6.3 Substring Search Substring search

Goal. Find pattern of length M in a text of length N.

typically N >> M

just

pointer 2% mber

Q. i
_hSubstrmg pattern—N E E D L E

values |

m time
text text —I N A H A Y S T A CKNEEDLTETINA

Eﬁde match
.. rightYalue
I w » brute force
= il §O .
pa ernm » Knuth-Morris-Pratt
character.- a Computer forensics. Search memory or disk for signatures,
it~ » Boyer-Moore
,,,,,, s ; e.g., all URLs or RSA keys that the user has entered.

@ precisen _ .

2iatch » Rabin-Karp

O tposition

Q. e

hashﬁsta;:e

http://citp.princeton.edu/memory

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 - December 3, 2009 8:40:48 AM
Applications Application: Spam filtering
* Parsers. Identify patterns indicative of spam.
* Spam filters. : * PROFITS
* Digital libraries. Spuissassin * LOSE WELGHT
* Screen scrapers. * herbal Viagra
* Word processors. (3 * There is no catch.
» Web search engines. LexisNexis~ * LOW MORTGAGE RATES

10s how you know ™

 Electronic surveillance. * This is a one-time mailing.

* Natural Ianguage pr‘ocessing. ® This message is sent in compliance with
* Computational molecular biology.
» FBIs Digital Collection System 3000.

* Feature detection in digitized images.

spam regulations.
® You're getting this message because you

registered with one of our marketing partners.

Application: Electronic surveillance

Need to monitor all
internet traffic.
(security)

Well, we're mainly
interested in
"ATTACK AT DAWN,

“ATTACK AT DAWN”
substring search
machine

found O

Screen scraping: Java implementation

Java library. The indexof () method in Java's string library returns the index
of the first occurrence of a given string, starting at a given offset.

public class StockQuote

No way!
(privacy)

OK. Builda
machine that just

{
public static void main(String[] args)
{
String name = "http://finance.yahoo.com/q?s=";
In in = new In(name + args[0]);
String text = in.readAll();
int start = text.indexOf ("Last Trade:", 0);
int from = text.indexOf ("", start);
int to = text.indexOf ("", from) ;
String price = text.substring(from + 3, to);
StdOut.println(price) ;
}
}

—— ¢ jaVa StockQuote goog

256.44

% java StockQuote msft

19.68

Application: Screen scraping
Goal. Extract relevant data from web page.

Ex. Find string delimited by and after first occurrence of
pattern Last Trade:.

Google Inc. (GOOG) A 1110 T 256.44 3 539 (2.26%) e
<tr>
More On GOOG
Quotes <td class= "yfnc tableheadl"
» Summary Google Inc. (NasdaqGSs: GOOG) 006 24-Nov 11:10am (C)¥ahoo! —
Real-Time ECNISW! e, Real-time: 266,46 -3.97 (-1 51%) 7 width= "48%">
Historical Prices Last Trade: 256.44 Day's Range: 250.26 - 269.95 Last Trade .
Charts Trade Time: 11:19AM ET 52wk Range: 247.30-724.80 °
e o yssvasn Voo seome </td>
Basic Tech. Analysis prey Close: 26243 wg Vol (3m: & cus - 1 5 o
Neweainge) Open: 269.65 Market Cap: 80.67B 4 Add GOOG to Your Portfolio <td class yfnc_t le tal">
Headlines " P/E (im) 1548 L SetAlertfor GOOG 5 5
Financial Blogs 8 25631 x 100 EPS‘“ ' 104 | & vommavan <big>452.92</big>
Company Events Ask: 256.57 x 100 {m): & Download Annual Report
Message Board 1y Target Est 51187 Div & Yield: NIA(NIA) 4 Add Quotes to Your Web Ste </ td></ tr>
<td class= "yfnc tableheadl"
http://£inance.yahoo.com/q?s=goo. :
p:// y /q?s=goog width= "48%">

Trade Time:
</td>
<td class= "yfnc_tabledatal">

Brute-force substring search

Check for pattern starting at each text position.

i j i+j 0 1 2 3 4 5 6 7 8 910
txt—A B A C A D A B R A C
0 2 2 A B R ~— pat
1 0 1 A entries in red are
5 1 3 A B / mismatches
entries in gray are
3 0 3 A for reference only
4 1 > entries in black B
5 0 5 match the text
6. 4 10 ABRA
A return 1 when j isM 4

match

Brute-force substring search

Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

i joi+] 012 3 45 6 7 8 9
txt— A A A A A A A A A

0 4 4 A A A A B-<«—pat

1 4 A A A A B

2 4 6 A A A A B

3 4 7 A A A A B

4 4 8 A A A B

5 4 9 A A A A B
Brute-force substring search (worst case)

Worst case. ~ M N char compares.

