Undirected graphs

5.1 Undirected Graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

i * Interesting and broadly useful abstraction.

muse * Challenging branch of computer science and discrete math.
@vergge X * Hundreds of graph algorithms known.

connectedEXN * Thousands of practical applications.

presentation

e » graph API

edge mem:o% » maze exploration

Algorithms » depth-first search
e » breadth-first search

edges m » connected components

g » challenges

>
5
g
po
waym

yo.aeas
Buissasoad-ydeso

auo
=
zo

nen

O
a Jaqwn

References: Algorithms in Java (Part 5), 3 edition, Chapters 17 and 18

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne Copyright © 2009 - October 19, 2009 7:37:54 AM

Protein interaction network

http://en.wikipedia.org/wiki/Internet

Reference: Jeong et al, Nature Review | Genetics

Map of science clickstreams High-school dating

Reference: Bearman, Moody and Stovel, 2004
image by Mark Newman

http://www.plosone.org/article/info:doi/10.1371/journal. pone. 0004803 5

One week of Enron emails Graph applications

(SR ———
BapLoves (E-MAIL ADDRESS).- . b iagp oo l fc“:vﬂ';;mnn gl"ﬂph vertex edge
AT LEAST ONE E-MAIL CONTAC aris 00 o o o ey
BETWEEN EMPLOYEES e ‘ g ° o™ fﬂﬂva
. umns communication telephone, computer fiber optic cable
° ey
danny. mecarty WDLHD“N‘:M @ stopnanie panus.
conet schaia, = l l-“;;, -~ o sirtyponon
dasron gron o Sai D38 cintdean . o
iy, i :';;:« i 6§ Frroemey Qo circuit gate, register, processor wire
I tsirer @ SeTas o shactioon
martn o harry arora @ andrew lewts @ sally back H 1oi i
drewfossum o m'" lowis @ The analysis detected N @ndroaring @ ryen singer mechanical JOInT r'Od' beam, spring
4 vomes unter shivoly @ ananomaly:anewe- | @ a.martn rodheyslelt
Ve - mail address for this @ stevenkenn o rodner . . .
anch vy g faysetmenee @ e M| person, who hadbeen | iy o rckbuy financial stock, currency transactions
Js—y jettiing ® “phillip.allen” for 131 | i oo @ fchard sandors
JERNP— e previous weeks. | ®luseticnn @ vaiing .)
[Rep— e © hovnprosto R transportation street intersection, airport highway, airway route
Leanctot g e bt cnsovcn o
g soberg @ john.torney @ ot QU vt ©® paul thomas B H
v 2 0 . poian internet class C network connection
gerald nemec @ Joanlie ® viadi pmenov. @ m.scon
greg whaley @ et miay @ ® orikuykendst ® mpresio .
msnsary @ Mt ®omnctoe L —— game board position legal move
s QY ® riaciomn -
jason wiliams @ v rusc @ UG P @ mike meconnell
e ey G vy £ social relationship person, actor friendship, movie cast
ooy osce B e o Szamoian © risscan
jottray shankman @ martin cuita® ® ® tobert benson © m tomey
ol ailiog © menlorna® o 0,5 © manemn neural network neuron synapse
mbocasn P @ @ T T ® Snoaten @ makwhit
mamacy bt semvey
L mike swerzbin patrice mims. ® mark taylor
Company leaders e-mail "¢ vy o Y ratacse protein network protein protein-protein interaction
less frequently, leaving ["reor ., o P viivitanns Sources: Dr
some communication to g ® o P o ounon
subordinates. P IS : ' O et Panc e chemical compound molecule bond
m . ks
Sl e Lhes
Finding Patterns kenneth.lay "™ ved
In Corporate Chatter

Graph terminology

vertex —
Y

cycle —

spanning treeﬂ
\

tree —>

path —

» graph API

Some graph-processing problems

Path. Is there a path between s and t?
Shortest path. What is the shortest path between s and 1?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?
Connectivity. Is there away to connect all of the vertices?

MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency matrices represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

Graph representation
Vertex representation.

* This lecture: use integers between O and V-1.
* Real world: convert between names and integers with symbol table.

() ()
OORONR N IORORNO

symbol table

e

Conventions. Disallow parallel edges, allow self-loops.

Graph APT

public class Graph

graph data type

Graph (int V)

Graph (In in)

create an empty graph with V vertices

create a graph from input stream

void addEdge (int v, int w) add an edge v-w
Iterable<Integer> adj(int v) return an iterator over the neighbors of v
int V() return number of vertices
In in = new In(); . g j more tiny.txt
. read graph from
= . —r
Graph G new Graph(in) ; <tandand|input 01
StdOut.println(G) ; 02
05
for (int v = 0; v < G.V(); v++) 06
for (int w : G.adj(v)) DI - P”’Cesjb“" 34
/* process edge v-w */ vwandwy Z Z
Adjacency-matrix representation
Maintain a fwo-dimensional V-by-V boolean array;
for each edge v-w in graph: adj[v][w] = adj[wl[v] = true.
two entries
o for each edge
) 2 3 4 5 6 7 8 9 10 11 12
o 0 \1 0 0o 1 1 0 0 0 0 0 0
° ° o 1] 1 0 0 0 0 0 0 0 0 0 0
2/ 1 0\N0O 0N O O O O O O 0 ©
s o o 0o 1 0 0 0o 0 0 0 O
e ° 4/ 0 0 ON1 O 1 0 0O O O 0 o0 O
/ s/ 1 o0 o 1 0 0 0 0 0O 0 0 O
e ¢/1 o o 0o 0 0 0 0 0O 0O 0O 0 O
72/0 o0 0 0 0 o0 0O O 1 0 0 0 O
&/ 0 0 0 O O O O 1 0 0 0 o0 O
o @ s/ 0 o 0o 0 o o 0 O O O 1 1 1
|l 0o o0 0 0 0 0 0 o0 0 1 0 0 0
{0 0 0 0 0O O O o0 0 1 0 0 1
@ @ 210 0 0 0 O O O O O 1 ©0 1 0

Set of edges representation

Maintain a list of the edges (linked list or array).

01
02

05

O & ¢ 06
34

o o 35
— x
e 78
9 10

9 11

(o) 5 12

Adjacency-matrix representation: Java implementation

public class Graph
{

private final int V;
private final boolean[][] adj;

public Graph(int V)
{
this.V = V;
adj = new boolean[V][V];

public void addEdge (int v,
{

int w)

adj[v] [w]
adj [w] [v]

true;

true;

public Iterable<Integer> adj(int v)
{ return new AdjIterator(v); }

adjacency matrix

create empty graph
with V vertices

add edge v-w
(no parallel edges)

iterator for v's neighbors
(code for AdjIterator omitted)

Adjacency-list representation

Maintain vertex-indexed array of lists (implementation omitted).

Adjacency-set representation: Java implementation

two entries
for each edge

public class Graph

{

private final int V;
private final SET<Integer>[] adj;

public Graph(int V)
{
this.V = V;
adj = (SET<Integer>[]) new SET[V];
for (int v = 0; v < V; v++)
adj[v] = new SET<Integer>();

public void addEdge(int v, int w)
{

adj[v] .add (w) ;

adj[w] .add (v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

10 e——> 11 o———> 12 o

10: 9 e
(11y—2) e

12: 9 e—— 11 o

adjacency sets

create empty graph
with V vertices

add edge v-w
(no parallel edges)

iterator for v's neighbors

20

Adjacency-set graph representation

Maintain vertex-indexed array of sefts.

