1

. E L E
 N E E D L E

i

heuristic is no help

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[].

Easy fix. Set right[c] to -1 for characters not in pattern.
36

Mismatched character heuristic (mismatch not in pattern)

 increment i by j+1

 reset j to M-1

. T L E
 N E E D L E

i

j

j

i+j

. T L E
 N E E D L E

i
 could do better with

KMP-like table

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[].

37

Mismatched character heuristic (mismatch in pattern)

 increment i by j - right[’N’]
 to line up text with N in pattern

 reset j to M-1

. N L E
 N E E D L E

i

j

j

 reset j to M-1
j

i+j

. N L E
 N E E D L E

i

basic idea

 lining up text with rightmost E
would shift pattern left

 could do better with
KMP-like table

 could do better with
KMP-like table

. E L E
 N E E D L E

i

j

i+j

. E L E
 N E E D L E

 so increment i by 1

. E L E
 N E E D L E

i

heuristic is no help

Boyer-Moore: Java implementation

38

 public int search(String txt)
 {
 int N = txt.length();
 int M = pat.length();
 int skip;
 for (int i = 0; i <= N-M; i += skip)
 {
 skip = 0;
 for (int j = M-1; j >= 0; j--)
 if (pat.charAt(j) != txt.charAt(i+j))
 {
 skip = Math.max(1, j - right[txt.charAt(i+j)]);
 break;
 }
 if (skip == 0) return i;
 }
 return N;
}

compute skip value

match

Boyer-Moore: analysis

Property. Substring search with the Boyer-Moore mismatched character
heuristic takes about ~ N/M character compares to search for a pattern of
length M in a text of length N.

Worst-case. Can be as bad as ~ M N.

Boyer-Moore variant. Can improve worst case to ~ 3 N by adding a
KMP-like rule to guard against repetitive patterns.

39

sublinear

Boyer-Moore-Horspool substring search (worst case)

 i skip 0 1 2 3 4 5 6 7 8 9

 B B B B B B B B B B

 0 0 A B B B B
 1 1 A B B B B
 2 1 A B B B B
 3 1 A B B B B
 4 1 A B B B B
 5 1 A B B B B

txt

pat

40

‣ brute force
‣ Knuth-Morris-Pratt
‣ Boyer-Moore
‣ Rabin-Karp

Michael Rabin, Turing Award '76
and Dick Karp, Turing Award '85

Rabin-Karp fingerprint search

Basic idea.

• Compute a hash of pattern characters 0 to M-1.

• For each i, compute a hash of text characters i to M+i-1.

• If pattern hash = text substring hash, check for a match.

41

Basis for Rabin-Karp substring search

 txt.charAt(i)
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3

0 3 1 4 1 5 % 997 = 508

1 1 4 1 5 9 % 997 = 201

2 4 1 5 9 2 % 997 = 715

3 1 5 9 2 6 % 997 = 971

4 5 9 2 6 5 % 997 = 442

5 9 2 6 5 3 % 997 = 929

6 2 6 5 3 5 % 997 = 613

 pat.charAt(i)
i 0 1 2 3 4

 2 6 5 3 5 % 997 = 613

 return i = 6

 match

Modular hash function. Using the notation ti for txt.charAt(i),
we wish to compute

Intuition. M-digit, base-R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree-M polynomial.

Efficiently computing the hash function

42

// Compute hash for M-digit key
private int hash(String key)
{
 int h = 0;
 for (int i = 0; i < M; i++)
 h = (R * h + key.charAt(j)) % Q;
 return h;
}

xi = ti R M-1 + ti+1 R M-2 + … + ti+M-1 R 0 (mod Q)

Computing the hash value for the pattern with Horner’s method

 pat.charAt(i)
 i 0 1 2 3 4
 2 6 5 3 5

 0 2 % 997 = 2

 1 2 6 % 997 = (2*10 + 6) % 997 = 26

 2 2 6 5 % 997 = (26*10 + 5) % 997 = 265

 3 2 6 5 3 % 997 = (265*10 + 3) % 997 = 659

 4 2 6 5 3 5 % 997 = (651*10 + 5) % 997 = 613

QR

Challenge. How to efficiently compute xi+1 given that we know xi.

Key property. Can do it in constant time!

