Symbol table review

Balanced Trees

average case

: . __ ordered | operations
implementation) ;
bottom iteration? on keys
three search | insert delete | search hit insert delete
2 3 transformatlons
new = sequential search N N N N/2 N N/2 1
link @ 200es (linked list) / / ne et
ln order JZBSTs
de%m 3 binary search
chlld g Ig N N N Ig N N/2 N/2 yes compareTo ()
Trées . key' (st
balance
red-black > > 2-3 trees BST N N N 1.391gN 1.391g N ? . e)
Balanced &
0 e » red-black trees
ssleft £
C°deseal" hlnserr 3 B_trees Goal log N log N log N log N log N log N yes compareTo ()
middle
case pge
links
root
BsTg Challenge. Guarantee performance.
(] o 9
This lecture. 2-3 trees, left-leaning red-black trees, B-trees.
introduced fo the world in
COS 226, Fall 2007
Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 - October 10, 2009 12:24:53 PM

2-3 tree
Allow 1 or 2 keys per node.
* 2-node: one key, two children.

* 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

between E and | \ null ll}’lk

Search ina 2-3 tree

» Compare search key against keys in node.
* Find interval containing search key.
* Follow associated link (recursively).

successful search for H unsuccessful search for B

H is less than M so

look to the left “\ m

B is less than M so

look to the left A m

H is between E and L so Bis lﬂi55 than E
look in the middle so look to the left
NGER

@
t

B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

found H so return value (search hit)

Insertion ina 2-3 ftree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create tfemporary 4-node.
* Move middle key in 4-node into parent.

/

i ?
why middle key? inserting Z

()

search for Z ends
/ at this 3-node

replace 3-node with
temporary 4-node
/cnntaining z

replace 2-node
with new 3-node
.~ containing

dle key
® @

N/

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 tree

Case 1. Insert into a 2-node at bottom.
* Search for key, as usual.
* Replace 2-node with 3-node.

inserting K

Q

(L)
™

search for K ends here

AN replace 2-node with
new 3-node containing K

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node fo create temporary 4-node.
* Move middle key in 4-node into parent.

* Repeat up the tree, as necessary.

inserting D add middle key C to 3-node
to make temporary 4-node

search for D ends

at this 3-node \
& ©
add new key D to 3-node split 4-node into two 2-nodes

to make temporary 4-node

A CD

pass middle key to parent

1dd middle key E to 2-node
to make new 3-node ~

(EW
o @

5

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 free

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node fo create temporary 4-node.

* Move middle key in 4-node into parent.

* Repeat up the tree, as necessary.

* If you reach the root and it's a 4-node, split it into three 2-nodes.

inserting D add middle key C to 3-node

to make temporary 4-node
search for D ends

at this 3-node \
@ @

add new key D to 3-node
to make temporary 4-node

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes

A C D incrcas‘mg tree
height by 1

Remark. Splitting the root increases height by 1.

2-3 tree construction trace

The same keys inserted in ascending order.

(H)
insert A @ P G m
C ONG)
E G R m
() (B)
CEY)
’ ©
S ()
(M R)
H
(P)
X ()
(M R)
"

2-3 tree construction trace

Standard indexing client.

insert S

ER)
G. ()
RS P
(E} (R)
C G (P)

P) ©

[>)
[

0
) m
®
4
(H) (S)

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant humber of operations.

bcd
less between\ /between\ /between\ /between greater
than a aandb b and c candd dande than e
a c e
less between\ /between\ /between\ /between greater
than a aandb band c candd dande than e

Global properties ina 2-3 tree 2-3 tree: performance

Invariant. Symmetric order. Perfect balance. Every path from root to null link has same length.

Invariant. Perfect balance.

Pf. Each transformation maintains order and balance.

root parentis a 3-node

@r) — R l
e
ofke ft (dea (b d e)
abc (@ (Q) Tree height.
parent is a 2-node ddl e Worst case:
mi e tB -a Cc e
left @ _, (b d) —_ * Best case:
@ (Q b c d OMC)
right (a) (@ right - (@ b) (a b d)
— —
(b) (d) cde © &
3 14
2-3 tree: performance ST implementations: summary
Perfect balance. Every path from root to null link has same length.
guarantee average case
implementation ordered operations
P iteration? on keys
search insert delete | search hit insert delete
sequential search N N N N/2 N N/2
(linked list) 4 4 ne e

binary search g N N N Ig N N/2 N/2 yes compareTo ()

(ordered array)
Tree height.