0 {1 2 5 6}
1 {0} two entries
e (0} for each edge
o 3 {4, 5}
4 {3, 5, 6
° ° o 5 {0, 3, 4}
6 {0, 4}
oo - -
e 8 {71}
9: { 10, 11, 12}

o @ 10: {91}

{9, 12 }

@ 12: {1, 9)

Graph representations

In practice. Use adjacency-set (or adjacency-list) representation.
* Algorithms based on iterating over edges incident to v.
* Real-world graphs tend to be “sparse.”

huge number of vertices,
small average vertex degree

edge between

iterate over edges

representation space insert edge v and w? incident to v?
list of edges E E E E
adjacency matrix V2 1 1 \"
adjacency list E+V degree(v) degree(v) degree(v)
adjacency set E+V log (degree(v)) log (degree(v)) degree(v)

» maze exploration

Trémaux maze exploration

Algorithm.
* Unroll a ball of string behind you.

* Mark each visited intersection by turning on a light.

* Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur;

Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

22

24

Maze exploration

Maze graphs.
* Vertex = intersection.
* Edge = passage.

o | B s R

Goal. Explore every passage in the maze.

»Iy »Iy »’y »{} »}yﬂ

23

25

Maze exploration Maze exploration

1 I r
0o pat

i - | T g
|__l I_| E—”—
| .]
T | 7 g By gk
Nt]
B ik
® - —

26

Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex s)

Mark s as visited.
Recursively visit all unmarked
vertices v adjacent to s.

» depth-first search NI 52,
* O(E) since each edge examined at most twice.

* Usually less than V in real-world graphs.

* Typical applications.
* Find all vertices connected to a given s.
* Find a path from s fo t.

29

27

Design pattern for graph processing Depth-first search (connectivity)

Design goal. Decouple graph data type from graph processing.

public class DFSearcher
{

private boolean[] marked; <«——F—— trueif connected to s
// print all vertices connected to s
In in = new In(args[0]); public DFSearcher (Graph G, int s)
Graph G = new Graph(in) ; {
int s = 0; marked = new boolean[G.V()];
DFSearcher dfs = new DFSearcher (G, s); dfs (G, s); P CSIRIGET Mmarks
vertices connected fo s
for (int v = 0; v < G.V(); v++) }
if (dfs.isConnected(v))
StdOut.println (v) ; private void dfs(Graph G, int v)

{

marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs (G, w);

<«———F—— recursive DFS does the work

Typical client program.

¢ Create a Graph.

public boolean isConnected(int v)

* Pass the Graph to a graph-processing routine, e.g., DFsearcher. el e sl iGEiar @y

{ return marked[v]; } vertex is connected to s
* Query the graph-processing routine for information. }
31
Flood fill Graph-processing challenge 1
Photoshop “magic wand" Problem. Flood fill.

Assumptions. Picture has millions to billions of pixels.

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert.

* Intractable.

* No one knows.

Impossible.

33

Connectivity application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

» Vertex: pixel.

» Edge: between two adjacent red pixels.
* Blob: all pixels connected to given pixel.

recolor red blob to blue

Graph-processing challenge 2

Problem. Find a path from s to t ?
Assumption. Any path will do.

How difficult?

* Any COS 126 student could do it.
* Need to be a typical diligent COS 226 student.
* Hire an expert.

* Intractable.

* No one knows.

35

37

Connectivity application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

 Vertex: pixel.

* Edge: between two adjacent red pixels.
* Blob: all pixels connected to given pixel.

e o o o o
o o
o o °
o o °
e o o o
recolor red blob to blue
Paths in graphs: union find vs. DFS
Goal. Ts there a path from s to t?
union-find V + E log* V log*V t \Y
DFS E+V 1 E+V
1 amortized

If so, find one.
* Union-find: not much help (run DFS on connected subgraph).
* DFS: easy (see next slides).

Union-find advantage. Can intermix queries and edge insertions.
DFS advantage. Can recover path itself in time proportional to its length.

36

38

Keeping track of paths with DFS

DFS free. Upon visiting a vertex v for the first time, remember that you

came from pred[v] (parent-link representation).

Retrace path. To find path between s and v, follow pred[] back from v.