Efficiently computing the hash function

43

xi = ti R M–1 + ti+1 R M–2 + … + ti+M–1 R0

xi+1 = ti+1 R M–1 + ti+2 R M–2 + … + ti+M R0

xi+1 = (xi – ti R M-1) R + ti+M

Key computation in Rabin-Karp substring search
(move right one position in the text)

 i ... 2 3 4 5 6 7 ...
 1 4 1 5 9 2 6 5
 4 1 5 9 2 6 5

 4 1 5 9 2
 - 4 0 0 0 0
 1 5 9 2
 * 1 0
 1 5 9 2 0
 + 6
 1 5 9 2 6

current value

subtract leading digit

multiply by radix

add new trailing digit

new value

current value
new value

 text

Rabin-Karp: Java implementation

44

public class RabinKarp {
 private String pat; // the pattern
 private int patHash; // pattern hash value
 private int M; // pattern length
 private int Q = 8355967; // modulus
 private int R; // radix
 private int RM; // R^(M-1) % Q

 public RabinKarp(String pat) {
 this.R = 256;
 this.pat = pat;
 this.M = pat.length;

 RM = 1;
 for (int i = 1; i <= M-1; i++)
 RM = (R * RM) % Q;
 patHash = hash(pat);
 }

 private int hash(String key)
 { /* as before */ }

 public int search(String txt)
 { /* see next slide */ }
}

precompute RM-1 (mod Q)

a large prime, but small enough
to avoid 32-bit integer overflow

Rabin-Karp: Java implementation (continued)

45

public int search(String txt)
{
 int N = txt.length();
 if (N < M) return N;
 int offset = hashSearch(txt);
 if (offset == N) return N;

 for (int i = 0; i < M; i++)
 if (pat.charAt(i) != txt.charAt(offset + i))
 return N;
 return offset;
}

private int hashSearch(String txt)
{
 int N = txt.length();
 int txtHash = hash(txt);
 if (patHash == txtHash) return 0;
 for (int i = M; i < N; i++)
 {
 txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
 txtHash = (txtHash*R + txt.charAt(i)) % Q;
 if (patHash == txtHash) return i - M + 1;
 }
 return N;
}

check if hash collision
corresponds to a match

check for hash collision
using rolling hash function

Rabin-Karp substring search example

46

Rabin-Karp substring search example

 i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3

 0 3 % 997 = 3

 1 3 1 % 997 = (3*10 + 1) % 997 = 31

 2 3 1 4 % 997 = (31*10 + 4) % 997 = 314

 3 3 1 4 1 % 997 = (314*10 + 1) % 997 = 150

 4 3 1 4 1 5 % 997 = (150*10 + 5) % 997 = 508

 5 1 4 1 5 9 % 997 = ((508 + 3*(997 - 30))*10 + 9) % 997 = 201

 6 4 1 5 9 2 % 997 = ((201 + 1*(997 - 30))*10 + 2) % 997 = 715

 7 1 5 9 2 6 % 997 = ((715 + 4*(997 - 30))*10 + 6) % 997 = 971

 8 5 9 2 6 5 % 997 = ((971 + 1*(997 - 30))*10 + 5) % 997 = 442

 9 9 2 6 5 3 % 997 = ((442 + 5*(997 - 30))*10 + 3) % 997 = 929

10 2 6 5 3 5 % 997 = ((929 + 9*(997 - 30))*10 + 5) % 997 = 613

Q

RM R

 return i-M+1 = 6

 match

Rabin-Karp analysis

Proposition. Rabin-Karp substring search is extremely likely to be linear-time.

Worst-case. Takes time proportional to MN.

• In worst case, all substrings hash to same value.

• Then, need to check for match at each text position.

Theory. If Q is a sufficiently large random prime (about MN2), then
probability of a false collision is about 1/N ⇒ expected running time is linear.

Practice. Choose Q to avoid integer overflow. Under reasonable assumptions,
probability of a collision is about 1/Q ⇒ linear in practice.

47

Rabin-Karp fingerprint search

Advantages.

• Extends to 2D patterns.

• Extends to finding multiple patterns.

Disadvantages.

• Arithmetic ops slower than char compares.

• Poor worst-case guarantee.

Q. How would you extend Rabin-Karp to efficiently search for any one of P
possible patterns in a text of length N?

48

Cost of searching for an M-character pattern in an N-character text.

49

Substring search cost summary

6276.3 ! Substring Search

Summary The table at the bottom of the page summarizes the four algorithms
that we have considered for substring search. As is often the case when we have several
algorithms for the same task, each of them has attractive features. Brute force search is
easy to implement and works well in typical cases (Java’s String.indexOf() method
uses brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup
in the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and
Rabin-Karp is constant-time and constant-space even when M is large. Each also has
drawbacks: brute-force might require time proportional to MN; Knuth-Morris-Pratt
and Boyer-Moore use extra space; and Rabin-Karp has a relatively long inner loop (sev-
eral arithmetic operations, as opposed to character comparisons in the other methods.
These characteristics are summarized in the table below.

algorithm
(data structure)

operation count backup
in input?

space
grows
withguarantee typical

brute force M N 1.1 N yes 1

Knuth-Morris-Pratt
(full DFA) 2 N 1.1 N no MR

Knuth-Morris-Pratt
(mismatch transitions only) 3 N 1.1 N no M

Boyer-Moore 3 N N / M yes R

Boyer-Moore
(mismatched character heuristic only) M N N / M yes R

Rabin-Karp† 7 N † 7 N no 1

† probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations

