
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · November 11, 2009 6:58:09 AM

5.2 Directed Graphs

References: Algorithms in Java, 3rd edition, Chapter 19

‣ digraph API
‣ digraph search
‣ transitive closure
‣ topological sort
‣ strong components

2

Directed graphs

Digraph. Set of vertices connected pairwise by oriented edges.
Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all the details that are visible on the screen,use the
"Print" link next to the map.

3

Link structure of political blogs

Vertex = web page.
Edge = hyperlink.

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002
 1 .017
 2 .009
 3 .003
 4 .006
 5 .016
 6 .066
 7 .021
 8 .017
 9 .040
 10 .002
 11 .028
 12 .006
 13 .045
 14 .018
 15 .026
 16 .023
 17 .005
 18 .023
 19 .026
 20 .004
 21 .034
 22 .063
 23 .043
 24 .011
 25 .005
 26 .006
 27 .008
 28 .037
 29 .003
 30 .037
 31 .023
 32 .018
 33 .013
 34 .024
 35 .019
 36 .003
 37 .031
 38 .012
 39 .023
 40 .017
 41 .021
 42 .021
 43 .016
 44 .023
 45 .006
 46 .023
 47 .024
 48 .019
 49 .016

6 22

4

Web graph

Vertex = synset.
Edge = hypernym relationship.

5

WordNet graph

6

Digraph applications

graph vertex edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial stock, currency transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

7

Some digraph problems

Path. Is there a directed path from s to t?
Shortest path. What is the shortest directed path from s and t?

Strong connectivity. Are all vertices mutually reachable?
Transitive closure. For which vertices v and w is there a path from v to w?

Topological sort. Can you draw the digraph so that all edges point
from left to right?

Precedence scheduling. Given a set of tasks with precedence constraints,
how can we best complete them all?

PageRank. What is the importance of a web page?

8

‣ digraph API
‣ digraph search
‣ topological sort
‣ transitive closure
‣ strong components

9

Digraph API

 public class Digraph public class Digraph digraph data typedigraph data type

Digraph(int V)Digraph(int V) create an empty digraph with V vertices

Digraph(In in)Digraph(In in) create a digraph from input stream

void addEdge(int v, int w)addEdge(int v, int w) add an edge from v to w

Iterable<Integer> adj(int v)adj(int v) return an iterator over the neighbors of v

int V()V() return number of vertices

 In in = new In();
 Digraph G = new Digraph(in);

 for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 /* process edge v→w */

10

Set of edges representation

Store a list of the edges (linked list or array).

 0 1
 0 2
 0 5
 0 6
 4 3
 5 3
 5 4
 6 4
 7 8
 9 10
 9 11
 9 12
 11 12

0

6

4

21

5

3

7 12

109

118

11

Adjacency-matrix representation

Maintain a two-dimensional V-by-V boolean array;
for each edge v → w in the digraph: adj[v][w] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0

from

to
0

6

4

21

5

3

7 12

109

118

Maintain vertex-indexed array of lists.

12

Adjacency-list representation

5 2 1 6

3

4 3

4

8

10 11 12

12

same as undirected graph,
but one entry for each edge

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

0

6

4

21

5

3

7 12

109

118

Maintain vertex-indexed array of sets.

13

Adjacency-set representation

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

{ 1 2 5 6 }

{ }

{ }

{ }

{ 3 }

{ 3, 4 }

{ 4 }

{ 8 }

{ }

{ 10, 11, 12 }

{ }

{ 12 }

{ }

same as undirected graph,
but one entry for each edge

0

6

4

21

5

3

7 12

109

118

Same as Graph, but only insert one copy of each edge.

14

Adjacency-set representation: Java implementation

public class Digraph
{
 private final int V;
 private final SET<Integer>[] adj;

 public Digraph(int V)
 {
 this.V = V;
 adj = (SET<Integer>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Integer>();
 }

 public void addEdge(int v, int w)
 { adj[v].add(w); }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency sets

create empty graph with
V vertices

add edge from v to w
(no parallel edges)

iterator for v's neighbors

In practice. Use adjacency-set (or adjacency-list) representation.

