Directed graphs

Digraph. Set of vertices connected pairwise by oriented edges.

5.2 Directed Graphs

(7

N sf%%
f pd
S

t H T N\
using Ex 5 5 %,
3 pathDAGS = Vestry s; =]), N
2 strong L4 = = /
3 -aight St g A
e™ example E,. Laightst 7
connected topologicalZ s Laighr sy I
° oo) S g
digraph.* =l > /S
S — y: \
- " . 5 = | Hubertsq f &
Dig",‘fgbh"g@grgg},eed » digraph API =SB 4 7%, Q4
set S 8% . 5 8 g Jro="2 A 1 & o
seeedge 28t » digraph search s IR S ' 4 %
[-4 ricsson st ~
2 . cc q ere ‘ | T o
directed zDFS » transitive closure = WL M 0NN v
. __graphs Exer . ‘ = N
time » topological sort . T s :)
g § I L S
vertex 3 » strong components g % g
vertices:.. - V5 & g WS,
Pro, T RS 9
REvERSE | D - S r s W[5 4
4 F 4 N
References: Algorithms in Java, 3rd edition, Chapter 19 § Y
g o) ©2008 Google - Map data ©2008 Sanborh, NAVTEQ™ - Terms of Use

Algorithms in Java, 4" Edition Robert Sedgewick and Kevin Wayne Copyright © 2009 November 11, 2009 6:58:09 AM

Web graph

Link structure of political blogs
Vertex = web page.
Edge = hyperlink.

Data from the blogosphere. Shown is a link structure within a community of political blogs (from 2004),
where red nodes indicate conservative blogs, and blue liberal. Orange links go from liberal to conservative,
and purple ones from conservative to liberal. The size of each blog reflects the number of other blogs that
link to it. [Reproduced from (8) with permission from the Association for Computing Machinery]

3

WordNet graph Digraph applications

Edge = hypernym relationship. . . .
g YP Y P transportation street intersection one-way street
web web page hyperlink
event . . .
food web species predator-prey relationship
happening occurrence occurren natural_event WordNet synsef hypernym
miracle . .
ac human_action human_activity scheduling task precedence constraint
change alteration modification miracle X X X
financial stock, currency transaction
\ group_action
damage har impairment transition increase forfeitforfeiture.sacrifice action Ce” Phone Person p|ClC€d CCl”
resistance opposition transgression infectious disease person infection
runladderravel leap jump saltation jumpleap
change game board position legal move
demotion /I\ Variation citation Jjournal article citation
motion movemen move
object graph object pointer
locomotion travel descent
inheritance hierarchy class inherits from
runrunning jump parachuting
control flow code block jump
dash sprint
5 6

Some digraph problems

Path. Is there adirected path from s to ?
Shortest path. What is the shortest directed path from s and 1?

Strong connectivity. Are all vertices mutually reachable?
Transitive closure. For which vertices v and w is there a path from v to w?

Topological sort. Canyou draw the digraph so that all edges point

from left to right? » digraph API

Precedence scheduling. Given a set of tasks with precedence constraints,
how can we best complete them all?

PageRank. What is the importance of a web page?

Digraph APT

public class Digraph

digraph data type

Digraph (int V)
Digraph(In in)
void addEdge (int v,
Iterable<Integer> adj(int v)

int V()

In in = new In();

int w)

create an empty digraph with V vertices
create a digraph from input stream
add an edge from v tow
return an iterator over the neighbors of v

return number ()/ vertices

Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)

for (int w :

G.adj(v))
/* process edge v—w

Adjacency-matrix representation

Maintain a two-dimensional v-by-v boolean array;

for each edge v — w in the digraph: adj[v] [w]

o

from

w N R

-

@@;9
L

o

~

8
°
@ 12

()
O—© ©

=
o

©O O 0O O o O o O o O 0o o © o

©O O 0O O 0O O 0O O 0 OO0 o K =~

©O O OO 0O OO0 OO0 o0 o0 o K N

*/

true.
3 4 5 6 7 8 9 10
0o 0 1 1 0 0 o0 0
0 0 0 0 0 0O 0 O
0o 0 0 0 0 0 o0 0
0o 0 0 0 0 0 o0 0
1 0 0 0 0 0O 0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0o 0 0 0 0 1 0 0
0o 0 0 0 0 0 o0 0
0o 0 0 0 0 0 o0 1
0o 0 0 0 0 0 o0 o0
0 0 0 0 0O 0O 0 0
o 0 0 0 0 0 o0 0

-
o

©O O O H O 0Oo Oo oo o o

=
)

O H OH OOOOOOoOOoOOoOOoO

Set of edges representation

Store a list of the edges (linked list or array).

0 1
0 2
0 5
® ©® }9 . s
5 3
7 8
© o ¥
9 12
@_} e @ 11 12
10
Adjacency-list representation
Maintain vertex-indexed array of lists.
° 0 5 2 1 6 o

same as undirected graph,

ONNO) g:)
o but one entry for each edge
4: 3 e

£

.L

o
'
L]

<
®
L]

9: 10 e——> 11 o——> 12 o

(12)

11: 12 o

12:

Adjacency-set representation Adjacency-set representation: Java implementation

Maintain vertex-indexed array of sets. Same as Graph, but only insert one copy of each edge.
public class Digraph
{
private final int V; .
<«—F+— adjacency sets
private final SET<Integer>[] adj;
0: {1 2 5 6}
1: {1} public Digraph(int V)
2: {1 { <L} createempty graph with
@ @ - same as undirected graph, this.V = Vv; V vertices
.) but one entry for each edge adj = (SET<Integer>[]) new SET[V];
4: {31} for (int v = 0; v < V; v++)
@‘—G) 5s (3, 4} adj[v] = new SET<Integer>();
/ 6: {4} }
@ ° 7 (T80 public void addEdge(int v, int w) add edge from v to w
—t
8: {1} { adj[v].add(w); } (no parallel edges)
9: {10, 11, 12 }
@—» e @ public Iterable<Integer> adj(int v)
10: {1} i <«—f#— iterator for v's neighbors
{ return adj[v]; }
11: {12 } }
12: {1}
3 14
Digraph representations
In practice. Use adjacency-set (or adjacency-list) representation.
* Algorithms all based on iterating over edges incident to v.
* Real-world digraphs tend to be sparse.
huge number of vertices,
small average vertex degree
I — <pace insert edge edge from iterate over edges
p P from v to w Vv to w? leaving v? .
» digraph search
list of edges E E E E
adjacency matrix V2 1 1 \Y
adjacency list E+V outdegree(v) outdegree(v) outdegree(v)
adjacency set E+V log (outdegree(v)) log (outdegree(v)) outdegree(v)

Reachability

Problem. Find all vertices reachable from s along a directed path.

IRERERE

Depth-first search (single-source reachability)

Identical to undirected version (substitute pigraph for Graph).

public class DFSearcher
{

private boolean[] marked;

public DFSearcher (Digraph G, int s)
{
marked = new boolean[G.V()];
dfs (G, s);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);
}

public boolean isReachable(int v)
{ return marked[v]; }

true if connected to s

constructor marks vertices
connected to s

recursive DFS does the work

client can ask whether any
vertex is reachable from s

Depth-first search in digraphs
Same method as for undirected graphs.

Every undirected graph is a digraph.

* Happens to have edges in both directions.

» DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Reachability application: program control-flow analysis

Every program is a digraph.

* Vertex = basic block of instructions (straight-line program).

* Edge = jump.

Dead code elimination.

Find (and remove) unreachable code.

Infinite loop detection.
Determine whether exit is unreachable.

0=
E=3
an
. v
2T 26
SHLIO
- X

_— weduno Ot

==

weio wn
v

e pu | Sitlen

W Bt wiun
v

ueoun | et

nesuso

1t
nesgion | "

‘ 0 gen
| EEREEN | | idw
sda | i
| wesusu
neogion |

‘ 12: 102

‘ ERE) U
| o | \
[T T S

]
1] e

K. |

‘ ‘ niees _Biticw o0

nadegon | winen

2%: < 80110

‘ { on
| |
T \ ;

8w

| aeals \J
‘ wedsyon | l 445 0<= to

20

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
* Vertex = object.
 Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

2 1
e
R
“@/J a

Depth-first search (DFS)

DFS enables direct solution of simple digraph problems.

v/ * Reachability.

