4.4 Hash Tables Optimize judiciously

“ More computing sins are committed in the name of efficiency

(without necessarily achieving it) than for any other single reason—
example o including blind stupidity. ” — William A. Wulf
indexgs 3
intdifferent =0, -o
tg'<°
wg.search . i :
s We should forget about small efficiencies, say about 97% of the time:
> g premature optimization is the root of all evil. > — Donald E. Knuth
method (] 3
= 2 i
; g reeo » hash functions
If1unct|on E } o
integer separate chainin . Lo
as 'n . P . g “We follow two rules in the matter of optimization:
values('-sts » linear probing Rule 1: Don't do it.
gchammg » ap p| ications Rule 2 (for experts only). Don't do it yet - that is, not until
‘value hssnéhé"g d é“{'j’"sefé you have a perfectly clear and unoptimized solution. > — M. A. Jackson
prime
Reference: Effective Java by Joshua Bloch
Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 - October 19, 2009 7:41:01 AM
ST implementations: summar Hashing: basic plan
p Y g P

Save items in a key-indexed table (index is a function of the key).

i i
Tl Jeidleied operations Hash function. Method for computing array index from key.
iteration? on keys
search insert delete | search hit insert delete
hash("it") = 3

sequential search N/2 N N/2 i
(linked list) 4 g o el T niee
binary search
Ig N N N Ig N N/2 N/2 T
(ordered array) e e i / ves compareTo () Issues.
. . .
BST N N N 1.38I1gN 1.381IgN ? yes compareTo () Compu“ng the hash func'hon'
* Equality test: Method for checking whether two keys are equal.
red-black tree 2IgN 2IgN 21IgN 1.00lgN 1.00IgN 1.00IgN yes compareTo ()

Q. Can we do better?
A. Yes, but with different access to the data.

Hashing: basic plan
Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key. 0

hash("it") = 3

\ 3 nign
” 4

Issues. hash("times") = 3 /
+ Computing the hash function. » hash functions

* Equality test: Method for checking whether two keys are equal.
* Collision resolution: Algorithm and data structure
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

* No space limitation: trivial hash function with key as index.

* No time limitation: trivial collision resolution with sequential search.
* Limitations on both time and space: hashing (the real world).

5 6
Equality test Implementing equals for user-defined types
Needed because hash methods do not use compareto (). Seems easy
All Java classes inherit a method equals (). public S —
{
private final String name;
Java requirements. For any references x, y and z: private final long val;
] Reﬂexive: x.equals (x) iS true. o
. 5 equivalence .
o Symmetric: x.equals(y) iff y.equals(x). relation E;ubhc boolean equals (Record y)
e Transitive: if x.equals(y) and y.equals(z), then x.equals(z).
* Non-null: x.equals (null) iS false.

do x and y refer to

/ the same object? Record that = yi
Default imp|emen1‘a1‘ion. (x == y) return (this.val == that.val) &&
. . . (this.name.equals (that.name)) ;
Customized implementations. Integer, Double, String, File, URL, Date, ... } <—F— check that all significant
} fields are the same

User-defined implementations. Some care needed.

Implementing equals for user-defined types

Seems easy, but requires some care.

no safe way to use equals () with inheritance

public final class Record

{
private final String name;
private final long val; | must be Object.

Why? Experts still debate.

/

public boolean equals(Object y)
{

if (y == this) return true; <«—F— optimize for true object equality
if (y == null) return false; <«—F— check for null
if (y.getClass() != this.getClass()) <«——F— objects must be in the same class

return false;

Record that = (Record) y;
return (this.val == that.val) &&
(this.name.equals (that.name)) ;

check that all significant
fields are the same

Java's hash code conventions

All Java classes inherit a method hashcode (), which returns a 32-bit int.

Requiremen‘r. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If 'x.equals(y),then (x.hashCode() '= y.hashCode()).

<

|

x.hashCode () y.hashCode ()

Default implementation. Memory address of x.
Customized implementations. Integer, Double, String, File, URL, Date, ...
User-defined types. Users are on their own.

public final class Integer

{

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.
* Efficiently computable. kiy
* Each table index equally likely for each key.