• Algorithms all based on iterating over edges incident to v.

• Real-world digraphs tend to be sparse.

15

Digraph representations

representation space
insert edge
from v to w

edge from

v to w?

iterate over edges

leaving v?

list of edges E E E E

adjacency matrix V2 1 1 V

adjacency list E + V outdegree(v) outdegree(v) outdegree(v)

adjacency set E + V log (outdegree(v)) log (outdegree(v)) outdegree(v)

huge number of vertices,
small average vertex degree

16

‣ digraph API
‣ digraph search
‣ transitive closure
‣ topological sort
‣ strong components

17

Reachability

Problem. Find all vertices reachable from s along a directed path.

s

Same method as for undirected graphs.

Every undirected graph is a digraph.

• Happens to have edges in both directions.

• DFS is a digraph algorithm.

18

Depth-first search in digraphs

Mark v as visited.

Recursively visit all unmarked

vertices w adjacent to v.

DFS (to visit a vertex v)

19

Depth-first search (single-source reachability)

Identical to undirected version (substitute Digraph for Graph).

public class DFSearcher
{
 private boolean[] marked;

 public DFSearcher(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean isReachable(int v)
 { return marked[v]; }
}

true if connected to s

constructor marks vertices
connected to s

recursive DFS does the work

client can ask whether any
vertex is reachable from s

20

Reachability application: program control-flow analysis

Every program is a digraph.

• Vertex = basic block of instructions (straight-line program).

• Edge = jump.

Dead code elimination.
Find (and remove) unreachable code.

Infinite loop detection.
Determine whether exit is unreachable.

Every data structure is a digraph.

• Vertex = object.

• Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

21

Reachability application: mark-sweep garbage collector

22

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

• Mark: mark all reachable objects.

• Sweep: if object is unmarked, it is garbage, so add to free list.

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

DFS enables direct solution of simple digraph problems.

• Reachability.

• Cycle detection.

• Topological sort.

• Transitive closure.

Basis for solving difficult digraph problems.

• Directed Euler path.

• Strong connected components.

23

Depth-first search (DFS)

✓

24

Breadth-first search in digraphs

Every undirected graph is a digraph.

• Happens to have edges in both directions.

• BFS is a digraph algorithm.

Property. Visits vertices in increasing distance from s.

Put s onto a FIFO queue.

Repeat until the queue is empty:

 remove the least recently added vertex v

 add each of v's unvisited neighbors to the

 queue and mark them as visited.

BFS (from source vertex s)

25

Digraph BFS application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.

BFS.

• Start at some root web page.

• Maintain a Queue of websites to explore.

• Maintain a SET of discovered websites.

• Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002
 1 .017
 2 .009
 3 .003
 4 .006
 5 .016
 6 .066
 7 .021
 8 .017
 9 .040
 10 .002
 11 .028
 12 .006
 13 .045
 14 .018
 15 .026
 16 .023
 17 .005
 18 .023
 19 .026
 20 .004
 21 .034
 22 .063
 23 .043
 24 .011
 25 .005
 26 .006
 27 .008
 28 .037
 29 .003
 30 .037
 31 .023
 32 .018
 33 .013
 34 .024
 35 .019
 36 .003
 37 .031
 38 .012
 39 .023
 40 .017
 41 .021
 42 .021
 43 .016
 44 .023
 45 .006
 46 .023
 47 .024
 48 .019
 49 .016

6 22

26

Web crawler: BFS-based Java implementation

 Queue<String> q = new Queue<String>();
 SET<String> visited = new SET<String>();

 String s = "http://www.princeton.edu";
 q.enqueue(s);
 visited.add(s);

 while (!q.isEmpty())
 {
 String v = q.dequeue();
 StdOut.println(v);
 In in = new In(v);
 String input = in.readAll();