* Cycle detection.
* Topological sort.
* Transitive closure.

Basis for solving difficult digraph problems.

* Directed Euler path.
+ Strong connected components.

23

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
* Mark: mark all reachable objects.
* Sweep: if object is unmarked, it is garbage, so add to free list.

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

2 1
e
g
{fJ .

Breadth-first search in digraphs

Every undirected graph is a digraph.
* Happens to have edges in both directions.
* BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue.

Repeat until the queue is empty:

= remove the least recently added vertex v
" add each of v's unvisited neighbors to the

queue and mark them as visited.

Property. Visits vertices in increasing distance from s.

24

Digraph BFS application: web crawler Web crawler: BFS-based Java implementation

.) Queue<String> g = new Queue<String>() ; <«<—F—— queue of websites to crawl
Goal. Crawl web, starting from some root web page, say www.princeton.edu. SET<String> visited = mew SET<String> () : e o
Solution. BFS with implicit graph.
String s = "http://www.princeton.edu";
gq.enqueue (s) ; <«—fF—— start crawling from website s
BFS visited.add(s) ;
* Start at some root web page. while (!q.isEmpty())
. . . {
0 sl @ e Of websites to GXPIOI"G. String v = q.dequeue(); <«<—F— read in raw html for next website in queue
* Maintain a ser of discovered websites. StdOut.println(v); !
In in = new In(v);
* Dequeue the next website and enqueue String input = in.readAll();

websites to which it links String regexp = "http://(\w+\\.)* (\\w+)";

(provided you haven't done so before) Pattern pattern = Pattern.compile(regexp);. . U regularexpression o findall URLs
Matcher matcher = pattern.matcher (input) ; in website of form http://xxx.yyy.zzz
while (matcher.find())

{
String w = matcher.group() ;
if (!'visited.contains (w))
{

visited.add (w) ; if unvisited, mark as visited
. and put on queue
5 gd.enqueue (w) ;
Q. Why not use DFS? }
}
}
25 26

Graph-processing challenge (revisited)

Problem. Is there an undirected path between v and w ?
Goals. Linear preprocessing time, constant query time.

How difficult?
* Any COS 126 student could do it.
v/ Need to be a typical diligent COS 226 student.
* Hire an expert.
* Intractable.

» transitive closure * No one knows. (o)

» Impossible.

27 28

Digraph-processing challenge 1

Problem. Is there a directed path from v tow?

Goals. Linear preprocessing time, constant query time.

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert.

* Intractable.

* No one knows.

Impossible.

T

can't do better than V2
(reduction from boolean matrix multiplication)

Digraph-processing challenge 1 (revised)

Problem. Is there a directed path from v tow?

Goals. ~ V2 preprocessing time, constant query time.

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert.

* Intractable.

* No one knows. «<—— open research problem

* Impossible.

/

()
S
G

g

i

0—-1
0—6
0—-2
3—-4
3-2
54
5-0
=5
2—-1
6—4
3-1

0—1
0—6
0—-2
3—-4
3-2
5—4
5-0
3-5
2—-1
6—4
3—-1

29

31

Transitive closure

Def. The transitive closure of a digraph G is another digraph with a directed

edge from v to w if there is a directed path from v to w in 6.

digraph G

05-0,
() (3)
&=

transitive closure TC(G)

u‘.hwwl-o|

coooHkrKr|o
cooOkrHKHO|R
CoOKrHKHOKR|N
corooOO|w
FRrHOOO|N
FHRrOOOR|u

u‘.hwlon-o|
cCcokrKHKHKR|O
COoOR KRR R
COoOKrRKEKERE|N
coroOoOOO|Ww
b
RFRRERRER O

TC(6) is usually dense

Digraph-processing challenge 1 (revised again)

Problem. Is there a directed path from v tow?

Goals. ~ V E preprocessing time, ~ V2 space, constant query time.

How difficult?
* Any COS 126 student could do it.

v/« Need to be a typical diligent COS 226 student.

