
‣ tries
‣ TSTs
‣ applications

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · November 30, 2009 6:22:11 PM

6.2 Tries Review: summary of the performance of symbol-table implementations

Frequency of operations.

Q. Can we do better?
A. Yes, if we can avoid examining the entire key, as with string sorting.

2

implementation
typical case

ordered
operations

operations
on keys

search insert delete
operations on keys

red-black BST 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

hashing 1 † 1 † 1 † no
equals()

hashcode()

† under uniform hashing assumption

String symbol table. Symbol table specialized to string keys.

Goal. As fast as hashing, more flexible than binary search trees.

3

String symbol table basic API

 public class StringST<Value> public class StringST<Value> string symbol table typestring symbol table type

StringST()StringST() create an empty symbol table

void put(String key, Value val)put(String key, Value val) put key-value pair into the symbol table

Value get(String key)get(String key) return value paired with given key

boolean contains(String key)contains(String key) is there a value paired with the given key?

4

String symbol table implementations cost summary

Challenge. Efficient performance for string keys.

Parameters

• N = number of strings
• L = length of string
• R = radix

file size words distinct

moby.txt 1.2 MB 210 K 32 K

actors.txt 82 MB 11.4 M 900 K

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(links)

moby.txt actors.txt

red-black BST L + lg 2 N L + lg 2 N lg 2 N 4 N 1.40 97.4

hashing L L L 4 N to 16 N 0.76 40.6

5

‣ tries
‣ TSTs
‣ string symbol table API

Tries. [from retrieval, but pronounced "try"]

• Store characters and values in nodes (not keys).

• Each node has R children, one for each possible character.

Ex. she sells sea shells by the

6

Tries

Anatomy of a trie

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

value for she in node
corresponding to
last key character

label each node with
character associated
with incoming link

link to trie for all keys
that start with s

link to trie for all keys
that start with she

root

key value
4by
2sea
1sells
0she
3shells
5the

Follow links corresponding to each character in the key.

• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

7

Search in a trie

Trie search hit outcomes

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

get("shells")

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

return the value in the
node corresponding to

the last key character (0)

get("she")

return the value in the
node corresponding to

the last key character (3)

search may terminate
at an internal node

Trie search hit outcomes

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

get("shells")

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

return the value in the
node corresponding to

the last key character (0)

get("she")

return the value in the
node corresponding to

the last key character (3)

search may terminate
at an internal node

Follow links corresponding to each character in the key.

• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

8

Search in a trie

Trie search miss outcomes

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

get("shell")

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

no link for the o,
so return null

get("shore")

no value in the node
corresponding to the last key

character, so return null

Trie search miss outcomes

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

get("shell")

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

no link for the o,
so return null

get("shore")

no value in the node
corresponding to the last key

character, so return null

Follow links corresponding to each character in the key.

• Encounter a null link: create new node.

• Encounter the last character of the key: set value in that node.

9

Insertion into a trie

Trie insertion examples

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s

6

b

y 4

a 7

put("sea", 7)

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l 7

o

r

e

s 3

b

y 4

a 2

put("shore", 8)

node corresponding to
the last key character
exists, so set its value

nodes corresponding to
characters at the end of the

key do not exist, so create them
and set the value of the last one

Trie insertion examples

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s

6

b

y 4

a 7

put("sea", 7)

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l 7

o

r

e

s 3

b

y 4

a 2

put("shore", 8)

node corresponding to
the last key character
exists, so set its value

nodes corresponding to
characters at the end of the

key do not exist, so create them
and set the value of the last one

10

Trie construction example

s

h

e

Trie construction trace for standard indexing client

key value key value
root

one node
for each

key character

value is in node
corresponding to

last character

key is sequence
of characters from

root to value

0

t

h

e 5

s

h

e 0

e

l

l

s 1

s

h

e 0

e

l

l

s 1

a 2

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

0she

1sells

2sea

3shells

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

4by

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

5the

nodes corresponding to
characters at the end of the

key do not exist, so create them
and set the value of the last one

key value

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

6sea

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

7shore

node corresponding to
the last key character

exists, so reset its value

11

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node
{
 private Object value;
 private Node[] next = new Node[R];
}

use Object instead of Value since
no generic array creation in Java

Trie representation

each node has
an array of links

and a value

characters are implicitly
defined by link index

s

h

e 0

e

l

l

s 1

a

s

h

e

e

l

l

s

a
0

1

22

12

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node
{
 private Object value;
 private Node[] next = new Node[R];
}

