
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · November 24, 2009 7:12:13 AM

6. Strings

‣ 6.1 Sorting Strings
‣ 6.2 String Symbol Tables
‣ 6.3 Substring Search
‣ 6.4 Pattern Matching
‣ 6.5 Data Compression

Chapter 6 in Algorithms, 4th edition
Triangle Copy, Packet 2

2

String processing

String. Sequence of characters.

Important fundamental abstraction.

• Java programs.

• Natural languages.

• Genomic sequences.

• …

“ The digital information that underlies biochemistry, cell

 biology, and development can be represented by a simple
 string of G's, A's, T's and C's. This string is the root data

 structure of an organism's biology. ” — M. V. Olson

3

The char data type

C char data type. Typically an 8-bit integer.

• Supports 7-bit ASCII.

• Need more bits to represent certain characters.

Java char data type. A 16-bit unsigned integer.

• Supports original 16-bit Unicode.

• Awkwardly supports 21-bit Unicode 3.0.

6676.5 Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.
Given a 2-digit hex number, use the first hex
digit as a row index and the second hex digit
as a column reference to find the character
that it encodes. For example, 31 encodes the
digit 1, 4A encodes the letter J, and so forth.
This table is for 7-bit ASCII, so the first hex
digit must be 7 or less. Hex numbers starting
with 0 and 1 (and the numbers 20 and 7F)
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices
like typewriters were controlled by ASCII input; the table highlights a few that you
might see in dumps. For example SP is the space character, NUL is the null character, LF
is line-feed, and CR is carriage-return.

In summary, working with data compression requires us to reorient our thinking about
standard input and standard output to include binary encoding of data. BinaryStdIn
and BinaryStdOut provide the methods that we need. They provide a way for you to
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table

4

The String data type

Character extraction. Get the ith character.
Substring extraction. Get a contiguous sequence of characters from a string.
String concatenation. Append one character to end of another string.

String s = "strings"; // s = "strings"
char c = s.charAt(2); // c = 'r'
String t = s.substring(2, 6); // t = "ring"
String u = t + c; // u = "ringr"

s t r i n g s

0 1 2 3 4 5 6

5

Implementing strings in Java

Java strings are immutable ⇒ two strings can share underlying char[] array.

public final class String implements Comparable<String>
{
 private char[] value; // characters
 private int offset; // index of first char in array
 private int count; // length of string
 private int hash; // cache of hashCode()

 private String(int offset, int count, char[] value)
 {
 this.offset = offset;
 this.count = count;
 this.value = value;
 }

 public String substring(int from, int to)
 { return new String(offset + from, to - from, value); }

 public char charAt(int index)
 { return value[index + offset]; }
 …
} java.lang.String

constant time

6

Implementing strings in Java

Memory. 40 + 2N bytes for a virgin String of length N.

 public String concat(String that)
 {
 char[] buffer = new char[this.length() + that.length());
 for (int i = 0; i < this.length(); i++)
 buffer[i] = this.value[i];
 for (int j = 0; j < that.length(); j++)
 buffer[this.length() + j] = that.value[j];
 return new String(0, this.length() + that.length(), buffer);
 }

use byte[] or char[] instead of String to save space

operation guarantee extra space

charAt() 1 1

substring() 1 1

concat() N N

7

String vs. StringBuilder

String. [immutable] Constant substring, linear concatenation.
StringBuilder. [mutable] Linear substring, constant (amortized) append.

Ex. Reverse a String.

quadratic time

 public static String reverse(String s)
 {
 String rev = "";
 for (int i = s.length() - 1; i >= 0; i--)
 rev += s.charAt(i);
 return rev;
 }

 public static String reverse(String s)
 {
 StringBuilder rev = new StringBuilder();
 for (int i = s.length() - 1; i >= 0; i--)
 rev.append(s.charAt(i));
 return rev.toString();
 }

linear time

8

String challenge: array of suffixes

Challenge. How to efficiently form array of suffixes?

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 a a c a a g t t t a c a a g c
1 a c a a g t t t a c a a g c
2 c a a g t t t a c a a g c
3 a a g t t t a c a a g c
4 a g t t t a c a a g c
5 g t t t a c a a g c
6 t t t a c a a g c
7 t t a c a a g c
8 t a c a a g c
9 a c a a g c
10 c a a g c
11 a a g c
12 a g c
13 g c
14 c

suffixes

 public static String[] suffixes(String s)
 {
 int N = s.length();
 StringBuilder sb = new StringBuilder(s);
 String[] suffixes = new String[N];
 for (int i = 0; i < N; i++)
 suffixes[i] = sb.substring(i, N);
 return suffixes;
 }

9

String challenge: array of suffixes

Challenge. How to efficiently form array of suffixes?