%

HDEE

O2020,0:0;0,

Depth-first-search (pathfinding iterator)

public Iterable<Integer> path(int v)

{

Stack<Integer> path = new Stack<Integer>();
while (v != -1 && marked[v])
{
path.push(v) ;
v = pred[v];
}

return path;

Depth-first-search (pathfinding)

public class DFSearcher
{

add instance variable for parent-link

private int[] pred; representation of DFS tree

public DFSearcher (Graph G, int s)
{

pred = new int[G.V()];

for (int v = 0; v < G.V(); v++) <«———+—— initialize it in the constructor
pred[v] = -1;
® }
private void dfs(Graph G, int v)
® {
O] marked[v] = true;

for (int w : G.adj(v))
if ('marked([w])
{

pred[w] = v; <«——F—— set parent link
© dfs (G, w);
® }
®
@ }
®O
®0® public Iterable<Integer> path(int v) X
(| /* see mext siide %/ 1} «—+F add method for client
) to iterate through path
39 40

DFS summary

Enables direct solution of simple graph problems.
v/ ¢ Find path from s to t.

* Connected components (stay tuned).

 Euler tour (see book).

* Cycle detection (simple exercise).

* Bipartiteness checking (see book).

Basis for solving more difficult graph problems.

* Biconnected components (see book).
* Planarity testing (beyond scope).

41 42

» breadth-first search

Breadth-first search scaffolding

public class BFSearcher

{

private int[] dist;

public BFSearcher (Graph G, int s)
{
dist = new int[G.V()];
for (int v = 0; v < G.V(); v++)
dist[v] = G.V() + 1;
dist[s] = 0;

bfs (G, s);
public int distance(int v)
{ return dist([v]; }

private void bfs(Graph G, int s)
{ /* See next slide */ }

distances from s

initialize distances

compute distances

answer client query

43

45

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue.
Repeat until the queue is empty:
= remove the least recently added vertex v
= add each of v's unvisited neighbors to the queue,
and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

Breadth-first search (compute shortest-path distances)

private void bfs(Graph G, int s)
{
Queue<Integer> q = new Queue<Integer>() ;
g.enqueue (s) ;
while ('q.isEmpty())
{
int v = g.dequeue();
for (int w : G.adj(v))
{
if (dist[w] > G.V())
{
g.enqueue (w) ;
dist[w] = dist[v] + 1;

44

46

BFS application

* Facebook.
* Kevin Bacon numbers.
* Fewest number of hops in a communication network.

ARPANET LOGICAL MAP, MARCH 1977

coce600]

e
E) Pl [P (o] [pEE-20%) [Fvwess
ilads ek [PEBIN LE0R

Lid =Ll MOFFETT
P

Q
WTE CcA RecS| Ree
5 eoea

650 op i
: Gz
T S5] |) DET)
NN [FoP-ii g} Mir e
FENAVAY % o
s =z 5
[#or-i0], [Ectipse | [oEc1080]
- G Py Fori0 i CEIC T
(E=) o - il e omnao [€0CE
h_wmcoun) o8 30
[1-6180] - prores)
(|
— i o] £

HARVARD

[
o
< Crormo}
Yooreens Crregr
Lttt ABEROEEN |
oc .
L Soac iz i
MR
o g

Bivriess}

L
F0P 10
(Pop-iT}

op-i1] X6
o o ZED
{152{F0E0) esun

G AFw TEXAS GUNTER EGLIN PENTAGON SResase
15122 i T 1cLa70
LT IO coces00
Ome 4 pLumiBus e Coceso| [e3360 bceeo0

O TP aw SATELUITE URCUIT

(PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST
INFORMATION OB TAINABLE, NO CLAIM CAN BE MAOE FOR 115 ACCURACY)

NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY) HOST NAMES.

ARPANET

Kevin Bacon graph

¢ Include vertex for each performer and movie.
* Connect movie to all performers that appear in movie.
» Compute shortest path from s = Kevin Bacon.