Brute-force substring search: Java implementation

Check for pattern starting at each text position.

public static int search(String pat, String txt)
{

int M = pat.length();

int N = txt.length();

for (int i = 0; i <= N - M; i++)

{

int j;
for (j = 0; j < M; j++)
if (txt.charAt(i+j) != pat.charAt(j))
break;
if (j = M) return i; index in text where

pattern starts

}

return N; <«— not found

Backup

In typical applications, we want to avoid backup in text stream.

 Treat input as stream of data.
O AbSTr‘ClCT model: StdIn. “ATTACK AT DAWN”

substring search
machine

found Q

Brute-force algorithm needs backup for every mismatch

matched chars .
mismatch

> |

AAAAAA
AAAAAB

/ backup

> >

/

shift pattern right one position

Approach 1. Maintain buffer of size m (build backup into stdin)
Approach 2. Stay tuned.

Brute-force substring search: alternate implementation Algorithmic challenges in substring search

Same sequence of char compares as previous implementation. Brute-force is often not good enough.
+ i points to end of sequence of already-matched chars in text.

+ j stores number of already-matched chars (end of sequence in pattern). Theoretical challenge. Linear-time guarantee. <«— fundamental algorithmic problem

Practical challenge. Avoid backup in fext stream. <— offennoroom or fime to save text

public static int search(String pat, String txt)
(Now is the time for all people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for man ood people to come to the aid of their party.
N = txt.length() ; . : i Y G R c . R
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
int j, M pat.length() ; people to come to the aid of their party. Now is the time for all of the good people to come to the aid of
s - R - . their party. Now is the time for all good people to come to the aid of their party. Now is the time for
for (1 0 3= 0’ i <N s&s J < M; 1++) each good person to come to the aid of their party. Now is the time for all good people to come to the aid
{ of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
. . . . time for all good people to come to the aid of their party. Now is the time for many or all good people to
if (txt'CharAt(l) — pat‘CharAt (J)) J++’ come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
} <«<—F backup is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
) is the time for many good people to come to the aid of their party. Now is the time for all good people to
if (J == M) return i - M; come to the aid of their party. Now is the time for a lot of good people to come to the aid of their
party. Now is the time for all of the good people to come to the aid of their party. Now is the time for
else return N; all good people to come to the aid of their attack at dawn party. Now is the time for each person to come
) to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is
the time for all good Republicans to come to the aid of their party. Now is the time for all good people
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
party. Now is the time for all good people to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party.

int i,

else { i -= j; j = 0;

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BaaAaaaaAA.
* Suppose we match 5 chars in pattern, with mismatch on 6™ char.
* We know previous 6 chars in text are BAAAAB,

* Don't need to back up text pointer! assuming {A, B) alphabet

:
tCXt\ l
. A B A AAABAAAAAAAAA
after mismatch
onsixthchar—B A A A A A ~— pattern
brute-force buckf/' B
up to try this B
and this =~ B
andthis/ B
andihis = g A A A AAAAA A
and this
A A A A A AAAA
but no backup
is needed /

Remark. It is always possible to avoid backup (!)

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on match?
A. Easy: compare next pattern char to next text char.

matched chars current char

l / is match
ABABAC
ABABAC
pat.charAt(6)
j 01 2 3 4 5
pat.charAt(j) A B A B A C
A current text char: c
dfal1[j] B current pattern index: j
C @ next pattern index: dfafc][3j]

table giving pattern char to compare to the next text char

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left to right.

current char

matched chars is match

0
pat.charAt(j) A

dfal][j]

w
m@l—‘ﬁm

table giving pattern char to compare to the next text char

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left to right.

current char

tched chars .
matched char: 5 ettt

X > >
x > W W

x > > > |
X > w W
< > > >
> W N >
~J

>
w

\

j 01 2 3 45
pat.charAt(j) A B A B A C pat.charAt(1)
A ®
dfa[1[(jl] B
C 6

table giving pattern char to compare to the next text char

KMP substring search preprocessing (concept)

Fill in table columns by doing computation for each possible mismatch position.