Trie representation (R = 26)

each node has
an array of links

and a value

characters are implicitly
defined by link indexs

h

e 0

e

l

l

s 1

a

s

h

e

e

l

l

s

a

2 0
2

1

use Object instead of Value since
no generic array creation in Java

public class TrieST<Value>
{
 private static final int R = 256;
 private Node root;

 private static class Node
 { /* see previous slide */ }

 public void put(String key, Value val)
 { root = put(root, key, val, 0); }

 private Node put(Node x, String key, Value val, int d)
 {
 if (x == null) x = new Node();
 if (d == s.length()) { x.val = val; return x; }
 char c = s.charAt(d);
 x.next[c] = put(x.next[c], key, val, d+1);
 return x;
 }

}

13

R-way trie: Java implementation

extended ASCII
 public boolean contains(String key)
 { return get(key) != null; }

 public Value get(String key)
 {
 Node x = get(root, key, 0);
 if (x == null) return null;
 return (Value) x.val;
 }

 private Node get(Node x, String key, int d)
 {
 if (x == null) return null;
 if (d == key.length()) return x;
 char c = key.charAt(d);
 return get(x.next[c], key, d+1);
 }

14

R-way trie: Java implementation (continued)

Trie performance

Search miss.

• Could have mismatch on first character.

• Typical case: examine only a few characters.

Search hit. Need to examine all L characters for equality.

Space. R null links at each leaf.
(but sublinear space possible if many short strings share common prefixes)

Bottom line. Fast search hit, sublinear-time search miss, wasted space.

15 16

String symbol table implementations cost summary

R-way trie.

• Method of choice for small R.

• Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(links)

moby.txt actors.txt

red-black BST L + lg 2 N L + lg 2 N lg 2 N 4 N 1.40 97.4

hashing L L L 4 N to 16 N 0.76 40.6

R-way trie L log R N L R N 1.12 out of memory

17

Digression: out of memory?

“ 640 K ought to be enough for anybody. ”
 — attributed to Bill Gates, 1981
 (commenting on the amount of RAM in personal computers)

“ 64 MB of RAM may limit performance of some Windows XP
 features; therefore, 128 MB or higher is recommended for
 best performance. ” — Windows XP manual, 2002

“ 64 bit is coming to desktops, there is no doubt about that.
 But apart from Photoshop, I can't think of desktop applications
 where you would need more than 4GB of physical memory, which
 is what you have to have in order to benefit from this technology.
 Right now, it is costly. ” — Bill Gates, 2003

Digression: out of memory?

A short (approximate) history.

18

machine year
address

bits
addressable

memory
typical actual

memory cost

PDP-8 1960s 12 6 KB 6 KB $16K

PDP-10 1970s 18 256 KB 256 KB $1M

IBM S/360 1970s 24 4 MB 512 KB $1M

VAX 1980s 32 4 GB 1 MB $1M

Pentium 1990s 32 4 GB 1 GB $1K

Xeon 2000s 64 enough 4 GB $100

?? future 128+ enough enough $1

“ 512-bit words ought to be enough for anybody. ”
 — Kevin Wayne, 2003

A modest proposal

Number of atoms in the universe (estimated). ≤ 2266.
Age of universe (estimated). 14 billion years ~ 259 seconds ≤ 289 nanoseconds.

Q. How many bits address every atom that ever existed?
A. Use a unique 512-bit address for every atom at every time quantum.

Ex. Use 256-way trie to map atom to location.

• Represent atom as 64 8-bit chars (512 bits).

• 256-way trie wastes 255/256 actual memory.

• Need better use of memory.

19

atom time cushion for whatever

266 bits 89 bits 157 bits

20

‣ tries
‣ TSTs
‣ string symbol table API

21

Ternary search tries

TST. [Bentley-Sedgewick, 1997]

• Store characters and values in nodes (not keys).

• Each node has three children: smaller (left), equal (middle), larger (right).

TST. [Bentley-Sedgewick, 1997]

• Store characters and values in nodes (not keys).