.391IgN 1.391 ?

» Worst case: IgN. [all 2-nodes] BST N N A 391N (R
* Best case: logaN = .6311gN. [all 3-nodes] 23 tree cigN | cign | cign clgn clgN ClgN s compareTo()
* Between 12 and 20 for a million nodes.

+ Between 18 and 30 for a billion nodes. '\'\ I /

. . . constants depend upon
Guaranteed logarithmic performance for search and insert. implementation

2-3 tree: implementation?

Direct implementation is complicated, because:

* Maintaining multiple node types is cumbersome.
* Need multiple compares to move down tree.

* Need o move back up the tree to split 4-nodes.
* Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

» red-black trees

Left-leaning red-black trees (Guibas-Sedgewick 1979 and Sedgewick 2007) Left-leaning red-black trees: 1-1 correspondence with 2-3 frees

1. Represent 2-3 tree as a BST.

Key property. 1-1 correspondence between 2-3 and LLRB.
2. Use "internal" left-leaning links as "glue" for 3-nodes.

3-node
less between greater greater

thana) [aandb than b than b

red-black tree
larger key is root

less between
than a aandb

black links connect

red links "glue” 2-nodes and 3-nodes

nodes within a 3-node

2-3 tree

2-3 free

red-black tree

20

An equivalent definition

A BST such that:

* No node has two red links connected to it.

 Every path from root to null link has the same number of black links.

e Red links lean left.

red-black tree

AN

"perfect black balance"

Red-black tree representation

21

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

private static final boolean RED true;
private static final boolean BLACK = false;

private class Node
{
Key key;
Value val;
Node left, right;
boolean color; // color of parent link

}

private boolean isRed(Node x)

{

if (x == null) return false;
return x.color == RED; \

null links are black

h

h.left.color e .
: h.right.color
BIED © Pz i< BLACK

23

Search implementation for red-black trees

Observation. Search is the same as for elementary BST (ignore color).

f

but runs faster because of better balance

public Val get (Key key)
{
Node x = root;
while (x '= null)
{
int cmp = key.compareTo (x.key) ;

if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else if (cmp == 0) return x.val;

}

return null;

Remark. Many other ops (e.g., ceiling, selection, iteration) are also identical.

Elementary red-black free operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

red-black tree

could be right or left,
h «— red or black X
~ h
~ ~
less greater
than £ between greater less between than S
EandS than S than E EandS
private Node rotateLeft(Node h)
{
assert (h !'= null) && isRed(h.right);

Node x = h.right;
h.right = x.left;
x.left = h;
x.color = h.color;
h.color = RED;
return x;

Invariants. Maintains symmetric order and perfect black balance.

22

24

Elementary red-black tree operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

X
~h ~
h
X e
greater) less
. than S than E
less between between\, / greater
than E Sand E S and E than S

private Node rotateRight (Node h)
{
assert (h !'= null) && isRed(h.left);
Node x = h.left;
h.left = x.right;
x.right = h;
x.color = h.color;
h.color = RED;
return x;

Invariants. Maintains symmetric order and perfect black balance.

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black tree operations

insert C

(B
(A I

add new
node here

right link red
so rotate left

©)

(A
Q ®
s &
< 36 Ao RS

Elementary red-black free operations

Color flip. Recolor to split a (temporary) 4-node.

red link attaches
middle node
to parent

h __could be left
N or right link

NoA T
black links split
to 2-nodes

less between\ /between greater less between\, /between\ / greater
than A Aand E EandS than S than A AandE)| EandS than S

private void flipColors (Node h)
{
assert !isRed(h) && isRed(h.left) && isRed(h.right);

h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

Invariants. Maintains symmetric order and perfect black balance.