3j pat. dfa[][j] text (pattern itself) 3j pat. dfa[][j] text (pattern itself)
charAt(j) A B C ABABAC charAt(j) A B C ABABAC
0 A 1 A
B 3 B 4 ABAB
0 ABAA
C 1 A
0 ABAC
0
1 B 2 AB
AA 4 A 5 ABABA
1 A ABABB
AC /// 0
0 match (move to next char) ABABC
set dfa[pat.charAt(j)1[3] 0
2 A 3 ABA 0t
ABS 5. ¢ 6 ABABAC kot
0 ABABAA
ABC 1 A
0 mismatch L. 4 AB:E’::
(back up in pattern) T

backup is length of max overlap
of beginning of pattern
with known text chars

Pattern backup for ABABA C in KMP substring search

20

Deterministic finite state automaton (DFA)

DFA is abstract string-searching machine.

* Finite number of states (including start and halt).
 Exactly one transition for each input symbol.

* Accept if sequence of transitions leads to halt state.

internal representation

] o 1 2 3 4 5
pat.charAt(j) A B A B A C
A1l 1 3 1 5 1
dfafl1[jl1jp 0 2 0 /4 0 4 If in state j reading char c:
c o0 0 0/0 0 6 halt if j is 6
mismatch \ else move to state dfa[c] [j]
transition match
(back up) transition
graphical representation (increment)

RN
S e

v i

DFA corresponding to the stringA B AB A C

21

KMP search: Java implementation
KMP implementation. Build machine for pattern, simulate it on text.
Key differences from brute-force implementation.

* Text pointer i never decrements.
* Need to precompute dfa[][] table from pattern.

public int search(String txt)

{
int i, j, N = txt.length();
for (i =0, J=0; i <N && j < M; i++)

j = dfa[txt.charAt(i)][j];

if (j == M) return i - M;
else return N;

}

Running fime.

e Simulate DFA: at most N character accesses.
* Build DFA: at most M2R character accesses (stay tuned for better method).

23

KMP substring search: trace

0 1 2 3 4 5 6 7 8 91011 12 13 14 15 16~ 1
read this char— B C B A B ACAAZBATZBA C A A~ txt.charAt(i)
inthisstate—~0_0 0 0 1 1 2 3 0 1 1 2 3 4 5 6 <]
go to this state A
found
A returni - M =9
A
A bl 0O 1 2 3 4 5
B pat.charAt(3) A B A B A C
B A1l 1 3 1 5 1
A dfafl1(jl1jp 0 2 0 4 0 4
c 0 0 O O 0 6
match: B
set j to dfa[txt.charAt(i)][j] A
= dfa[pat.charAt(3)1[j]
= j+1 B
B
A
mismatch: B
set j to dfa[txt.charAt(i)][j] A
implies pattern shift to align
pat.charAt(j) with C
txt.charAt(i+1) A B A B A C
Trace of KMP substring search (DFA simulation) forA B A B A C

22

KMP search: Java implementation

Key differences from brute-force implementation.
* Text pointer i never decrements.

* Need to precompute dfa[][] table from pattern.
* Could use input stream.

public int search(In in)
{
int i, j;
for (i =0, j = 0; 'in.isEmpty() && j < M; i++)
j = dfa[in.readChar()]1[]jl;
if (j == M) return i - M;
else return i;
}

24

Efficiently constructing the DFA for KMP substring search

Q. What state X would the DFA be in if it were restarted to correspond to
shifting the pattern one position to the right?

matched chars next char

v
ABABA
ABABALC

A. Use the (partially constructed) DFA to find X!

j 01 2 3 45
BABA pat.charAt(j) A B A B A C
00123 A1l 1 3[1 5 7
\ dfa[][j]1|B 0 2 0 4 0 7
X c 00 00 O0 7
Consequence.
* We want the same transitions as X for the next state on mismatch.
copy dfa[][X] to dfa[][]] j 01 2 3 4 5
9 ong g .charAt(j A B A B A
« But a different transition (to j+1) on match. Pt A e
set dfa[pat.charAt(j)][j] To j+1 dfa[1(jl1jB8 0 2 0 4 0 4
C 00 00 O0/6