• Each node has three children: smaller (left), equal (middle), larger (right).

22

Ternary search tries

TST representation of a trie

each node has
three links

link to TST for all keys
that start with s

link to TST for all keys
that start with
a letter before s

t

h

e 8

a

r

e 12

s

h u

e 10

e

l

l

s 11

l

l

s 15

r 0

e

l

y 13

o

7

r

e

b

y 4

a 14

t

h

e 8

a

r

e 12

s

h
u

e 10

e

l

l

s 11

l

l

s 15

r 0

e

l

y 13

o

7

r

e

b

y 4

a
14

Follow links corresponding to each character in the key.

• If less, take left link; if greater, take right link.

• If equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.
Search miss. Reach a null link or node where search ends has null value.

23

Search in a TST

TST search example

return value
associated with

last key character

match: take middle link,
move to next char

mismatch: take left or right link,
 do not move to next char

t

h

e 8

a

r

e 12

s

h
u

e 10

e

l

l

s 11

l

l

s 15

r

e

l

y 13

o

7

r

e

b

y 4

a14

get("sea")

26-way trie. 26 null links in each leaf.

TST. 3 null links in each leaf.

24

26-way trie vs. TST

26-way trie (1035 null links, not shown)

TST (155 null links)

now
for
tip
ilk
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
owl
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

A TST node is five fields:

• A value.

• A character c.

• A reference to a left TST.

• A reference to a middle TST.

• A reference to a right TST.

25

TST representation in Java

private class Node
{
 private Value val;
 private char c;
 private Node left, mid, right;
}

Trie node representations

s

e h u

link for keys
that start with s

link for keys
that start with su

h
ue

standard array of links (R = 26) ternary search tree (TST)

s

26

TST: Java implementation

public class TST<Value>
{
 private Node root;

 private class Node
 { /* see previous slide */ }

 public void put(String key, Value val)
 { root = put(root, key, val, 0); }

 private Node put(Node x, String key, Value val, int d)
 {
 char c = s.charAt(d);
 if (x == null) { x = new Node(); x.c = c; }
 if (c < x.c) x.left = put(x.left, key, val, d);
 else if (c > x.c) x.right = put(x.right, key, val, d);
 else if (d < s.length() - 1) x.mid = put(x.mid, key, val, d+1);
 else x.val = val;
 return x;
 }

}

27

TST: Java implementation (continued)

 public boolean contains(String key)
 { return get(key) != null; }

 public Value get(String key)
 {
 Node x = get(root, key, 0);
 if (x == null) return null;
 return (Value) x.val;
 }

 private Node get(Node x, String key, int d)
 {
 if (x == null) return null;
 char c = s.charAt(d);
 if (c < x.c) return get(x.left, key, d);
 else if (c > x.c) return get(x.right, key, d);
 else if (d < key.length() - 1) return get(x.mid, key, d+1);
 else return x;
 }

28

String symbol table implementation cost summary

Remark. Can build balanced TSTs via rotations to achieve L + log N
worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(links)

moby.txt actors.txt

red-black BST L + lg 2 N L + lg 2 N lg 2 N 4 N 1.40 97.4

hashing L L L 4 N to 16 N 0.76 40.6

R-way trie L log R N L R N 1.12 out of memory

TST L + ln N ln N L + ln N 4 N 0.72 38.7

29

TST with R2 branching at root

Hybrid of R-way trie and TST.

• Do R2-way branching at root.

• Each of R2 root nodes points to a TST.

Q. What about one- and two-letter words?

TST

aa

TST

ab

TST

ac

TST

zz

TST

zy

…

array of 262 roots

30

String symbol table implementation cost summary

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(links)

moby.txt actors.txt

red-black BST L + lg 2 N L + lg 2 N lg 2 N 4 N 1.40 97.4

hashing L L L 4 N to 16 N 0.76 40.6

R-way trie L log R N L R N 1.12 out of memory

TST L + ln N ln N L + ln N 4 N 0.72 38.7

TST with R2 L + ln N ln N L + ln N 4 N + R2 0.51 32.7

31

TST vs. hashing

Hashing.

• Need to examine entire key.

• Search hits and misses cost about the same.

• Need good hash function for every key type.