\ thoroughly researched problem,
still problematic in practical applications

Ex 1. Phone numbers.

. L .. table
* Bad: first three digits. i
* Better: last three digits.

Ex 2. Social Security numbers. <—— 573 = california, 574 = Alaska
* Bad: first three digits.
 Better: last three digits.

(assigned in chronological order within geographic region)

Practical challenge. Need different approach for each key type.

Implementing hash code: integers and doubles

public final class Double
{

private final int value; private final double value;

public int hashCode () public int hashCode ()

{ return value; } {

long bits = doubleToLongBits (value) ;
return (int) (bits ~ (bits >>> 32));

- T
|

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

Implementing hash code: strings

public final class String
{

private final char[] s;

public int hashCode ()
{
int hash = 0;
for (int i = 0; i < length(); i++)
hash = s[i] + (31 * hash);

return hash;
}

ith character of s

* Horner's method to hash string of length L: L multiplies/adds.
* Equivalent to h=31"1-g0 + +312-g-3 + 311 g2 + 310. g4,

String s = "call";
Ex
int code = s.hashCode(); <«—— 3045982 =99-31°+97-312 + 108-31' + 108-31°
=108 + 31- (108 + 31 - (97 + 31 - (99)))

Implementing hash code: user-defined types

public final class Record
{
private String name;
private int id;
private double value;

public Record(String name, int id, double value)
{ /* as before */ }

public boolean equals (Object y)
{ /* as before */ }

public int hashCode ()
{ "————”’,,— nonzero constant
int hash = 17;
hash = 31*hash + name.hashCode() ;
hash = 31*hash + id;
hash = 31*hash + Double.valueOf (value) .hashCode () ;
return hash;

} typically a small prime

A poor hash code

Ex. Strings (in Java 1.1).
* For long strings: only examine 8-9 evenly spaced characters.
* Benefit: saves time in performing arithmetic.

public int hashCode()
{
int hash = 0;
int skip = Math.max (1, length() / 8);
for (int i = 0; i < length(); i += skip)
hash = s[i] + (37 * hash);
return hash;

» Downside: great potential for bad collision patterns.

http://www.cs.princeton.edu/introcs/131loop/Hello. java
http://www.cs.princeton.edu/introcs/13loop/Hello.class
http://www.cs.princeton.edu/introcs/131loop/Hello.html
http://www.cs.princeton.edu/introcs/131loop/index.html
http://www.cs.princeton.edu/introcs/12type/index.html

Hash code design

“Standard" recipe for user-defined types.

* Combine each significant field using the 31x +y rule.
* If field is a primitive type, use built-in hash code.
 If field is an array, apply to each element.

* If field is an object, apply rule recursively.

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Need a theorem for each type to ensure reliability.

Basic rule. Need fo use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

Modular hashing Uniform hashing assumption

Hash code. An int between -23t and 23:-1. Assumption J (uniform hashing hashing assumption).
Hash function. An int between o and m-1 (for use as array index). Each key is equally likely to hash to an integer between O and M-1.

typically a prime or power of 2

Bug. : : Bins and balls. Throw balls uniformly at random into M bins.
private int hash(Key key)
{ return key.hashCode() % M; }
[°
° ° o0 ° oo °
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1-in-a billion bug private int hash(Key key)
{ return Math.abs(key.hashCode()) % M; }
Birthday problem. Expect two balls in the same bin after ~1/x M / 2 tosses.
Correct. Coupon collector. Expect every bin has = 1 ball after ~ M In M tosses.
private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) % M; } I

Load balancing. After M tosses, expect most loaded bin has
O(log M / log log M) balls.

Uniform hashing assumption

Assumption J (uniform hashing hashing assumption).
Each key is equally likely to hash to an integer between O and M-1.