Constructing the DFA for KMP substring search: example

i 0 (‘s,'c/l
pat.charAt(j) A —_
- @O —0O
dfa[l[j1|B O
c o
X
' .
i 0 1 C c (A /] copy dfa[]1[X] todfal[][j]
pat.charAt(j) A B @n— (D dfalpat.charAt()1[j] = j+1;
A 1 1 / C X = dfa[pat.charAt(3)1[X]];
dfafl(ij1|B 0 2
c 0 0
i
_ Ce Gh e
j 0 1 2 A—> B —> A—>
pat.charAt(j) A B A x/@‘\{}/&@— @
A1 1 3
dfa[l[31|B 0 2 0
c o0 0 0
X
'
i 0o 1 2 3 \z C (/_\
pat.charAt(j) A B A B @ A—> B—»@
Al 1 3 1
dfa(l(j1jB 0 2 0 4 \/
c 0 o0 o0 O

Constructing the DFA for KMP substring searchforA B A B A C

Efficiently constructing the DFA for KMP substring search

Build table by finding answer to Q for each pattern position.

/

Q. What state X would the DFA be in if it were restarted to
correspond to shifting the pattern one position to the right?

Observation. No need to restart DFA.

* Remember last restart state in X.
* Use DFA to update X.

® X = dfa[pat.charAt(]j)][X]

25

j 0o 1 2 3 4 5
pat.charAt(j) A B A B A C
Al 1 3 1 5 1
dfaflf(jl1jp 0 2 0 4 0 4
c 0 0 0 O 0 =6
1 [
0
restart
2 B states
0o 0
3 B A fa['A'][0]
0o 0 1
dfa['B'][1
4 B A B alpritil
0o 0 1
dfa['A'][2]
5 B A B A e
0o 0 1 2 3
DFA simulations to compute
restart statesforA B A B A C

Constructing the DFA for KMP substring search: example

i)
pat.charAt(j)
A
dfa[][j1|B
C

]
pat.charAt(j)
A
dfaf][jl|B
C

]
pat.charAt(j)
A
dfa[1[j]1|B
C

X
}
0o 1 2 3
A B A B
1 1 3 1
0o 2 0 4
0O 0 0 O
X
}

0o 1 2 3 4
A B A B A
i1 1 3 1 5
o 2 0 4 0
0O 0 0O 0 ©O

X

}
0o 1 2 3 4 5
A B A B A C
11 3 1 5 1
o 2 0 4 0 4
0O 0 O O 0 6

B—» A—

. (A)%—/x\: i

@:A\—_» RH@A—» B —>

bﬁi

Constructing the DFA for KMP substring searchnforA B A B A C

£

C— 6

27

26

28

Constructing the DFA for KMP substring search: Java implementation

For each j:

* Copy dfa[][x] to dfa[1[j] for mismatch case.

e Set dfa[pat.charAt(j)1[j] to j+1 for match case.
 Update x.

public KMP(String pat)
{
this.pat = pat;
M = pat.length() ;
dfa = new int[R] [M];
dfa[pat.charAt(0)][0] = 1;
for (int X =0, j =1; j < M; j++)
{
for (int ¢ = 0; ¢ < R; c++)

dfa[c] [j] = dfa[c] [X]; <«<——+F— copy mismatch cases
dfa[pat.charAt(j)]1[j] = j+1; <«——F— set matchcase
X = dfa[pat.charAt(j)][X]; <——+F— update restart state

Running time. M character accesses.

29

Knuth-Morris-Pratt: brief history

Brief history.

* Inspired by esoteric theorem of Cook.

* Discovered in 1976 independently by two theoreticians and a hacker.
- Knuth: discovered linear-time algorithm
- Pratt: made running time independent of alphabet
- Morris: trying to build a text editor

* Theory meets practice.

6

I

Stephen Cook Don Knuth Jim Morris Vaughan Pratt

31

KMP substring search analysis

Proposition. KMP substring search accesses no more than M + N chars
to search for a pattern of length M in a text of length N.

Pf. We access each pattern char once when constructing the DFA,
and each text char once (in the worst case) when simulating the DFA.

Remark. Takes time and space proportional Yo R M to construct dfa[](1,
but with cleverness, can reduce time and space to M.

30

Robert Boyer J. Strother Moore
32

Boyer-Moore: mismatched character heuristic

Intuition.
* Scan characters in pattern from right to left.
* Can skip M text chars when finding one not in the pattern.

-

j 0 1 2 3 4 5 6 7 8 91011 12 13 14 15 16

text—H A Y S T A C K N E E D L E
E <— pattern
E
N E E D L E

© o O
[NV, BV, BNV, |

8

returni = 8

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[c] = rightmost occurrence of character c in pat[].