A.

B.

 public static String[] suffixes(String s)
 {
 int N = s.length();
 String[] suffixes = new String[N];
 for (int i = 0; i < N; i++)
 suffixes[i] = s.substring(i, N);
 return suffixes;
 }

linear time and space

quadratic time and space!

Digital key. Sequence of digits over fixed alphabet.
Radix. Number of digits R in alphabet.

Alphabets

10

604 CHAPTER 6 ! Strings

holds the frequencies in Count is an example of a character-indexed array. With a Java
String, we have to use an array of size 256; with Alphabet, we just need an array with
one entry for each alphabet character. This savings might seem modest, but, as you will
see, our algorithms can produce huge numbers of such arrays, and the space for arrays
of size 256 can be prohibitive.

Numbers. As you can see from our several of the standard Alphabet examples, we of-
ten represent numbers as strings. The methods toIndices() coverts any String over
a given Alphabet into a base-R number represented as an int[] array with all values
between 0 and R!1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For
example, if we know that the input consists only of characters from the alphabet, we
could replace the inner loop in Count with the more compact code

int[] a = alpha.toIndices(s);
for (int i = 0; i < N; i++)
 count[a[i]]++;

name R() lgR() characters

BINARY 2 1 01

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

DNA 4 2 ACTG

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · November 24, 2009 7:12:13 AM

6.1 Sorting Strings

‣ key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way string quicksort
‣ suffix arrays

Review: summary of the performance of sorting algorithms

Frequency of operations = key compares.

Lower bound. ~ N lg N compares are required by any compare-based algorithm.

Q. Can we do better (despite the lower bound)?
A. Yes, if we don't depend on compares.

12

algorithm guarantee random extra space stable? operations on keys

insertion sort N2 /2 N2 /4 no yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N no no compareTo()

* probabilistic

13

‣ key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way radix quicksort
‣ longest repeated substring

Key-indexed counting: assumptions about keys

Assumption. Keys are integers between 0 and R-1.
Implication. Can use key as an array index.

Applications.

• Sort string by first letter.

• Sort class roster by section.

• Sort phone numbers by area code.

• Subroutine in a sorting algorithm.

Remark. Keys may have associated data ⇒
can't just count up number of keys of each value.

14

Anderson 2 Harris 1
Brown 3 Martin 1
Davis 3 Moore 1
Garcia 4 Anderson 2
Harris 1 Martinez 2
Jackson 3 Miller 2
Johnson 4 Robinson 2
Jones 3 White 2
Martin 1 Brown 3
Martinez 2 Davis 3
Miller 2 Jackson 3
Moore 1 Jones 3
Robinson 2 Taylor 3
Smith 4 Williams 3
Taylor 3 Garcia 4
Thomas 4 Johnson 4
Thompson 4 Smith 4
White 2 Thomas 4
Williams 3 Thompson 4
Wilson 4 Wilson 4

Typical candidate for key-indexed counting

input sorted result

keys are
small integers

section (by section) name

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

•

•

•

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

a 0

b 2

c 3

d 1

e 2

f 1

- 3

15

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

count
frequencies

offset by 1
[stay tuned]

r count[r]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

•

•

a 0

b 2

c 5

d 6

e 8

f 9

- 12

16

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

r count[r]

compute
cumulates

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i]; 6 keys < d, 8 keys < e

so d’s go in a[6] and a[7]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

a 2

b 5

c 6

d 8

e 9

f 12

- 12

17

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

move
records

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

• Copy back into original array.

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

a 2

b 5

c 6

d 8

e 9

f 12

- 12

18

Key-indexed counting

i a[i]

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f
copy
back

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i aux[i]

Key-indexed counting: analysis

Proposition. Key-indexed counting takes time proportional to N + R
to sort N records whose keys are integers between 0 and R-1.

Proposition. Key-indexed counting uses extra space proportional to N + R.

Stable? Yes!