* Hire an expert. T
 Intractable.

Use DFS once for each vertex
to compute rows of transitive closure

* No one knows.
» Impossible.

/

digraph G is usually sparse

30

32

Transitive closure: Java implementation

Use an array of DFsearcher objects, one for each row of transitive closure.

public class TransitiveClosure
{

private DFSearcher[] tc;

public TransitiveClosure (Digraph G)

{
tc = new DFSearcher[G.V()];

for (int v = 0; v < G.V(); v++)
tc[v] = new DFSearcher (G, v);

public boolean reachable(int v, int w)

{ return tc[v].isReachable (w) ;

array of DFSearcher objects

initialize array

» topological sort

is there a directed path
fromvtow?

Digraph application: scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

Graph model.

* Create a vertex v for each task.

* Create an edge v—w if task v must precede task w.

precedence ———
constraint graph

33

34

Topological sort

DAG. Directed acyclic graph.

tasks

read programming assignment
download files

write code

attend precept

wp o

12. sleep

feasible
schedule

oo

Fact. Digraph is a DAG iff no directed cycle.

35 36

Digraph-processing challenge 2a

Problem. Check that a digraph is a DAG; if so, find a topological order.

Goal. Linear time.

How difficult?

Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.

+ Hire an expert. I

Intractable. sse DFS

* No one knows.

Impossible.

Topological sort in a DAG: trace

0123876459 1011 12

Visit means call tsort () and leave means return from tsort ().

marked[]
visit 0: 1000000
visit 1: 1100000
visit 4: 1100100
leave 4:
leave 1:
visit 2: 1110100
leave 2:
visit 5 1110110
leave 5:
leave 0:
visit 3: 1111110
visit 6: 1111111
leave 6:
leave 3:

sorted

(S)
o o

o o
w

36052114

0—1
0—6
0—-2
0—-5
2-3
4—-9
6—4
6—9
7—6
8—7
9510
9—-11
9—-12
11-12

0—1
0—6
0—-2
3—-4
3-2
5-4
5—0
3-5
2—-1
6—4
3—-1

37

39

Topological sort ina DAG: Java implementation

public class TopologicalSorter
{
private boolean[] marked;
private Stack<Integer> sorted; <«—F— Vvertices in topological order
public TopologicalSorter (Digraph G)
{
marked = new boolean[G.V()];
sorted = new Stack<Integer>();
for (int v = 0; v < G.V(); v++)
if ('marked[v]) tsort(G, v);
}

private void tsort(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) tsort(G, w);
sorted.push (v) ;

<«—F— reverse DFS postorder

}

public Iterable<Integer> order()
{ return sorted; }

38

Topological sort ina DAG: correctness proof
Proposition. If digraph is a DAG, algorithm yields a topological order.

Pf.
* Algorithm terminates in O(E + V) time since it's just a version of DFS.

* Consider any edge v—w. When tsort (G, v) is called,
- Case 1: tsort(G, w) has already been called and returned.
Thus, w will appear after v in topological order.

- Case 2: tsort(G, w) has not yet been called, so it will get called directly
or indirectly by tsort (e, v) and it will finish before tsort(c, v).
Thus, w will appear after v in topological order.

- Case 3: tsort(G, w) has already been called, but not returned. Then the
function call stack contains a directed path from w to v. Combining this
path with the edge v—w yields a directed cycle, contradicting DAG.

40

Digraph-processing challenge 2b

Problem. Given a digraph, is there a directed cycle?

Goal. Linear time.

How difficult?

Any COS 126 student could do it.

run DFS-based topological sort algorithm;
if it yields a fopological sort, no directed cycle
(can modify code to find cycle)

Need to be a typical diligent COS 226 student.

Hire an expert.
Intractable.
No one knows.
Impossible.

0123876459 1011 12

Cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B
{

}

public class B extends C
{

}

public class C extends A
{

}

o

% javac A.java

A.java:1l: cyclic inheritance

involving A
public class A extends B

~

1 error

{

}

0—1
0—6
0—-2
0—-5
2-3
4—-9
6—4
6—9
7—6
87
9—-10
911
9—-12
11-12

41

43

Topological sort and cycle detection applications

* Causalities.