• No help for ordered symbol table operations.

TSTs.

• Works only for strings (or digital keys).

• Only examines just enough key characters.

• Search miss may only involve a few characters.

• Can handle ordered symbol table operations (plus others!).

Bottom line. TSTs are:

• Faster than hashing (especially for search misses).
More flexible than red-black trees (next).

32

‣ tries
‣ TSTs
‣ string symbol table API

Character-based operations. The string symbol table API supports several
useful character-based operations.

Prefix match. The keys with prefix "sh" are "she", "shells", and "shore".

Longest prefix. The key that is the longest prefix of "shellsort" is "shells".

Wildcard match. The key that match ".he" are "she" and "the".

33

String symbol table API

by sea sells she shells shore the

Remark. Can also add other ordered ST methods, e.g., floor() and rank().
34

String symbol table API

6476.2 ! String Symbol Tables

In summary, we will develop implementations for the following API:

public class StringST<Value>

StringST() create a symbol table with string keys

StringST(Alphabet alpha)
create a symbol table with string keys
whose characters are taken from alpha.

void put(String key, Value val)
put key-value pair into the symbol table
(remove key from table if value is null)

Value get(String key)
value paired with key
(null if key is absent)

void delete(String key) remove key (and its value) from table
boolean contains(String key) is there a value paired with key?
boolean isEmpty() is the table empty?
String longestPrefixOf(String s) return the longest key that is a pre!x of s

Iterable<String> keysWithPrefix(String s) all the keys having s as a pre!x.

Iterable<String> keysThatMatch(String s)
all the keys that match s (where .
matches any character).

int size() number of key-value pairs in the table
Iterable<String> keys() all the keys in the symbol table

API for a symbol table with string keys

This API differs from the general-purpose symbol-table API introduced in Chapter 4
in just the following aspects:

!" We replace the generic type Key with the concrete type String.
!" We add a constructor that allows clients to specify the alphabet.
!" We add three new methods, longestPrefixOf(), keysWithPrefix() and

keysThatMatch()
We retain the basic conventions of our symbol-table implementations in Chapter 4
(no duplicate or null keys and no null values). To focus on the main ideas, we con-
centrate on put() and get(), assume (as in Chapter 4) default implementations of
contains() and isEmpty() and leave implementations of size() and delete() for
exercises.

Since strings are Comparable, extending the API to also include the ordered opera-
tions defined in Chapter 4 is also possible (and worthwhile); we leave those imple-
mentations (which are generally straightforward) to exercises and booksite code.

To delete a key-value pair:

• Find the node corresponding to key and set value to null.

• If that node has all null links, remove that node (and recur).

35

Deletion in an R-way trie

Deleting a key (and its associated value) from a trie

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

delete("shells");

s

h

e 0

e

l

l

s 1

l

l

a 2

null value and links,
so remove node

(return null link)

s

h

e 0

e

l

l

s 1

l

a 2

s

h

e 0

e

l

l

s 1

a 2

non-null value
so do not remove node
(return link to node)

non-null link
so do not remove node
(return link to node)

s

h

e 0

e

l

l

s 1

a 2

s

h

e 0

e

l

l

s 1

a 2

s

h

e 0

e

l

l

s 1

a 2

set value
to null

To iterate through all keys in sorted order:

• Do inorder traversal of trie; add keys encountered to a queue.

• Maintain sequence of characters on path from root to node.

36

Ordered iteration

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

b
by
s
se

sea
sel

sell
sells

sh
she

shell
shells

sho
shor
shore

t
th

the

by

by sea

by sea sells

by sea sells she

by sea sells she shells

by sea sells she shells shore

by sea sells she shells shore the

Collecting the keys in a trie (trace)

key q

keysWithPrefix("");

To iterate through all keys in sorted order:

• Do inorder traversal of trie; add keys encountered to a queue.

• Maintain sequence of characters on path from root to node.

37

Ordered iteration: Java implementation

public Iterable<String> keys()
{
 Queue<String> queue = new Queue<String>();
 collect(root, "", queue);
 return queue;
}

private void collect(Node x, String prefix, Queue<String> q)
{
 if (x == null) return;
 if (x.val != null) q.enqueue(prefix);
 for (char c = 0; c < R; c++)
 collect(x.next[c], prefix + c, q);
}

sequence of characters
on path from root to x

Find all keys in symbol table starting with a given prefix.