19

Anderson 2 Harris 1
Brown 3 Martin 1
Davis 3 Moore 1
Garcia 4 Anderson 2
Harris 1 Martinez 2
Jackson 3 Miller 2
Johnson 4 Robinson 2
Jones 3 White 2
Martin 1 Brown 3
Martinez 2 Davis 3
Miller 2 Jackson 3
Moore 1 Jones 3
Robinson 2 Taylor 3
Smith 4 Williams 3
Taylor 3 Garcia 4
Thomas 4 Johnson 4
Thompson 4 Smith 4
White 2 Thomas 4
Williams 3 Thompson 4
Wilson 4 Wilson 4

Distributing the data (records with key 3 highlighted)

 count[]
1 2 3 4
0 3 8 14
0 4 8 14
0 4 9 14
0 4 10 14
0 4 10 15
1 4 10 15
1 4 11 15
1 4 11 16
1 4 12 16
2 4 12 16
2 5 12 16
2 6 12 16
3 6 12 16
3 7 12 16
3 7 12 17
3 7 13 17
3 7 13 18
3 7 13 19
3 8 13 19
3 8 14 19
3 8 14 20

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

aux[0]

aux[1]

aux[2]

aux[3]

aux[4]

aux[5]

aux[6]

aux[7]

aux[8]

aux[9]

aux[10]

aux[11]

aux[12]

aux[13]

aux[14]

aux[15]

aux[16]

aux[17]

aux[18]

aux[19]

for (int i = 0; i < N; i++)
 aux[count[a[i].key(d)]++] = a[i];

20

‣ key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way string quicksort
‣ suffix arrays

Least-significant-digit-first radix sort

LSD radix sort.

• Consider characters from right to left.

• Stably sort using dth character as the key (using key-indexed counting).

21

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

sort key

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key

0 d a b

1 c a b

2 e b b

3 a d d

4 f a d

5 b a d

6 d a d

7 f e d

8 b e d

9 f e e

10 b e e

11 a c e

sort must be stable
(arrows do not cross)

sort key

22

LSD radix sort: correctness proof

Proposition. LSD sorts fixed-length strings in ascending order.

Pf. [thinking about the future]

• If the characters not yet examined differ,
it doesn't matter what we do now.

• If the characters not yet examined agree,
stability ensures later pass won't affect order.

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key

in order
by previous

passes

23

LSD radix sort: Java implementation

key-indexed counting

public class LSD
{
 public static void sort(String[] a, int W)
 {
 int R = 256
 int N = a.length;
 String[] aux = new String[N];
 for (int d = W-1; d >= 0; d--)
 {
 int[] count = new int[R+1];
 for (int i = 0; i < N; i++)
 count[a[i].charAt(d) + 1]++;
 for (int r = 0; r < R; r++)
 count[r+1] += count[r];
 for (int i = 0; i < N; i++)
 aux[count[a[i].charAt(d)]++] = a[i];
 for (int i = 0; i < N; i++)
 a[i] = aux[i];
 }
 }
}

do key-indexed counting
for each digit from right to left

radix R

fixed-length W strings

24

LSD radix sort: example

607 Sorting Strings

4PGC938
2IYE230
3CIO720
1ICK750
1OHV845
4JZY524
1ICK750
3CIO720
1OHV845
1OHV845
2RLA629
2RLA629
3ATW723

2IYE230
3CIO720
1ICK750
1ICK750
3CIO720
3ATW723
4JZY524
1OHV845
1OHV845
1OHV845
4PGC938
2RLA629
2RLA629

3CIO720
3CIO720
3ATW723
4JZY524
2RLA629
2RLA629
2IYE230
4PGC938
1OHV845
1OHV845
1OHV845
1ICK750
1ICK750

2IYE230
4JZY524
2RLA629
2RLA629
3CIO720
3CIO720
3ATW723
1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
4PGC938

2RLA629
2RLA629
4PGC938
2IYE230
1ICK750
1ICK750
3CIO720
3CIO720
1OHV845
1OHV845
1OHV845
3ATW723
4JZY524

1ICK750
1ICK750
4PGC938
1OHV845
1OHV845
1OHV845
3CIO720
3CIO720
2RLA629
2RLA629
3ATW723
2IYE230
4JZY524

3ATW723
3CIO720
3CIO720
1ICK750
1ICK750
2IYE230
4JZY524
1OHV845
1OHV845
1OHV845
4PGC938
2RLA629
2RLA629

1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
2IYE230
2RLA629
2RLA629
3ATW723
3CIO720
3CIO720
4JZY524
4PGC938