25

Insertion ina LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

left root right root
Ve Ve
search ends
““at this null link
™ search ends attached new node
at this null link e —with red link
root
Q red link to L root
e O new node
containing a rotated left
converts 2-node e to make a
to 3-node legal 3-node

27

26

28

Insertion in a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger

0 search ends
— atthis

e null link

smaller

8°

™~ search ends
at this null link
attached new o
node with @
red link attached new
e G e ™ node with
red link

rotated
« right

5

colors flipped
@ «— to black

9 G colors flipped
(b 10 black

between

search ends
“at this null link

attached new

node with
(b)

O
/

5

red link

rotated left

rotated
" right

olors flipped

G «~ to black

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.

* Do standard BST insert; color new link red.
» Rotate to balance the 4-node (if needed).

+ Flip colors to pass red link up one level.

» Rotate to make lean left (if needed).

inserting H two lefts in a row
so rotate right
add new
node here \ ' ’
both children red
G so flip colors

right link red
so rotate left

31

29

insert C .
Qe 9 /:}E’#\
AR
add new
node here
right link red
so rotate left
(A) [S)
() (R)
G (E)
QR ad ko
G Q N\, < <
Insertion in a LLRB tree
Case 2. Insert into a 3-node at the bottom. eertng

Insertion ina LLRB tree

Case 1. Insert into a 2-node at the bottom.
» Do standard BST insert; color new link red.
* If new red link is a right link, rotate left.

Do standard BST insert; color new link red.
Rotate to balance the 4-node (if needed).
Flip colors to pass red link up one level.
Rotate to make lean left (if needed).

@)
QI
/

add new
node here

two lefts in a row
so rotate right

both children red
so flip colors

® |
(c (R)

right link red
so rotate left

|
(B
(Q (R)
(A] (H 1)
(R)
OGO,
("
(A)

32

30

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

* Do standard BST insert; color new link red.

» Rotate to balance the 4-node (if needed).

* Flip colors to pass red link up one level.

» Rotate to make lean left (if needed).

* Repeat Case 1 or Case 2 up the tree (if needed).

LLRB tree construction trace

Standard indexing client (continued).

®
x e
®
' ®
(H]
®
p & ®
OO

inserting P

Q
(EX
M
OO,

add new
node here

hildren
red so

flip colors

right link red
so rotate left
N

two lefts in a row
so rotate right

both children red
so flip colors

red black tree

2-3 free

33

35

LLRB tree construction trace

Standard indexing client.

Insertion in a LLRB tree: Java implementation

insert S

R

o

G
O,
(RY
(S

()

(®)
(Q
(A7

(R)
(]
(H

red black tree

Same code for both cases.

* Right child red, left child black: rotate left.
* Left child, left-left grandchild red: rofate right.

* Both children red: flip colors.

private Node put(Node h, Key key, Value val)

{

if (h == null) return new

int cmp = key.compareTo (h.key) ;

if (cmp < 0) h.left
else if (cmp > 0) h.right

else h.val = val;
if (isRed(h.right)
if (isRed(h.left)
if (isRed(h.left)

return h;

put(h.left,

&& !'isRed(h.left))
&& isRed(h.left.left))
&& isRed(h.right))

only a few extra lines of code
to provide near-perfect balance

h
h
h

Node (key, val, RED);

key, val);
put (h.right, key, wval);

34

2-3 free
h
left n
h = rotate
AN right
rotate ﬂlp
;Ié\g colors
<«<—f— insert at bottom
rotateLeft (h); <—1— leanleft

rotateRight (h) ; <—
flipColors (h); <

—— balance 4-node
— split 4-node

36

[hen Ot O OO O (e o O OO O

255 insertions in ascending order

Balance in LLRB trees

Proposition. Height of tree is < 2 Ig N in the worst case.

Pf.

* Every path from root to null link has same number of black links.

* Never two red links in-a-row.

Property. Height of tree is ~ 1.00 Ig N in typical applications.