Ex. Autocomplete in a cell phone, search bar, text editor, or shell.

• User types characters one at a time.

• System reports all matching strings.

38

Prefix matches

Find all keys in symbol table starting with a given prefix.

39

Prefix matches

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

find subtrie for all
keys beginning with "sh"

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

collect keys
in that subtrie

keysWithPrefix("sh");

Pre!x match in a trie

sh
she
shel
shell
shells

sho
shor
shore

she

she shells

she shells shore

key q

public Iterable<String> keysWithPrefix(String prefix)
{
 Queue<String> queue = new Queue<String>();
 Node x = get(root, prefix, 0);
 collect(x, prefix, queue);
 return queue;
}

root of subtrie for all strings
beginning with given prefix

40

Longest prefix

Find longest key in symbol table that is a prefix of query string.

Ex. Search IP database for longest prefix matching destination IP,
and route packets accordingly.

Q. Why isn't longest prefix match the same as floor or ceiling?

"128"
"128.112"
"128.112.055"
"128.112.055.15"
"128.112.136"
"128.112.155.11"
"128.112.155.13"
"128.222"
"128.222.136"

prefix("128.112.136.11") = "128.112.136"
prefix("128.166.123.45") = "128"

represented as 32-bit binary number
for IPv4 (instead of string)

41

Longest prefix

Find longest key in symbol table that is a prefix of query string.

• Search for query string.

• Keep track of longest key encountered.

Possibilities for longestPrefixOf()

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

"she" "shell"

search ends at
end of string

value is not null
 return she

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2 search ends at
end of string
value is null
return she

(last key on path)

"shellsort"

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

search ends at
 null link

return shells
(last key on path)

search ends at
 null link

return she
(last key on path)

"shelters"

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

42

Longest prefix: Java implementation

Find longest key in symbol table that is a prefix of query string.

• Search for query string.

• Keep track of longest key encountered.

 public String longestPrefixOf(String query)
 {
 int length = search(root, query, 0, 0);
 return query.substring(0, length);
 }

 private int search(Node x, String query, int d, int length)
 {
 if (x == null) return length;
 if (x.val != null) length = d;
 if (d == query.length()) return length;
 char c = query.charAt(d);
 return search(x.next[c], query, d+1, length);
 }

43

T9 texting

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key until the desired
letter appears.

T9 text input. ["A much faster and more fun way to enter text."]

• Find all words that correspond to given sequence of numbers.

• Press 0 to see all completion options.

Ex. hello

• Multi-tap: 4 4 3 3 5 5 5 5 5 5 6 6 6

• T9: 4 3 5 5 6

www.t9.com

44

Compressing a trie

Collapsing 1-way branches at bottom.
Internal node stores character; leaf node stores suffix (or full key).

Collapsing interior 1-way branches.
Node stores a sequence of characters.

1

1 2

2

put("shells", 1);
put("shellfish", 2);

Removing one-way branching in a trie

h

e

l

f

i

s

h

l

s

s s

shell

fish

internal
one-way

branching

external
one-way

branching

standard
trie

no one-way
branching

45

A classic algorithm

Patricia tries. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]

• Collapse one-way branches in binary trie.

• Thread trie to eliminate multiple node types.

Applications.

• Database search.

• P2P network search.

• IP routing tables: find longest prefix match.

• Compressed quad-tree for N-body simulation.

• Efficiently storing and querying XML documents.

Implementation. One step beyond this lecture.
46

Suffix tree

Suffix tree. Threaded trie with collapsed 1-way branching for string suffixes.

Applications.

• Linear-time longest repeated substring.

• Computational biology databases (BLAST, FASTA).

Implementation. One step beyond this lecture.

47

String symbol tables summary

A success story in algorithm design and analysis.

Red-black tree.

• Performance guarantee: log N key compares.

• Supports ordered symbol table API.

Hash tables.

• Performance guarantee: constant number of probes.

• Requires good hash function for key type.

Tries. R-way, TST.

• Performance guarantee: log N characters accessed.

• Supports extensions to API based on partial keys.

Bottom line. You can get at anything by examining 50-100 bits (!!!)

