5.3 Minimum Spanning Trees

I
weightgsmns

édges -
g""ca“mcesedge

ExN

o))
p’;eng,E‘grﬁf:garee » weighted graph API
;algorlthmso @ » cycles and cuts

» Kruskal’s algorithm
» Prim’s algorithm
» advanced topics

uol

MSTS

Japisuod

ananl

g

Zcycle

£

3 peon

5 number

3 "graphs

Reference: Algorithms in Java, 3 edition, Part 5, Chapter 20

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 - October 25, 2009 9:40:01 AM

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

= %
vf”(

not connected

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

not acyclic

Minimum spanning free

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

=0 24

6 23 9

18
e
8
3

10 14
L 21 A

spanning tree T: cost=50=4+6+8+5+11+9+7

Brute force. Try all spanning trees.

Network design

MST of bicycle routes in North Seattle

77 Talh <
227AF

http://www.£lickr.com/photos/ewedistrict/21980840

Applications

MST is fundamental problem with diverse applications.

Cluster analysis.

Max bottleneck paths.

Real-time face verification.

LDPC codes for error correction.

Image registration with Renyi entropy.

Find road networks in satellite and aerial imagery.

Reducing data storage in sequencing amino acids in a protein.

Model locality of particle interactions in turbulent fluid flows.
Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
Network design (communication, electrical, hydraulic, cable, computer, road).
Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

http://www.ics.uci.edu/~eppstein/gina/mst.html

Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta0l_archlevel.html

Genetic research

MST of tissue relationships measured by gene expression correlation coefficient

http://riodb.ibase.aist.go.jp/CELLPEDIA

» weighted graph API

Two greedy algorithms

Kruskal's algorithm. Consider edges in ascending order of weight.
Add to T the next edge unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T from s.
At each step, add to T the edge of min weight with exactly one endpoint in T.

“Greed is good. Greed is right. Greed works. Greed

clarifies, cuts through, and captures the essence of

”

the evolutionary spirit. ” — Gordon Gecko

Proposition. Both greedy algorithms compute MST.

Edge APT

Edge abstraction needed for weighted edges.

public class Edge implements Comparable<Edge>

Edge (int v, int w, double weight) create a weighted edge v-w

int either() either endpoint
int other (int v) the endpoint that's not v
double weight() the weight
Comparator<Edge> ByWeight() compare by edge weight

°— weight —°

Weighted graph APT

public class WeightedGraph

WeightedGraph (int V)
WeightedGraph (In in)
void addEdge (Edge e)
void removeEdge (Edge e)
Iterable<Edge> adj(int v)

int V()

Conventions.
* Allow self-loops.

create an empty graph with V vertices
create a graph from input stream
add edge e
delete edge e
return an iterator over edges incident to v

return number of vertices

¢ Allow parallel edges (provided they have different weights).

Weighted graph: adjacency-set implementation

public class WeightedGraph

{
private final int V;
private final SET<Edge>[] adj;
public WeightedGraph (int V)
{
this.V = V;
adj = (SET<Edge>[]) new SET[V];
for (int v = 0; v < V; v++)
adj[v] = new SET<Edge>() ;
}
public void addEdge (Edge e)
{
int v = e.either(), w = e.other(v);
adj[v].add(e) ;
adj[w] .add(e) ;
}
public Iterable<Edge> adj(int v)
{ return adj[v]; }
}

same as Graph, but
<——F— adjacency sets of Edges
instead of integers

<«——F—— constructor

add edge to both
adjacency sets

Weighted graph APT

public class WeightedGraph

WeightedGraph (int V)

WeightedGraph (In in)

void addEdge (Edge e)

void removeEdge (Edge e)

Iterable<Edge> adj(int v)

int V()

for (int v = 0; v < G.V(); v++)

{
for (Edge e G.adj (v))
{
int w = e.other (v) ;
// process edge v-w
}
}

create an empty graph with V vertices
create a graph from input stream
add edge e
delete edge e
return an iterator over edges incident to v

return number of vertices

iterate through all edges
(once in each direction)

Weighted edge: Java implementation

public class Edge implements Comparable<Edge>

{
private final int v, w;
private final double weight;

public Edge(int v, int w, double weight)

{
this.v = Math.min(v, w);
this.w = Math.max(v, w);
this.weight = weight;

}

public int either()
{ return v; }

public int other(int vertex)
{
if (vertex == v) return w;
else return v;

public int weight()
{ return weight; }

// See next slide for compare

<«<——f— constructor

<«———+F— either endpoint
<«———+— other endpoint
<«———F— weight of edge

methods.