 String regexp = "http://(\\w+\\.)*(\\w+)";
 Pattern pattern = Pattern.compile(regexp);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 {
 String w = matcher.group();
 if (!visited.contains(w))
 {
 visited.add(w);
 q.enqueue(w);
 }
 }
 }

read in raw html for next website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz

if unvisited, mark as visited
and put on queue

start crawling from website s

queue of websites to crawl
set of visited websites

27

‣ digraph API
‣ digraph search
‣ transitive closure
‣ topological sort
‣ strong components

‣

Problem. Is there an undirected path between v and w ?
Goals. Linear preprocessing time, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

Graph-processing challenge (revisited)

28

0-1
0-6
0-2
3-4
3-5
4-5

0

6

4

21

5

3

✓

Problem. Is there a directed path from v to w ?
Goals. Linear preprocessing time, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

Digraph-processing challenge 1

29

0→1

0→6

0→2

3→4
3→2

5→4

5→0

3→5

2→1
6→4

3→1

0

6

4

21

5

3
can't do better than V2

(reduction from boolean matrix multiplication)

✓

30

Def. The transitive closure of a digraph G is another digraph with a directed
edge from v to w if there is a directed path from v to w in G.

Transitive closure

digraph G

transitive closure TC(G)

TC(G) is usually dense

digraph G is usually sparse

Digraph-processing challenge 1 (revised)

Problem. Is there a directed path from v to w ?
Goals. ~ V2 preprocessing time, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

31

open research problem✓

0→1

0→6

0→2

3→4
3→2

5→4

5→0

3→5

2→1
6→4

3→1

0

6

4

21

5

3

Digraph-processing challenge 1 (revised again)

Problem. Is there a directed path from v to w ?
Goals. ~ V E preprocessing time, ~ V2 space, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

32

Use DFS once for each vertex
to compute rows of transitive closure

0→1

0→6

0→2

3→4
3→2

5→4

5→0

3→5

2→1
6→4

3→1

0

6

4

21

5

3

✓

Use an array of DFSearcher objects, one for each row of transitive closure.

33

Transitive closure: Java implementation

public class TransitiveClosure
{
 private DFSearcher[] tc;

 public TransitiveClosure(Digraph G)
 {
 tc = new DFSearcher[G.V()];
 for (int v = 0; v < G.V(); v++)
 tc[v] = new DFSearcher(G, v);
 }

 public boolean reachable(int v, int w)
 { return tc[v].isReachable(w); }
}

is there a directed path
from v to w ?

array of DFSearcher objects

initialize array

34

‣ digraph API
‣ digraph search
‣ transitive closure
‣ topological sort
‣ strong components

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

Graph model.

• Create a vertex v for each task.

• Create an edge v→w if task v must precede task w.

0. read programming assignment
1. download files
2. write code
3. attend precept
…
12. sleep

35

Digraph application: scheduling

tasks

precedence
constraint graph

feasible
schedule

36

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point left to right.

Fact. Digraph is a DAG iff no directed cycle.

Digraph-processing challenge 2a

Problem. Check that a digraph is a DAG; if so, find a topological order.
Goal. Linear time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

37

use DFS

✓ 0→1

 0→6

 0→2

 0→5
 2→3

 4→9

 6→4

 6→9

 7→6
 8→7

 9→10

 9→11

 9→12

11→120 1 2 3 8 7 6 4 5 9 10 11 12

38

Topological sort in a DAG: Java implementation

public class TopologicalSorter
{
 private boolean[] marked;
 private Stack<Integer> sorted;

 public TopologicalSorter(Digraph G)
 {
 marked = new boolean[G.V()];
 sorted = new Stack<Integer>();
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) tsort(G, v);
 }

 private void tsort(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) tsort(G, w);
 sorted.push(v);
 }

 public Iterable<Integer> order()
 { return sorted; }
}

vertices in topological order

reverse DFS postorder

39

Topological sort in a DAG: trace

Visit means call tsort() and leave means return from tsort().