1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
2IYE230
2RLA629
2RLA629
3ATW723
3CIO720
3CIO720
4JZY524
4PGC938

Input d = 6 d = 5 d = 4 d = 3 d= 2 d= 1 d = 0 Output

ALGORITHM 6.1 LSD string sort

public class LSD
{
 public static void sort(String[] a, int W)
 { // Sort a[] on leading W characters.
 int N = a.length;
 int R = 256;
 String[] aux = new String[N];

 for (int d = W-1; d >= 0; d--)
 { // Sort by key-indexed counting on dth char.

 int[] count = new int[R+1]; // Compute frequency counts.
 for (int i = 0; i < N; i++)
 count[a[i].charAt(d) + 1]++;

 for (int r = 0; r < R; r++) // Transform counts to indices.
 count[r+1] += count[r];

 for (int i = 0; i < N; i++) // Distribute.
 aux[count[a[i].charAt(d)]++] = a[i];

 for (int i = 0; i < N; i++) // Copy back.
 a[i] = aux[i];
 }
 }
}

To sort an array a[] of strings that each have exactly W characters, we do W key-indexed counting
sorts: one for each character position, proceeding from right to left.

Summary of the performance of sorting algorithms

Frequency of operations.

25

algorithm guarantee random extra space stable? operations on keys

insertion sort N2 /2 N2 /4 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

LSD † 2 W N 2 W N N + R yes charAt()

* probabilistic
† fixed-length W keys

LSD radix sort: a moment in history (1960s)

26

card punch punched cards card reader mainframe line printer

To sort a card deck
start on right column
put cards into hopper
machine distributes into bins
pick up cards (stable)
move left one column
continue until sorted

Lysergic Acid Diethylamide
(Lucy in the Sky with Diamonds)

not related to sorting

card sorter

27

‣ key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way string quicksort
‣ suffix arrays

28

MSD radix sort.

• Partition file into R pieces according to first character
(use key-indexed counting).

• Recursively sort all strings that start with each character
(key-indexed counts delineate subarrays to sort).

Most-significant-digit-first radix sort

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort these
independently
(recursive)

count[]

a 0

b 2

c 5

d 6

e 8

f 9

- 12

29

MSD radix sort: top level trace

Trace of MSD string sort (top level)

0 0
1 a 0
2 b 1
3 c 2
4 d 2
5 e 2
6 f 2
7 g 2
8 h 2
9 i 2
10 j 2
11 k 2
12 l 2
13 m 2
14 n 2
15 o 2
16 p 2
17 q 2
18 r 2
19 s 2
20 t 12
21 u 14
22 v 14
23 w 14
24 x 14
25 y 14
26 z 14
27 14

0 0
1 a 0
2 b 1
3 c 1
4 d 0
5 e 0
6 f 0
7 g 0
8 h 0
9 i 0
10 j 0
11 k 0
12 l 0
13 m 0
14 n 0
15 o 0
16 p 0
17 q 0
18 r 0
19 s 0
20 t 10
21 u 2
22 v 0
23 w 0
24 x 0
25 y 0
26 z 0
27 0

0 0 0
1 a 1
2 b 2
3 c 2
4 d 2
5 e 2
6 f 2
7 g 2
8 h 2
9 i 2
10 j 2
11 k 2
12 l 2
13 m 2
14 n 2
15 o 2
16 p 2
17 q 2
18 r 2
19 s 12
20 t 14
21 u 14
22 v 14
23 w 14
24 x 14
25 y 14
26 z 14
27 14

sort(a, 0, 0);
sort(a, 1, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 11);
sort(a, 12, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);

she
sells
seashells
by
the
sea
shore
the
shells
she
sells
are
surely
seashells

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

are
by
she
sells
seashells
sea
shore
shells
she
sells
surely
seashells
the
the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

are

by

sea
seashells
seashells
sells
sells
she
she
shells
shore
surely

the
the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

count
frequencies

transform counts
to indices

distribute
and copy back

indices at completion
of distribute phase

recursively sort subarraysuse key-indexed counting on !rst character

start of s subarray
1 + end of s subarray

30

MSD radix sort: example

she
sells
seashells
by
the
sea
shore
the
shells
she
sells
are
surely
seashells

are
by
she
sells
seashells
sea
shore
shells
she
sells
surely
seashells
the
the

are
by
sells
seashells
sea
sells
seashells
she
shore
shells
she
surely
the
the

input

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

output

are
by
seashells
sea
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
seas
seashells
seashells
sells
sells
she
shells
shore
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
shore
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

Trace of recursive calls for MSD string sort (no cuto! for small subarrays, subarrays of size 0 and 1 omitted)

end-of-string
goes before any

char value

need to examine
every character
in equal keys

d

lo

hi

Variable-length strings

Treat strings as if they had an extra char at end (smaller than any char).