* Email loops.

* Compilation units.

* Class inheritance.

» Course prerequisites.

* Deadlocking detection.

* Precedence scheduling.

* Temporal dependencies.

* Pipeline of computing jobs.

* Check for symbolic link loop.
* Evaluate formula in spreadsheet.

Cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Workbook1
< A B G
1 "=B1+ 1" "=C1l + 1" "=Al + 1"
2
3
4
5
6
Microsoft Excel cannot calculate a formula.
7
8 u Cell references in the formula refer to the formula's
e result, creating a circular reference. Try one of the
following
9
« If you accidentally created the circular reference, click
10
OK. This will display the Circular Reference toolbar and
1 1 help for using it to correct your formula.
» To continue leaving the formula as it is, click Cancel.
- (Cancel) oK)
13
14
15
16
17
18

1 Sheetl Sheet2 Sheet3 J

42

44

Cycle detection application: symbolic links

The Linux file system does not do cycle detection.

o©

ln -s a.txt b.txt
ln -s b.txt c.txt
1ln -s c.txt a.txt

oe

o©

more a.txt

o de

.txt: Too many levels of symbolic links

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.
» Compute topological order of vertices.
o Initialize fin[v] = time[v] for all vertices v.
* Consider vertices v in topologically sorted order.
- for each edge v—w, set fin[w] = max(fin[w], fin[v] + time[w])

0 4 2 4 6 0

a B (<) () O
N U

0 4 2 4 6 0

Topological sort application: precedence scheduling

Precedence scheduling. - e

. . begin
* Task v takes time[v] units of fime.
. . B framing
* Can work on jobs in parallel.)
c roofing
* Precedence constraints: must finish task v b siding
before beginning task w. E windows
* Goal: finish each task as soon as possible. F plumbing
G electricity
Ex. paint
@<’ finish
> O—0 @ (D—0
0 4 4 0

45

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.
» Compute topological order of vertices.
* Initialize fin[v] = time[v] for all vertices v.
* Consider vertices v in topologically sorted order.
- for each edge v—w, set fin[w] = max(fin[w], fin[v] + time[w])

]

4 5
0 A 4 6 0
) c (&) (1) 1
° N N N
0 4 2 4 6 0

47

46

48

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

e Tnitialize £in[v] = time[v] for all vertices v.

* Consider vertices v in topologically sorted order.

- fOl" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

w

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.
» Compute topological order of vertices.

o Initialize fin[v] = time[v] for all vertices v.
* Consider vertices v in topologically sorted order.

= fOI" each edge v—w, set fin[w] = max(fin[w], fin[v] + time[w])

0

10 P-4
&
6 P2
4 6 5 10 12
Vs 2 & & 0
) () () I
_/] _/

i3

0

4

2

4

6

0

49

51

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

* Consider vertices v in topologically sorted order.

- for each edge v—w, set fin[w] = max(fin[w], fin[v] + time[w])

[y
o
w

50

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize fin[v] = time[v] for all vertices v.

* Consider vertices v in topologically sorted order.

- for each edge v—w, set fin[w] = max(fin[w], fin[v] + time[w])

13
2
s
/
15
KE 3
5\ 10 12
4 19 6 21 0

G () @
T ST

Sor
o (x -
O
O,

52

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

e Tnitialize £in[v] = time[v] for all vertices v.

* Consider vertices v in topologically sorted order.
- for each edge v—w, set £in[w]

5]

max (fin[w], fin[v] + time[w])

1
3

X%

3
/
15
5 3
12 13
18 £ 21

N

©,

0
(——0
_* 7 ;

=

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

e Initialize fin[v] = time[v] for all vertices v.

* Consider vertices v in topologically sorted order.

= fOI" each edge v—w, set fin[w] = max(fin[w], fin[v] + time[w])

53

55

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

» Initialize £in[v] = time[v] for all vertices v.

* Consider vertices v in topologically sorted order.