-

0O Z -« 4+
—
m

basicidea i

[arS

) . could do better with
increment i by j - right[’N’] 1 KMP-like table
to line up text with N in pattern ¥ /

reset j to M-1 ?
]

33

35

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[c] = rightmost occurrence of character c in patg].

N E
< o 1 2
A -1
right = new int[R]; 8 1
for (int ¢ = 0; c < R; c++) ¢ -1
right[e] = -1; D -1
for (int j = 0; j < M; j++) E -1 1 2
right[pat.charAt(j)] = Jj;
L -1
-1
N -1 0

Boyer-Moore skip table computation

right[c]

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[c] = rightmost occurrence of character c in patl].

-

w>o o <3
-
m

; could do better with
KMP-like tabl,
increment i by j+1 } / e tavie

reset j to M-1 f
J

Mismatched character heuristic (mismatch not in pattern)

Easy fix. Set right[c] to -1 for characters not in pattern.

34

36

Boyer-Moore: mismatched character heuristic Boyer-Moore: Java implementation

Q. How much to skip?

A. Compute right[c] = rightmost occurrence of character c in pat[]. T T

{
int N = txt.length();

o int M = pat.length();
heuristic is no help . q
i i+ int skip;
v ¥ for (int i = 0; i <= N-M; i += skip)
E L E {
D L E skip = 0;
t for (int j = M-1; § >= 0; j--) ,
J J J
J . i sy <«<——+F compute skip value
if (pat.charAt(j) !'= txt.charAt(i+j))
lining up text with rightmost E {
would shift pattern left skip = Math.max(l, j - right[txt.charAt(i+j)]);
break;
could do better with . } . "
) i KMP-like table if (skip == 0) return i; «——+F match
so increment i by 1 ' / }
return N;
}
reset j to M-1 ﬁ
j

37 38

Boyer-Moore: analysis
Property. Substring search with the Boyer-Moore mismatched character
heuristic takes about ~ N/M character compares to search for a pattern of

length M in a text of length YN\ il

Worst-case. Can be as bad as ~ M N.

iskip 0 12 3 456 7 8 9
txt—B8 B B B B B B B B B
0 o A B B B B-—pat
101 A B B B B
2 1 AB B B B
31 AB B B B
4 1 AB B B B » Rabin-Karp
501 A BB B B _

Boyer-Moore variant. Can improve worst case to ~ 3 N by adding a

Michael Rabin, Turing Award '76

KMP-like rule to guard against repetitive patterns. and Dick Karp. Turing Award ‘85

39 40

Rabin-Karp fingerprint search

Basic idea.

» Compute a hash of pattern characters O to M-1.

» For each i, compute a hash of text characters i to M+i-1.

 If pattern hash = text substring hash, check for a match.

pat.charAt(i)
i 01 2 3 4

2 6 5 3 5 %997 =613

txt.charAt(i)

-
o

5 6 7

8 91011 12 13 14 15

9 2 6
% 997 =
9 % 997

w
e
INEFNEN NN

B R R R W

6

[C T, BT BT NV BV R FN
o v v
NONONN

6
6
6

~— returni = 6

53 58 97 9 3
508
= 201

2 % 997 = 715

% 997 = 971
5 % 997 = 442

5 3 %997 = 929 ’;““h
5 3 5 %997 = 613

Basis for Rabin-Karp substring search

Efficiently computing the hash function

Challenge. How to efficiently compute xi.1 given that we know x:.

Xi=ti RM-1 4+ f;) RM2 |

..+ tiym-1 RO

Xi+1 = tisn RM-' + 10 RM2 + .+ tizm RO

Key property. Can do it in constant time!

Xis1 = (X i RM) R + tism

i ... 2 3 45 6 7
current value 4 1 5 9 2
text
new value 1 5 9 2 6 = tex
4 1 5 9 2 currentvalue
- 4 0 0 0
1 5 9 2 subtractleading digit
1 0 multiply by radix
159 20
+ 6 add new trailing digit
1 5 9 2 6 newvalue

41

43

Efficiently computing the hash function

Modular hash function. Using the notation 1 for txt.charat(i),

we wish to compute

Xi=ti RM1 + iy RM2 + | + tizp1 RO (mod Q)

Intuition. M-digit, base-R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree-M polynomial.

public RabinKarp (String pat) {
this.R = 256;
this.pat = pat;
this.M = pat.length;