C strings. Have extra char '\0' at end ⇒ no extra work needed.
31

0 s e a -1

1 s e a s h e l l s -1

2 s e l l s -1

3 s h e -1

4 s h e -1

5 s h e l l s -1

6 s h o r e -1

7 s u r e l y -1

she before shells

private static int charAt(String s, int d)
{
 if (d < s.length()) return s.charAt(d);
 else return -1;
}

32

MSD radix sort: Java implementation

public static void sort(String[] a)
{
 aux = new String[a.length];
 sort(a, aux, 0, a.length, 0);
}

private static void sort(String[] a, String[] aux, int lo, int hi, int d)
{
 if (hi <= lo) return;
 int[] count = new int[R+2];
 for (int i = lo; i <= hi; i++)
 count[charAt(a[i], d) + 2]++;
 for (int r = 0; r < R+1; r++)
 count[r+1] += count[r];
 for (int i = lo; i <= hi; i++)
 aux[count[charAt(a[i], d) + 1]++] = a[i];
 for (int i = lo; i <= hi; i++)
 a[i] = aux[i - lo];

 for (int r = 0; r < R; r++)
 sort(a, aux, lo + count[r], lo + count[r+1] - 1, d+1);
}

key-indexed counting

recursively sort subarrays

can recycle aux[]
but not count[]

33

 MSD radix sort: potential for disastrous performance

Observation 1. Much too slow for small subarrays.

• The count[] array must be re-initialized.

• ASCII (256 counts): 100x slower than copy pass for N = 2.

• Unicode (65536 counts): 32,000x slower for N = 2.

Observation 2. Huge number of small subarrays because of recursion.

Solution. Cutoff to insertion sort for small N.

a[]

0 b

1 a

count[]

aux[]

0 a

1 b

34

 MSD radix sort: cutoff to insertion sort

Solution. Cutoff to insertion sort for small N.

• Insertion sort, but start at dth character.

• Implement less() so that it compares starting at dth character.

 public static void sort(String[] a, int lo, int hi, int d)
 {
 for (int i = lo; i <= hi; i++)
 for (int j = i; j > lo && less(a[j], a[j-1], d); j--)
 exch(a, j, j-1);
 }

 private static boolean less(String v, String w, int d)
 { return v.substring(d).compareTo(w.substring(d)) < 0; }

in Java, forming and comparing
substrings is faster than directly
comparing chars with charAt() !

Number of characters examined.

• MSD examines just enough characters to sort the keys.

• Number of characters examined depends on keys.

• Can be sublinear!

35

 MSD radix sort: performance

1EIO402
1HYL490
1ROZ572
2HXE734
2IYE230
2XOR846
3CDB573
3CVP720
3IGJ319
3KNA382
3TAV879
4CQP781
4QGI284
4YHV229

1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377

Non-random
with duplicates
(nearly linear)

Random
(sublinear)

Worst case
(linear)

Characters examined by MSD string sort

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

Summary of the performance of sorting algorithms

Frequency of operations.

36

algorithm guarantee random extra space stable? operations on keys

insertion sort N2 /2 N2 /4 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

LSD † 2 N W 2 N W N + R yes charAt()

MSD ‡ 2 N W N log R N N + D R yes charAt()

* probabilistic
† fixed-length W keys
‡ average-length W keys

stack depth D = length of
longest prefix match

37

MSD radix sort vs. quicksort for strings

Disadvantages of MSD radix sort.

• Accesses memory "randomly" (cache inefficient).

• Inner loop has a lot of instructions.

• Extra space for count[].

• Extra space for aux[].

Disadvantage of quicksort.

• Linearithmic number of string compares (not linear).

• Has to rescan long keys for compares.
[but stay tuned]

38

‣ key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way string quicksort
‣ suffix arrays

Overview. Do 3-way partitioning on the dth character.

• Cheaper than R-way partitioning of MSD radix sort.

• Need not examine again characters equal to the partitioning char.