Bins and balls. Throw balls uniformly at random into M bins.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

» separate chaining

Java's String data uniformly distribute the keys of Tale of Two Cities

Collisions

Collision. Two distinct keys hashing to same index.
* Birthday problem = can't avoid collisions unless you have
a ridiculous amount (quadratic) of memory.
* Coupon collector + load balancing = collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

hash("it") = 3

* N
/ ” !
hash("times") = 3

21

Separate chaining ST: Java implementation

public class SeparateChainingHashST<Key, Value>
{
private int N; // number of key-value pairs
private int M; // hash table size
private SequentialSearchST<Key, Value> [] st; // array of STs

public SeparateChainingHashST() <—— array doubling code omitted
{ this(997); }

public SeparateChainingHashST (int M)
{
this.M = M;
st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M];
for (int i = 0; i < M; i++)
st[i] = new SequentialSearchST<Key, Value>();

}
private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

public Value get (Key key)
{ return st[hash(key)].get(key); 1}

public void put(Key key, Value val)
{ st[hash(key)].put(key, val); }

public Iterable<Key> keys ()
{ return st[i] .keys(); }

23

Separate chaining ST

Use an array of M < N linked lists. [H.P. Luhn, IBM 1953]
* Hash: map key to integer i between O and M-1.

e Insert: put at front of ith chain (if not already there).
 Search: only need to search ith chain.

key hash
S 2

first
X L] \
A O

first
R4 st \ independent
C 4 0 SequentialSearchST
W4 1 S / objects

al
D R0 |

3

X 2 4 ﬁ'rst\
‘o ({71 |
M 4

Fw’rst\
3 AR |
L 3
E O

Hashing with separate chaining for standard indexing client

22

Analysis of separate chaining

Proposition K. Under uniform hashing assumption, probability that the number
of keys in a list is within a constant factor of N/M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

10,.12511...
/(R]) — 125

i | | — 0
0 10 20 30

Binomial distribution (N =104, M =103, a = 10)

equals () and hashCode ()

Consequence. Number of probes for search/insert is proportional fo N/M.
* M too large = too many empty chains. T

M times faster than
sequential search

* M too small = chains too long.
* Typical choice: M ~N/5 = constant-time ops.

24

Linear probing

Use an array of size M > N.
* Hash: map key to integer i between 0 and M-1.
* Insert: put at table index i if free; if not try i+, i+2, etc.

» linear probing

25

* Search: search table index i; if occupied but no match, try i+1, i+2, etc.

0 1 2 2 4 5 6 7 8 9 10 11 12

insert T
hash(T) = 11

insert N
hash(N) = 8

27

Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

Linear probing:

key hash
S 6

E 10

A 4

E 10

X 15

P 14

st[0] jocularly
st[1] null
st[2] listen
st[3] suburban
: null
st[30000] browsing

linear probing (M = 30001, N = 15000)

trace of standard indexing client

01 2 3 4 5 6 7 8 9 1011 12 13 14 15

S
0
E
entries in red 1 —
arenew entries in gray
A are untouched
2 —
R
3
keys i black g
are probes
%N ¢ s n
5
®
X
7
I;l probe sequence
wraps to 0
P RIX <
10
S'HIL

~— keys[]
@ <~ vals[]

26

28

Linear probing ST implementation

public class LinearProbingHashST<Key, Value>

{
private int M = 30001;
private Value[] vals = (Value[]) new Object[M];
private Key[] keys = (Key[]) new Object[M];

array doubling
code omitted

private int hash(Key key) { /* as before */ }

public void put(Key key, Value val)
{
int i;
for (i = hash(key); keys[i] !'= null; i = (i+l) % M)
if (keys[i].equals(key))

break;
keys[i] = key;
vals[i] = val;

}

public Value get(Key key)
{
for (int i = hash(key); keys[i] !'= null; i = (i+l) % M)
if (key.equals(keys[i]))
return vals[i];
return null;

29

Knuth's parking problem

Model. Cars arrive at one-way street with M parking spaces.
Each desires a random space i: if space i is taken, try i+l, i+2, ...