Weighted edge: Java implementation (cont)

public static class ByWeight implements Comparator<Edge>
{

public int compare (Edge e, Edge f)

{

if (e.weight < f.weight) return -1; order edges by weight

. . . —
if (e.weight > f.weight) return +1; (for sorting in Kruskal)
return 0;
}
}
public int compareTo (Edge that)
{
if (this.v < that.v) return -1;
if (this.v > that.v) return +1; lexicographic order,
«—F

if (this.w < that.w) return -1;

if (this.w > that.w) return +1;

if (this.weight < that.weight) return -1;
if (this.weight > that.weight) return +1;
return 0;

breaking ties by weight
(for use in a symbol table)

Cycle and cut properties
Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge
belonging to C. Then the MST T* does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min weight
edge with exactly one endpoint in S. Then the MST contains e.

cycle €

|
N2/ Wt

f is not in the MST T*

eisin the MST T*

» cycles and cuts

Cycle property: correctness proof
Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge
belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

 Suppose f belongs to T*. Let's see what happens.

* Deleting f from T* disconnects T*. Let S be one side of the cut.

* Some other edge in C, say e, has exactly one endpoint in S.

o« T=T*U{e}-{f}is also aspanning tree.

* Since we < wr, weight(T) < weight(T*).

Contradicts minimality of T*. = Gl

20

Cut property: correctness proof

Simplifying assumption. All edge weights we are distinct.

Cut property. Let S be any subset of vertices, and let e be the min weight
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

Suppose e does not belong to T*. Let's see what happens.

Adding e to T* creates a cycle Cin T*.

Some other edge in C, say f, has exactly one endpoint in S.
T=T*U{e}-{f}isalso aspanning tree.

Since we < wg, weight(T) < weight(T*).

Contradicts minimality of T*. = GG

Kruskal's algorithm

Kruskal's algorithm. [Kruskal 1956] Consider edges in ascending order of weight.

Add to T the next edge unless doing so would create a cycle.

.18
.21
.25

29

.31

.34

.46

21

23

» Kruskal’s algorithm

22

Kruskal's algorithm: correctness proof
Proposition. Kruskal's algorithm computes the MST.
Pf. [Case 1] Suppose that adding e to T creates a cycle C.

* Edge e is the max weight edge in C. «—— why max weight?
» Edge e is not in the MST (cycle property).

i

24

Kruskal's algorithm: correctness proof
Proposition. Kruskal's algorithm computes the MST.

Pf. [Case 2] Suppose that adding e = v-w to T does not create a cycle.
* Let S be the vertices in v's connected component.

* Vertex wis not in S. % why min weight?

* Edge e is the min weight edge with exactly one endpoint in S.

* Edge e is in the MST (cut property). =

25

Kruskal's algorithm implementation

Problem. Check if adding an edge v-w to T creates a cycle.
Efficient solution. Use the union-find data structure.

* Maintain a set for each connected component in T.

e If vand w are in same component, then adding v-w creates a cycle.
* To add v-w to T, merge sets containing v and w.

g
.

Case 1: adding v-w creates a cycle Case 2: add v-w to T and merge sets

27

Kruskal implementation challenge

Problem. Check if adding an edge v-w to T creates a cycle.

How difficult?
e O(E + V) time.

0 O(V) time. run DFS from v, check if w is reachable

(T has at most V-1 edges)

O(log V) time.

e Constant time.

O(log* V) time. <«—— use the union-find data structure !