visit 0: 1 0 0 0 0 0 0 -
 visit 1: 1 1 0 0 0 0 0 -
 visit 4: 1 1 0 0 1 0 0 -
 leave 4: 1 1 0 0 1 0 0 4
 leave 1: 1 1 0 0 1 0 0 4 1
 visit 2: 1 1 1 0 1 0 0 4 1
 leave 2: 1 1 1 0 1 0 0 4 1 2
 visit 5: 1 1 1 0 1 1 0 4 1 2
 check 2: 1 1 1 0 1 1 0 4 1 2
 leave 5: 1 1 1 0 1 1 0 4 1 2 5
leave 0: 1 1 1 0 1 1 0 4 1 2 5 0
check 1: 1 1 1 0 1 1 0 4 1 2 5 0
check 2: 1 1 1 0 1 1 0 4 1 2 5 0
visit 3: 1 1 1 1 1 1 0 4 1 2 5 0
 check 2: 1 1 1 1 1 1 0 4 1 2 5 0
 check 4: 1 1 1 1 1 1 0 4 1 2 5 0
 check 5: 1 1 1 1 1 1 0 4 1 2 5 0
 visit 6: 1 1 1 1 1 1 1 4 1 2 5 0
 leave 6: 1 1 1 1 1 1 1 4 1 2 5 0 6
leave 3: 1 1 1 1 1 1 1 4 1 2 5 0 6 3
check 4: 1 1 1 1 1 1 0 4 1 2 5 0 6 3
check 5: 1 1 1 1 1 1 0 4 1 2 5 0 6 3
check 6: 1 1 1 1 1 1 0 4 1 2 5 0 6 3

marked[] sorted

0

1 2 5

4

3

6

3 6 0 5 2 1 4

0→1

0→6

0→2

3→4
3→2

5→4

5→0

3→5

2→1
6→4

3→1

0

1

4

52

6

3

40

Topological sort in a DAG: correctness proof

Proposition. If digraph is a DAG, algorithm yields a topological order.

Pf.

• Algorithm terminates in O(E + V) time since it's just a version of DFS.

• Consider any edge v→w. When tsort(G, v) is called,

- Case 1: tsort(G, w) has already been called and returned.
Thus, w will appear after v in topological order.

- Case 2: tsort(G, w) has not yet been called, so it will get called directly
or indirectly by tsort(G, v) and it will finish before tsort(G, v).
Thus, w will appear after v in topological order.

- Case 3: tsort(G, w) has already been called, but not returned. Then the
function call stack contains a directed path from w to v. Combining this
path with the edge v→w yields a directed cycle, contradicting DAG.

Digraph-processing challenge 2b

Problem. Given a digraph, is there a directed cycle?
Goal. Linear time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

41

run DFS-based topological sort algorithm;
if it yields a topological sort, no directed cycle

(can modify code to find cycle)

✓ 0→1

 0→6

 0→2

 0→5
 2→3

 4→9

 6→4

 6→9

 7→6
 8→7

 9→10

 9→11

 9→12

11→120 1 2 3 8 7 6 4 5 9 10 11 12

42

Topological sort and cycle detection applications

• Causalities.

• Email loops.

• Compilation units.

• Class inheritance.

• Course prerequisites.

• Deadlocking detection.

• Precedence scheduling.

• Temporal dependencies.

• Pipeline of computing jobs.

• Check for symbolic link loop.

• Evaluate formula in spreadsheet.

43

Cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B
{
 ...
}

public class B extends C
{
 ...
}

public class C extends A
{
 ...
}

% javac A.java
A.java:1: cyclic inheritance
involving A
public class A extends B { }
 ^
1 error

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

44

Cycle detection application: spreadsheet recalculation

45

Cycle detection application: symbolic links

The Linux file system does not do cycle detection.

% ln -s a.txt b.txt
% ln -s b.txt c.txt
% ln -s c.txt a.txt

% more a.txt
a.txt: Too many levels of symbolic links

46

Topological sort application: precedence scheduling

Precedence scheduling.