39

3-way string quicksort (Bentley and Sedgewick, 1997)

Trace of recursive calls for 3-way string quicksort (no cuto! for small subarrays)

she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

by

are

she

seashells

seashells

sea

shore

surely

shells

she

sells

sells

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

seashells

seashells

sea

sells

sells

she

she

shells

shore

the

the

sea

seashells

seashells

sells

sells

shells

the

the

sea

seashells

seashells

sells

sells

seashells

seashells

sells

sells

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

three more passes
to reach end

gray bars represent
empty subarrays

no recursive calls
(end of string)

Trace of recursive calls for 3-way string quicksort (no cuto! for small subarrays)

she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

by

are

she

seashells

seashells

sea

shore

surely

shells

she

sells

sells

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

seashells

seashells

sea

sells

sells

she

she

shells

shore

the

the

sea

seashells

seashells

sells

sells

shells

the

the

sea

seashells

seashells

sells

sells

seashells

seashells

sells

sells

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

three more passes
to reach end

gray bars represent
empty subarrays

no recursive calls
(end of string)

partitioning element

use first character value
to partition into "less", "equal",

and "greater" subarrays

recursively sort subarrays,
excluding first character

for "equal" subarray

40

3-way string quicksort: trace of recursive calls

Trace of recursive calls for 3-way string quicksort (no cuto! for small subarrays)

she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

by

are

she

seashells

seashells

sea

shore

surely

shells

she

sells

sells

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

seashells

seashells

sea

sells

sells

she

she

shells

shore

the

the

sea

seashells

seashells

sells

sells

shells

the

the

sea

seashells

seashells

sells

sells

seashells

seashells

sells

sells

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

three more passes
to reach end

gray bars represent
empty subarrays

no recursive calls
(end of string)

 private static void sort(String[] a)
 { sort(a, 0, a.length - 1, 0); }

 private static void sort(String[] a, int lo, int hi, int d)
 {
 int lt = lo, gt = hi;
 int v = charAt(a[lo], d);
 int i = lo + 1;
 while (i <= gt)
 {
 int t = charAt(a[i], d);
 if (t < v) exch(a, lt++, i++);
 else if (t > v) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt-1, d);
 if (v >= 0) sort(a, lt, gt, d+1);
 sort(a, gt+1, hi, d);
 }

41

3-way string quicksort: Java implementation

3-way partitioning,
using dth character

sort 3 pieces recursively

42

3-way radix quicksort vs. standard quicksort

Standard quicksort.

• Uses 2N ln N string compares on average.

• Costly for long keys that differ only at the end (and this is a common case!)

3-way radix quicksort.

• Uses 2 N ln N character compares on average for random strings.

• Avoids recomparing initial parts of the string.

• Adapts to data: uses just "enough" characters to resolve order.

• Sublinear when strings are long.

Proposition. 3-way radix quicksort is optimal (to within a constant factor);
no sorting algorithm can (asymptotically) examine fewer chars.

Pf. Ties cost to entropy. Beyond scope of 226.

43

3-way radix quicksort vs. MSD radix sort

MSD radix sort.

• Has a long inner loop.

• Is cache-inefficient.

• Too much overhead reinitializing count[] and aux[].

3-way radix quicksort.

• Has a short inner loop.

• Is cache-friendly.

• Is in-place.

Bottom line. 3-way radix quicksort is the method of choice for sorting strings.

library call numbers

WUS-------10706-----7---10
WUS-------12692-----4---27
WLSOC------2542----30
LTK--6015-P-63-1988
LDS---361-H-4
...

Summary of the performance of sorting algorithms

Frequency of operations.

44

algorithm guarantee random extra space stable? operations on keys

insertion sort N2 /2 N2 /4 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

LSD † 2 N W 2 N W N + R yes charAt()

MSD ‡ 2 N W N log R N N + D R yes charAt()

3-way string
quicksort

1.39 W N lg N * 1.39 N lg N log N + W no charAt()

* probabilistic
† fixed-length W keys
‡ average-length W keys

45

‣ key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way radix quicksort
‣ suffix arrays

LCP. Given two strings, find the longest substring that is a prefix of both.

Running time. Linear-time in length of prefix match.
Space. Constant extra space.