Kruskal's algorithm: Java implementation

public class Kruskal
{
private SET<Edge> mst = new SET<Edge>() ;

public Kruskal (WeightedGraph

G)
(/

Edge[] edges = G.edges();

26

_— get all edges in graph

Arrays.sort(edges, new Edge.ByWeight()); <—|— sortedges by weight

UnionFind uf = new UnionFind(G.V());
for (Edge e : edges)
{
int v = e.either(), w = e.other(v);
if ('uf.find(v, w))
{
uf.unite(v, w);
mst.add (e) ;

}

public Iterable<Edge> mst ()
{ return mst; }

—— greedily add edges o MST

28

Kruskal's algorithm running time

Proposition. Kruskal's algorithm computes MST in O(E log E) time.

Pf.

sort 1
union \
find E

1 amortized bound using weighted quick union with path compression

Improvements.
* Stop as soon as there are V-1 edges.
* If edges are already sorted, time is proportional to E log* V.

I

recall: log* V < 5 in this universe

29

» Prim’s algorithm

31

Kruskal's algorithm example

= ool N LRI
il ~ IR

. ‘0 .'\ -~ .. .u:;
S o “r.. 7
0% *‘Q N
TR A
g2 TR
S I

Prim's algorithm example

Prim's algorithm. [Jarnik 1930, Dijkstra 1957, Prim 1959]
Start with vertex O and greedily grow tree T. At each step,
add to T the edge of min weight with exactly one endpoint in T.

0-2 0-7 0-1
0-6 0-5 7-4 0-6 0-5

0-7 0-1 0-6 0-5 7-1 7-6 0-1 7-6 7-4 0-6 0-5

edges with exactly one endpoint in T, sorted by weight

7-4 6-4 0-5 4-3 4-5 0-5 3-5 4-5 0-5

75%

100%

O O O O O O o o o o o o

.32
.29
.60
.51
.31
.21
.34
.18
.40
.51
.46
.25

30

32

Prim's algorithm correctness proof

Proposition. Prim's algorithm computes the MST.

Pf.

e Let S be the subset of vertices in current tree T.

* Prim adds the min weight edge e with exactly one endpoint in S.
 Edge e is in the MST (cut property). =

——

Prim's algorithm implementation (lazy)

33

Problem. Find min weight edge with exactly one endpoint in S.

Efficient solution. Maintain a PQ of edges with (at least) one endpoint in S.
* Delete min to determine next edge e = v-w to add to T.
* Disregard if bothvand warein S.
* Let w be vertex not in S:
- add to PQ any edge incident to w (assuming other endpoint not in S)

-addwto S
w

———

35

Prim implementation challenge
Problem. Find min weight edge with exactly one endpoint in S.

How difficult?

* O(E) time. <« tryall edges

« O(V) time.

* O(log E) time. «— useapriority queve !
* O(log* E) time.

e Constant time.

a——

Prim's algorithm example: lazy implementation

34

Use PQ: key = edge.
(lazy version leaves some obsolete entries on the PQ)

(o) O, () () -1 0.32
Se s See ok
° ' o ' -5 0.60
e e -6 0.51

E— E— oo

0-2 0-7 0-1 0-7 0-1 0-6 0-5 7-1 7-6 0-1 7-6 0-1 7-4 ’

N 7-4 0-6 0-5 0-6 0-5 -4 .0.34

black = PQ edge with exactly one endpoint in S, sorted by weight -3 0.18
gray = PQ edge with both endpoints in S (obsolete) -5 0.40
-6 0.51

0.46

0.25

FEEE

0-1 7-4 0-6 4-3 4-5 0-6 3-5 4-5 0-6 4-5 0-6 6-4 0-5
6-4 0-5 6-4 0-5 6-4 0-5
36

Lazy implementation of Prim's algorithm

public class LazyPrim

{
private boolean[] scanned;
private Queue<Edge> mst;
private MinPQ<Edge> pq

// vertices in MST
// edges in the MST
// the priority queue of edges

public LazyPrim(WeightedGraph G)
{
scanned = new boolean[G.V()];
mst = new Queue<Edge>() ;
P9 = new MinPQ<Edge> (Edge.ByWeight());
prim(G, 0);
} comparator by edge weight
(instead of by lexicographic order)
public Iterable<Edge> mst ()
{ return mst; }

// See next slide for prim() implementation.