Q. What is mean displacement of a car?

displacement = 3

—td L :S_D_&J) &

Empty. With M/2 cars, mean displacement is ~ 3/2.
Full. With M cars, mean displacement is ~ /T M / 8

31

Clustering

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

Ooon B [DaOEEn nEm

30

Analysis of linear probing

Proposition M. Under uniform hashing assumption, the average number of
probes in a hash table of size M that contains N = a M keys is:

(ma) ()

search hit search miss / insert

Pf. [Knuth 1962] A landmark in analysis of algorithms.

Parameters.

* M too large = too many empty array entries.
* M too small = search time blows up.

* Typical choice: o = N/M ~ 3.

\ # probes for search hit is about 3/2
probes for search miss is about 5/2

32

ST implementations: summary

guarantee average case
ordered operations

L iteration? on keys
search insert delete | search hit insert delete
N N N N/2 N N/2

sequential search

a
(linked list) no equals ()

binary search

e el IgN N N IgN N/2 N/2 yes compareTo ()

BST N N N 138IgN 138IgN ? yes compareTo ()

red-black tree 2IgN 2IgN 2IgN 100IgN 100IgN 1.00IgN yes compareTo ()
hashing lgN* lgN* lgN* 3-5* 3-5* 3-5* no equals ()

* under uniform hashing assumption

Algorithmic complexity attack on Java

Goal. Find family of strings with the same hash code.
Solution. The base-31 hash code is part of Java's string API.

"Aa" "AaAaAaAa" -540425984 "BBAaAaAa" -540425984
"BB" "AaAaAaBB" -540425984 "BBAaAaBB" -540425984
"AaAaBBAa" -540425984 "BBAaBBAa" -540425984
"AaAaBBBB" -540425984 "BBAaBBBB" -540425984
"AaBBAaAa" -540425984 "BBBBAaAa" -540425984
"AaBBAaBB" -540425984 "BBBBAaBB" -540425984
"AaBBBBAa" -540425984 "BBBBBBAa" -540425984
"AaBBBBBB" -540425984 "BBBBBBBB" -540425984

2N strings of length 2N that hash to same value!

33

35

Algorithmic complexity attacks

Q. TIs the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Bucker
0
! malicious adversary learns your hash function
2 (e.g., by reading Java APT) and causes a big pile-up
3 in single slot that grinds performance to a halt
4

[

Real-world exploits. [Crosby-Wallach 2003]

* Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

* Per| 5.8.0: insert carefully chosen strings into associative array.

* Linux 2.4.20 kernel: save files with carefully chosen names.

34

Diversion: one-way hash functions

One-way hash function. Hard to find a key that will hash to a desired value,
or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

known to be insecure

String password = args[0];
MessageDigest shal = MessageDigest.getInstance("SHALl") ;
byte[] bytes = shal.digest (password) ;

/* prints bytes as hex string */

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

36

Separate chaining vs. linear probing

Separate chaining.

* Easier to implement delete.

* Performance degrades gracefully.

* Clustering less sensitive to poorly-designed hash function.

Linear probing.
* Less wasted space.
* Better cache performance.

37

Hashing vs. balanced trees

Hashing.

» Simpler to code.

* No effective alternative for unordered keys.

* Faster for simple keys (a few arithmetic ops versus log N compares).
* Better system support in Java for strings (e.g., cached hash code).

Balanced frees.
+ Stronger performance guarantee.
 Support for ordered ST operations.

e Easier to implemen‘r compareTo () cor‘r‘ecﬂy than equals () and hashCode ().
Java system includes both.

* Red-black trees: java.util.TreeMap, java.util.TreeSet.

. Hashing: java.util.HashMap, java.util.IdentityHashMap.

39

Hashing: variations on the theme
Many improved versions have been studied.

Two-probe hashing. (separate chaining variant)
* Hash to two positions, put key in shorter of the two chains.
* Reduces average length of the longest chain to log log N.

Double hashing. (linear probing variant)

* Use linear probing, but skip a variable amount, not just 1 each time.
 Effectively eliminates clustering.

* Can allow table to become nearly full.

38