- for each edge v—w, set fin[w]

10
£

Rz

15
= 3
5 12 25 13
19 £ 21
(1)

= max (fin[w],

13
3

fin[v] + time([w])

4 6 10
0 A 2 4 s
0 4 2 4 6 0

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

e Initialize fin[v] = time[v] for all vertices v.

* Consider vertices v in topologically

sorted order.

- for each edge v—w, set fin[w] = max(fin[w], fin[v] + time[w])

25

4 6 5\ 16 12 25 13

0 V'e 2 4 19 6 21 P

O N N /D °
/ \/\k//\/

0 4 2 4 6 0

56

54

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

« Compute topological order of vertices.

o Initialize fin[v] = time[v] for all vertices v.

* Consider vertices v in topologically sorted order.
- for each edge v—w, set fin[w] =

max (fin[w], fin[v] + time[w])

13
10 3
s
/
15
@\/5’ 3
2.5
4 6 5\ 10 12 25 13
0 V's 2 4 19 £ 21 s
Q () a D\ O
_/ N _/
0 4 2 4 6 0

57

PERT/CPM: Java implementation

G = DAG of precedence constraints

|

double[] fin = new double[G.V()];
for (int v = 0; v < G.V(); v++)
fin[v] = time[v];

<«———F— £fin[v] = finishing ftime of task v

TopologicalSorter ts = new TopologicalSorter (G) ;
for (int v : ts.order())
for (int w : G.adj(v))

fin[w] = Math.max(fin[w],

apply updates to vertices
in topological order

——

fin[v] + time[w]):;

59

Program Evaluation and Review Technique / Critical Path Method

Critical path. Longest path from source to sink.

A 0 - 0

B 4 A 4
To compute: c) s 6
* Remember vertex that set value (parent-link). b 6 B 10
* Work backwards from sink. E 5 D s
F 3 D 13
G 4 C, E 19
13 H 6 c, E 25
10
I I 0 F, H 25
CDDG\ 15 :
5
0 4 6 19 Z5] 25
A B Cc /G\ H
> —(—> >()
0 4 2 4 6 0

58

» strong components

60

Strongly connected components

Def. Vertices v and w are strongly connected if there is a directed path
from v to w and one from w to v.

Def. A strong component is a maximal subset of strongly connected vertices.

strongly connected
component—
\

directed cycle -
\

N

61

Digraph-processing challenge 3

Problem. Are v and w strongly connected?
Goal. Linear preprocessing time, constant query time.

implementation: use DFS twice to find
strong components (see textbook)

How difficult?
* Any COS 126 student could do it. l

* Need to be a typical diligent COS 226 student.
* Hire an expert (or a COS 423 student).

e Intractable. T

* No one knows. correctness proof

5 strong components

(o
\&@_’

\g/ @<

* Impossible.

63

Digraph-processing challenge 3

Problem. Are v and w strongly connected?
Goal. Linear preprocessing time, constant query time.

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert.

* Intractable.

* No one knows.

Impossible.

Ecological food web graph

Vertex = species.
Edge: from producer to consumer.

‘}M e v:|; \gnea’cegvd

fox ;z ™~ ‘UEE
by Blue-gil fish
T norther copperbelly
L water snake

R A\
Y N\ e

mosquito

\

algae (magnified)

Strong component. Subset of species with common energy flow.

62

64

Software module dependency graph

Vertex = software module.
Edge: from module to dependency.

= @
e
ey

—— .

@ Q1 Freecderares

Firefox Internet explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

65

Digraph-processing summary: algorithms of the day

. }
. I :
single-source INENRREN DFS
reachability
o SR i DFS
transitive closure QP sEiie
o=@ oo (from each vertex)

topological sort GM o Q. CFO GO DFS

(DAG)

» 0.0 K .
osaraju
strong components ,@ e e

67

Strong components algorithms: brief history

1960s: Core OR problem.
» Widely studied; some practical algorithms.
» Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

* Classic algorithm.

¢ Level of difficulty: CS226++.

» Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).
* Forgot notes for teaching algorithms class; developed alg in order to teach it!
* Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms (Gabow, Mehlhorn).
* Gabow: fixed old OR algorithm.
* Mehlhorn: needed one-pass algorithm for LEDA.

66