Prim's algorithm running time

Proposition. Prim's algorithm computes MST in O(E log E) time.

time Perop

delete min E

Elog E

insert E Elog E

Improvements.

+ Stop when MST has V-1 edges.

* Eagerly eliminate obsolete edges from PQ.

* Maintain on PQ at most one edge incident to each vertex v not in T
= at most V edges on PQ.

* Use fancier priority queue: best in theory yields O(E + V log V).

Lazy implementation of Prim's algorithm

private void scan(WeightedGraph G, int v)
{
scanned[v] = true;
for (Edge e
if (!scanned[e.other(v)])
Pg.insert(e) ;

private void prim(WeightedGraph G, int s)
{

scan(G, s);

while (!'pq.isEmpty())

{

: G.adj(v)) —

Edge e = pg.delMin() ;

int v = e.either(), w = e.other(v);
if (scanned[v] && scanned[w]) continue; «—
mst.enqueue (e) ;
if (!'scanned[v]) scan(G, vVv); |

if (!'scanned[w]) scan(G, w);

37

Prim's algorithm example

25%

50%

39

for each edge v-w, add to
PQ if w not already in S

repeatedly delete the
min weight edge v-w from PQ

ignore if both endpoints in S

add e to MST and scan v and w

38

75%

100%

40

Removing the distinct edge weight assumption
Simplifying assumption. All edge weights are distinct.
Approach 1. Introduce tie-breaking rule for compare () in ByWweight.

public int compare (Edge e, Edge f)

{
if (e.weight < f.weight) return -1;
if (e.weight > f.weight) return +1;
if (e.v < £.v) return -1;
if (e.v > f.v) return +1;
if (e.w < f.w) return -1;
if (e.w > f.w) return +1;

<«——F+— return e.compareTo (f) ;

return 0;

» advanced topics

Approach 2. Prim and Kruskal still find MST if equal weights!
(only our proof of correctness fails)

41 42

Does a linear-time MST algorithm exist? Euclidean MST

Given N points in the plane, find MST connecting them, where the distances

deterministic compare-based MST algorithms

year worst case discovered by

between point pairs are their Euclidean distances.

1975 E log log vV R

1976 E log log V Cheriton- °

1984 Elog*V, E+VlogV Fredman- ° o ¥

1986 E log (log* V) Gabow-Galil-Spencer- ° °

1997 E (V) log a(V) Ly 5 : ;

2000 E (V) ‘ : o e go 2T

2002 optimal Pettie-Ramachandran ° s

20xx E 7?7

Brute force. Compute ~ N2/2 distances and run Prim's algorithm.

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995). Ingenuity. Exploit geometry and do it in~c Nlg N.

43 44

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying “closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.

* Routing in mobile ad hoc networks.

» Document categorization for web search.

* Similarity searching in medical image databases.

* Skycat: cluster 10° sky objects into stars, quasars, galaxies.

45

Single-linkage clustering algorithm

"Well-known" algorithm for single-linkage clustering:

* Form V clusters of one object each.

* Find the closest pair of objects such that each object is in a different
cluster, and merge the two clusters.

* Repeat until there are exactly k clusters.

Observation. This procedure is precisely Kruskal's algorithm
(stopping when there are k connected components).

Alternate solution. Run Prim's algorithm and delete k-1 max weight edges.

47

Single linkage

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Single linkage. Distance between two clusters equals the distance
between the two closest objects (one in each cluster).

Single-linkage clustering. Given an integer k, find a k-clustering that
maximizes the distance between two closest clusters.

distance between two clusters LS

\

distance between

3
/ L) two closest clusters

-

4-clustering

46

Clustering application: dendrograms

Dendrogram.
Scientific visualization of hypothetical sequence of evolutionary events.

* Leaves = genes.
* Internal nodes = hypothetical ancestors.

height of bar indicates
degree of distance
within cluster

distance scale

Lol

leaves represent instances (e.g. genes)

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecturel3.pdf
48

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

i T i

Gene 1
Gene n
Skin Liver Lung Breast Tumors Breast Normal Kidney Prostate Brain APL Ovary
Luminal Tumors Breast
Basal

' gene expressed

Reference: Botstein & Brown group . 5 GRS

49