46

Warmup: longest common prefix

p r e f i x

p r e f e t c h

0 1 2 3 4 5 6 7

 public static String lcp(String s, String t)
 {
 int n = Math.min(s.length(), t.length());
 for (int i = 0; i < n; i++)
 {
 if (s.charAt(i) != t.charAt(i))
 return s.substring(0, i);
 }
 return s.substring(0, n);
 }

47

Longest repeated substring

LRS. Given a string of N characters, find the longest repeated substring.

Ex.

Applications. Bioinformatics, cryptanalysis, data compression, ...

a a c a a g t t t a c a a g c a t g a t g c t g t a c t a
g g a g a g t t a t a c t g g t c g t c a a a c c t g a a
c c t a a t c c t t g t g t g t a c a c a c a c t a c t a
c t g t c g t c g t c a t a t a t c g a g a t c a t c g a
a c c g g a a g g c c g g a c a a g g c g g g g g g t a t
a g a t a g a t a g a c c c c t a g a t a c a c a t a c a
t a g a t c t a g c t a g c t a g c t c a t c g a t a c a
c a c t c t c a c a c t c a a g a g t t a t a c t g g t c
a a c a c a c t a c t a c g a c a g a c g a c c a a c c a
g a c a g a a a a a a a a c t c t a t a t c t a t a a a a

48

Longest repeated substring: a musical application

Visualize repetitions in music. http://www.bewitched.com

Mary Had a Little Lamb

Bach's Goldberg Variations

49

Longest repeated substring

LRS. Given a string of N characters, find the longest repeated substring.

Brute force algorithm.

• Try all indices i and j for start of possible match.

• Compute longest common prefix (LCP) for each pair.

Analysis. Running time ≤ M N2 , where M is length of longest match.

i

a a c a a g t t t a c a a g c

j

50

Longest repeated substring: a sorting solution

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 a a c a a g t t t a c a a g c
1 a c a a g t t t a c a a g c
2 c a a g t t t a c a a g c
3 a a g t t t a c a a g c
4 a g t t t a c a a g c
5 g t t t a c a a g c
6 t t t a c a a g c
7 t t a c a a g c
8 t a c a a g c
9 a c a a g c
10 c a a g c
11 a a g c
12 a g c
13 g c
14 c

form suffixes

0 a a c a a g t t t a c a a g c
11 a a g c
3 a a g t t t a c a a g c
9 a c a a g c
1 a c a a g t t t a c a a g c
12 a g c
4 a g t t t a c a a g c
14 c
10 c a a g c
2 c a a g t t t a c a a g c
13 g c
5 g t t t a c a a g c
8 t a c a a g c
7 t t a c a a g c
6 t t t a c a a g c

sort suffixes to bring repeated substrings together

compute longest prefix between adjacent suffixes

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 public String lrs(String s)
 {
 int N = s.length();

 String[] suffixes = new String[N];
 for (int i = 0; i < N; i++)
 suffixes[i] = s.substring(i, N);

 Arrays.sort(suffixes);

 String lrs = "";
 for (int i = 0; i < N-1; i++)
 {
 String x = lcp(suffixes[i], suffixes[i+1]);
 if (x.length() > lrs.length()) lrs = x;
 }
 return lrs;
 }

51

Longest repeated substring: Java implementation

% java LRS < mobydick.txt
,- Such a funny, sporty, gamy, jesty, joky, hoky-poky lad, is the Ocean, oh! Th

create suffixes
(linear time and space)

sort suffixes

find LCP between
suffixes that are adjacent
after sorting

52

Sorting challenge

Problem. Five scientists A, B, C, D, and E are looking for long repeated
substring in a genome with over 1 billion nucleotides.

• A has a grad student do it by hand.

• B uses brute force (check all pairs).

• C uses suffix sorting solution with insertion sort.

• D uses suffix sorting solution with LSD radix sort.

• E uses suffix sorting solution with 3-way radix quicksort.

Q. Which one is more likely to lead to a cure cancer?

only if LRS is not long (!)

✓

input file characters brute suffix sort length of LRS

LRS.java 2,162 0.6 sec 0.14 sec 73

amendments.txt 18,369 37 sec 0.25 sec 216

aesop.txt 191,945 1.2 hours 1.0 sec 58

mobydick.txt 1.2 million 43 hours † 7.6 sec 79

chromosome11.txt 7.1 million 2 months † 61 sec 12,567

pi.txt 10 million 4 months † 84 sec 14

53

Longest repeated substring: empirical analysis

 † estimated

Longest repeated substring not long. Hard to beat 3-way radix quicksort.