RM = 1;
for (int i = 1; i <= M-1; i++)
RM = (R * RM) % Q;
patHash = hash(pat) ;
}

private int hash(String key)
{ /* as before */ }

public int search(String txt)
{ /* see next slide */ }

. pat.charAt(i) // Compute hash for M-digit key
i 0123 4 private int hash(String key)
2 6 5 3 5 {
o _ R Q
0 2 % 997 =2 V4 a int h = 0;
1 2 6 %997 = (2*10 + 6) % 997 = 26 for (int i = 0; i < M; i++)
2 2 6 5 %997 = (26%10 + 5) % 997 = 265 h = (R * h + key.charAt(j)) % Q;
3 2 6 5 3 %997 = (26510 + 3) % 997 = 659 return h;
4 2 6 5 3 5 %997 = (651%10 + 5) % 997 = 613 }
Computing the hash value for the pattern with Horner’s method
42
Rabin-Karp: Java implementation
public class RabinKarp {
private String pat; // the pattern
private int patHash; // pattern hash value
private int M; // pattern length
private int Q = 8355967; // modulus <«———+— alarge prime, but small enough
private int R; // radix to avoid 32-bit integer overflow
private int RM; // R*(M-1) % Q

<«——— precompute R"! (mod Q)

44

Rabin-Karp: Java implementation (continued)

public int search(String txt)
{
int N = txt.length();
if (N < M) return N;
int offset = hashSearch (txt) ;
if (offset == N) return N;

for (int i = 0; i < M; i++)
if (pat.charAt(i) != txt.charAt(offset + i)) —
return N;

return offset;

check if hash collision
corresponds to a match

}

private int hashSearch(String txt)
{

int N = txt.length();

int txtHash = hash(txt);

if (patHash == txtHash) return 0;
for (int i = M; i < N; i++) L check for hash collision
{ using rolling hash function

txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
txtHash = (txtHash*R + txt.charAt(i)) % Q;
if (patHash == txtHash) return i - M + 1;

}

return N;

45

Rabin-Karp analysis

Proposition. Rabin-Karp substring search is extremely likely to be linear-time.
Worst-case. Takes time proportional to MN.

* Inworst case, all substrings hash to same value.

* Then, need to check for match at each text position.

Theory. If Qis asufficiently large random prime (about MN?), then
probability of a false collision is about 1/N = expected running time is linear.

Practice. Choose Q to avoid integer overflow. Under reasonable assumptions,
probability of a collision is about 1/Q = linear in practice.

47

Rabin-Karp substring search example

i 01 2 3 4 5 6 7 8 91011 12 13 14 15
3 1 1592 6 5 358 97 93

0 3 %997 =3 /0

1 3 1 %997 = (3*10 + 1) % 997 = 31

2 3 1 4 %997 = (3110 + 4) % 997 = 314

3 3 1 4 1 %997 = (314%10 + 1) % 997 = 150

4 3 1 4 1 5 %997 = (150%10 + 5) % 997 = 508 A" R

5 1 4 1 5 9 %997 = ((508 + 3*%(997 - 30))*10 + 9) % 997 = 201

6 4 1 5 9 2 %997 = ((201 + 1%(997 - 30))*10 + 2) % 997 = 715

7 1 5 9 2 6 %997 = ((715 + 4*(997 - 30))*10 + 6) % 997 = 971

8 5 9 2 6 5 %997 = ((971 + 1*(997 - 30))*10 + 5) % 997 = 442 match
9 9 2 6 5 3 %997 = ((442 + 5%(997 - 30))*10 + 3) % 997 = 929 l
10 ~— returni-M+1 = 6 2 6 5 3 5 %997 = ((929 + 9%(997 - 30))*10 + 5) % 997 = 613

Rabin-Karp substring search example

46

Rabin-Karp fingerprint search

Advantages.
» Extends to 2D patterns.
* Extends to finding multiple patterns.

Disadvantages.
* Arithmetic ops slower than char compares.
* Poor worst-case guarantee.

Q. How would you extend Rabin-Karp to efficiently search for any one of P
possible patterns in a text of length N?

48

Substring search cost summary

Cost of searching for an M-character pattern in an N-character text.

algorithm operation count backup space
L grows
(data structure) guarantee typical ininput? with
brute force MN 1.IN yes 1
Knuth-Morris-Pratt
(full DFA) 2N I.IN no MR
Knuth-Morris-Pratt
(mismatch transitions only) 3N LIN no M
Boyer-Moore 3N N/M yes R
Boyer-Moore
(mismatched character heuristic only) MN N/M yes R
Rabin-Karp" 7NT 7N 1o 1

 probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations

49