A tiny portion of the movie-performer relationship graph

BFS application

* Facebook.
* Kevin Bacon numbers.
* Fewest number of hops in a communication network.

THE ORACLE

OF BACON

Tatiana Ramirez

mu-m-;nso.ms)
AMnt“Suam
mbs;-m) |
P-hL:mn(l)
Kein Bacon

Kewn Bacee 10 ‘suze e i i) (Vore comoms 5>

47 48

» connected components

49 50

Connectivity queries

Def. Vertices vand w are connected if there is a path between them.

Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph o answer queries: is v connected to w?

in constant time

7

Union-Find? Not quite.

Depth-first search for connected components

public class CCFinder

{
private final static int UNMARKED = -1;
private int components;
private int[] cc;

public CCFinder (Graph G)
{ /* see next slide */ }

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

Vertex Component

0

© O JdJ o U WN K

H R R
N B O

0

H OO F NONOOOHRZHR

component labels

constant-time

connectivity query

51

53

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

E+V 1 \

Depth-first search for connected components

public CCFinder (Graph G)

{

cc = new int[G.V()];

for (int v = 0; v < G.V(); v++)
cc[v] UNMARKED ;

for (int v = 0; v < G.V(); v++)

if (cc[v] == UNMARKED) PR

{
dfs (G, v);
components++;

private void dfs(Graph G, int v)

{

cc[v] = components;

for (int w : G.adj(v)) R

if (cc[w] == UNMARKED) dfs (G, w);

52

— DFS for each component

+— standard DFS

54

Connected components

63 components

Connected components application: image processing

Goal. Read ina 2D color image and find regions of connected pixels
that have the same color.

Efficient algorithm.

* Create grid graph.

* Connect each pixel to neighboring pixel if same color.
* Find connected components in resulting graph.

Connected components application: image processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

assuming contiguous states

Input. Scanned image. /
Output. Number of red and blue states.

55

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
* Vertex: pixel.

* Edge: between two adjacent pixels with grayscale value = 70.

* Blob: connected component of 20-30 pixels. N
black = 0
white = 255

Al

Particle fracking. Track moving particles over time.

57

56

58

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

252¥
How difficult? \

3
* Any COS 126 student could do it. J/)_
+ Need to be a typical diligent COS 226 student. 3
* Hire an expert. 0-1-2-3-4-2-0-6-4-5-0

» Intractable.
* No one knows.

» Impossible.
» challenges
59
Bridges of Konigsberg Graph-processing challenge 4
The Seven Bridges of Konigsberg. [Leonhard Euler 1736] Problem. Find a cycle that visits every vertex.

Assumption. Need to visit each vertex exactly once.
“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these

6
bridges, it was asked whether anyone could arrange a route in such a

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert. 0-5-3-4-6-2-1-0

way that he could cross each bridge once and only once.”

A o Intractable.
* No one knows.

Impossible.

Euler tour. Is there a cyclic path that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see Algs in Java).

61

B> B W NN KFHF OOOoOOo
o de s WNOOUNKE

S B W WwWwNhNKHFH oo oo
oYU N K

Graph-processing challenge 5 Graph-processing challenge 6

Problem. Are two graphs identical except for vertex names? Problem. Lay out a graph in the plane without crossing edges?

o

-
>

How difficult?

0\001'.{1-5000
B oW WD o

5
How difficult? <7J><9

* Any COS 126 student could do it. * Any COS 126 student could do it. 3
* Need to be a typical diligent COS 226 student. * Need to be a typical diligent COS 226 student.
* Hire an expert. * Hire an expert.

%

* Intractable. » Intractable.

* No one knows.

* No one knows.

wm
g‘“\ﬁl A
\>
AN WL NNN
LI . |
B wowumo e

* Impossible. 2 » Impossible.

NS

63

| L L A N N A |
OO UL WNN

s W WwWwNNKRFEOo