Longest repeated substring very long.

• Radix sorts are quadratic in the length of the longest match.

• Ex: two copies of Aesop's fables.

54

Suffix sorting: worst-case input

 % more abcdefgh2.txt
 abcdefgh
 abcdefghabcdefgh
 bcdefgh
 bcdefghabcdefgh
 cdefgh
 cdefghabcdefgh
 defgh
 efghabcdefgh
 efgh
 fghabcdefgh
 fgh
 ghabcdefgh
 fh
 habcdefgh
 h

time to suffix sort (seconds)time to suffix sort (seconds)

algorithm mobydick.txt aesopaesop.txt

brute-force 36,000 † 4000 †

quicksort 9.5 167

LSD not fixed length not fixed length

MSD 395 out of memory

MSD with cutoff 6.8 162

3-way radix quicksort 2.8 400

 † estimated

55

Suffix sorting challenge

Problem. Suffix sort an arbitrary string of length N.

Q. What is worst-case running time of best algorithm for problem?

• Quadratic.

• Linearithmic.

• Linear.

• Nobody knows.
suffix trees (see COS 423)✓

Manber's algorithm✓

56

Suffix sorting in linearithmic time

Manber's MSD algorithm.

• Phase 0: sort on first character using key-indexed counting sort.

• Phase i: given array of suffixes sorted on first 2i-1 characters,
create array of suffixes sorted on first 2i characters.

Worst-case running time. N log N.

• Finishes after lg N phases.

• Can perform a phase in linear time. (!) [stay tuned]

17 0
1 a b a a a a b c b a b a a a a a 0
16 a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
15 a a 0
14 a a a 0
13 a a a a 0
12 a a a a a 0
10 a b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
11 b a a a a a 0
7 b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
8 c b a b a a a a a 0

57

Linearithmic suffix sort example: phase 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

key-indexed counting sort (first character)

sorted

original suffixes

58

Linearithmic suffix sort example: phase 1

17 0
16 a 0
12 a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
13 a a a a 0
15 a a 0
14 a a a 0
6 a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
10 a b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
11 b a a a a a 0
2 b a a a a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

sorted

index sort (first two characters)original suffixes

59

Linearithmic suffix sort example: phase 2

17 0
16 a 0
15 a a 0
14 a a a 0
3 a a a a b c b a b a a a a a 0
12 a a a a a 0
13 a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
10 a b a a a a a 0
6 a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0 a 0
11 b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

sorted

index sort (first four characters)original suffixes

60

Linearithmic suffix sort example: phase 3

FINISHED! (no equal keys)

17 0
16 a 0
15 a a 0
14 a a a 0
13 a a a a 0
12 a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
10 a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
11 b a a a a a 0
2 b a a a a b c b a b a a a a a 0 a 0
9 b a b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

original suffixes

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

sorted

index sort (first eight characters)

17 0
16 a 0
15 a a 0
14 a a a 0
3 a a a a b c b a b a a a a a 0
12 a a a a a 0
13 a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
10 a b a a a a a 0
6 a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0 a 0
11 b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

61

Achieve constant-time string compare by indexing into inverse

0 + 4 = 4

9 + 4 = 13

suffixes4[13] ≤ suffixes4[4] (because inverse[13] < inverse[4])
so suffixes8[9] ≤ suffixes8[0]

0 14

1 9

2 12

3 4

4 7

5 8

6 11

7 16

8 17

9 15

10 10

11 13

12 5

13 6

14 3

15 2

16 1

17 0

index sort (first four characters) inverseoriginal suffixes

62

Suffix sort: experimental results

 † estimated

time to suffix sort (seconds)time to suffix sort (seconds)

algorithm mobydick.txt aesopaesop.txt

brute-force 36.000 † 4000 †

quicksort 9.5 167

LSD not fixed length not fixed length

MSD 395 out of memory

MSD with cutoff 6.8 162

3-way radix quicksort 2.8 400

Manber MSD 17 8.5

String sorting summary

We can develop linear-time sorts.

• Compares not necessary for digital keys.

• Use digits to index an array.

We can develop sublinear-time sorts.

• Should measure amount of data in keys, not number of keys.

• Not all of the data has to be examined.

No algorithm can asymptotically examine fewer chars than 3-way radix quicksort.

• 1.39 N lg N chars for random data.

Long strings are rarely random in practice.

• Goal is often to learn the structure!

• May need specialized algorithms.

63