• Task v takes time[v] units of time.

• Can work on jobs in parallel.

• Precedence constraints: must finish task v
before beginning task w.

• Goal: finish each task as soon as possible.

Ex.

index task time prereqs

A begin 0 -

B framing 4 A

C roofing 2 B

D siding 6 B

E windows 5 D

F plumbing 3 D

G electricity 4 C, E

H paint 6 C, E

I finish 0 F, H

4

6

2

5

3

4 60 0

F

E

D

IHGCBA

Program Evaluation and Review Technique / Critical Path Method

47

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

Program Evaluation and Review Technique / Critical Path Method

48

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

Program Evaluation and Review Technique / Critical Path Method

49

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6

Program Evaluation and Review Technique / Critical Path Method

50

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

Program Evaluation and Review Technique / Critical Path Method

51

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

Program Evaluation and Review Technique / Critical Path Method

52

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21

Program Evaluation and Review Technique / Critical Path Method

53

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21
13

Program Evaluation and Review Technique / Critical Path Method

54

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21
1325

Program Evaluation and Review Technique / Critical Path Method

55

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21
1325
25

Program Evaluation and Review Technique / Critical Path Method

56

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21
1325
25

Program Evaluation and Review Technique / Critical Path Method

57

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.

- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21
1325
25

Critical path. Longest path from source to sink.

To compute:

• Remember vertex that set value (parent-link).

• Work backwards from sink.

Program Evaluation and Review Technique / Critical Path Method

58

index time prereqs finish

A 0 - 0

B 4 A 4

C 2 B 6

D 6 B 10

E 5 D 15

F 3 D 13

G 4 C, E 19

H 6 C, E 25

I 0 F, H 25

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 6 19 25 25

10
13

15

59

PERT/CPM: Java implementation

 double[] fin = new double[G.V()];
 for (int v = 0; v < G.V(); v++)
 fin[v] = time[v];

 TopologicalSorter ts = new TopologicalSorter(G);
 for (int v : ts.order())
 for (int w : G.adj(v))
 fin[w] = Math.max(fin[w], fin[v] + time[w]);

fin[v] = finishing time of task v

apply updates to vertices
in topological order

G = DAG of precedence constraints

60

‣ digraph API
‣ digraph search
‣ transitive closure
‣ topological sort
‣ strong components

Strongly connected components

Def. Vertices v and w are strongly connected if there is a directed path
from v to w and one from w to v.

Def. A strong component is a maximal subset of strongly connected vertices.

61

Digraph-processing challenge 3

Problem. Are v and w strongly connected?
Goal. Linear preprocessing time, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

62

0
6

4

21

5

3

7

12

109

11

8

Problem. Are v and w strongly connected?
Goal. Linear preprocessing time, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert (or a COS 423 student).

• Intractable.

• No one knows.

• Impossible.

Digraph-processing challenge 3

63

implementation: use DFS twice to find
strong components (see textbook)

correctness proof 5 strong components

✓

✓

0
6

4

21

5

3

7

12

109

11

8

64

Ecological food web graph

Vertex = species.
Edge: from producer to consumer.

Strong component. Subset of species with common energy flow.

65

Software module dependency graph

Vertex = software module.
Edge: from module to dependency.

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

Internet explorerFirefox

Strong components algorithms: brief history

1960s: Core OR problem.

• Widely studied; some practical algorithms.

• Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

• Classic algorithm.

• Level of difficulty: CS226++.

• Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).

• Forgot notes for teaching algorithms class; developed alg in order to teach it!

• Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms (Gabow, Mehlhorn).

• Gabow: fixed old OR algorithm.

• Mehlhorn: needed one-pass algorithm for LEDA.
66

Digraph-processing summary: algorithms of the day

67

single-source
reachability DFS

transitive closure DFS
(from each vertex)

topological sort
(DAG) DFS

strong components Kosaraju
DFS (twice)

0
6

4

21

5

3

7

12

109

11

8