Why left-leaning trees?

old code (that students had to learn in the past)

private Node put(Node x, Key key, Value val, boolean sw)
{
if (x == null)
return new Node (key, value, RED);
int cmp = key.compareTo (x.key) ;

if (isRed(x.left) && isRed(x.right))
{ Algorithms
x.color = RED;
x.left.color = BLACK;
x.right.color = BLACK;
}
if (cmp < 0)
{
x.left = put(x.left, key, val, false);
if (isRed(x) && isRed(x.left) && sw)
x = rotateRight(x) ;
if (isRed(x.left) && isRed(x.left.left))
{
x = rotateRight (x);
x.color = BLACK; x.right.color = RED;
}
}
else if (cmp > 0)
{
x.right = put(x.right, key, val, true);
if (isRed(h) && isRed(x.right) && !sw)
x = rotateLeft(x);
if (isRed(h.right) && isRed(h.right.right))
{
x = rotateLeft(x);
x.color = BLACK; x.left.color = RED;

) ™~

else x.val = val;
return x;

new code (that you have fo learn)

public Node put(Node h, Key key, Value val)
{
if (h == null)
return new Node (key, val, RED);
int cmp = kery.compareTo (h.key) ;
if (cmp < 0)
h.left = put(h.left,
else if (cmp > 0)
h.right = put(h.right, key, val);
else h.val = val;

key, val);

if (isRed(h.right) && 'isRed(h.left))
h = rotateLeft(h);

if (isRed(h.left) && isRed(h.left.left))
h = rotateRight(h);

if (isRed(h.left) && isRed(h.right))
h = flipColors (h) ;

return h;
) |

41

T
straightforward
(if you've paid attention)

S extremely fricky

43

ST implementations: summary

implementation

sequential search

average case

N N N

clgN

(linked list) e RE
(:::ZZ ji‘::i'y') IgN N N IgN N/2 N/2
BST N N N 1391gN 1.391gN 2
2-3 free clgN clgN clgN clgN clgN
red-black tree 2lgN 2IgN 2IgN 100IgN * 100IgN * 100IgN *

ordered

iteration?

no

yes

yes

yes

yes

operations
on keys

equals ()

compareTo ()

compareTo ()

compareTo ()

compareTo ()

* exact value of coefficient unknown but extremely close to 1

Costs for java FrequencyCounter 8 < tale.txt usingRedBlackBST

Why left-leaning trees?

Simplified code.

* Left-leaning restriction reduces number of cases.

* Short inner loop.

Same ideas simplify implementation of other operations.

* Delete min/max.
* Arbitrary delete.

Improves widely-used algorithms.
e AVL trees, 2-3 trees, 2-3-4 trees.
* Red-black trees.

2008
1978

1972

Bottom line. Left-leaning red-black trees are the simplest balanced BST

to implement and the fastest in practice.

42

44

File system model

Page. Contiguous block of data (e.g., a file or 4096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M links per node.

* At least 1 entry at root. AN

* At least M/2 links in other nodes. Thaf',\f(,’;i!\ ffif?:a‘;se'p:jmef’iooo
* External nodes contain client keys.

¢ Internal nodes contain copies of keys to guide search.

sentinel key internal 3-node

each red key is a copy
of min key in subtree ™ >

external

3-node external 5-node (full) external 4-node

[FBIC | [DTETF | CIEAE] | [KMNToTPT 7] [Q[R]T [WwXY]
client keys (black) all nodes except the root are 3-, 4- or 5-nodes

are in external nodes

Anatomy of a B-tree set (M = 6)

Model. Time required for a probe is much larger than time to accessdata

within a page.

Goal. Access data using minimum number of probes.

45

Searching in a B-tree

e Start at root.

* Find interval for search key and take corresponding link.
* Search terminates in external node.

searching for E

follow this link because

E is between * and K ~~__

Sollow this link because
— EisbetweenD and H

search for E in v

this external node

Searching in a B-tree set (M = 6)

47

46

48

Insertion in a B-tree

* Search for new key.
 Insert at bottom.
* Split (M+1)-nodes on the way up the tree.

inserting A *THIK]Q|U

[*IBICEF J[HTI] J[KIMINOTP J[QRTT] [UTWIX

*ABICEF
new key (A) causes *CIH|K|Q U new key (C) causes
overflow and split overflow and split

[*IA'B | [CCETF]

root split causes
a new root to be created

Inserting a new key into a B-tree set

49

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.

o C++ STL: map, multimap, multiset.

* Linux kernel: completely fair scheduler, 1inux/rbtree.n.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
e Windows: HPFS.

* Mac: HFS, HFS+.

e Linux: ReiserFS, XFS, Ext3FS, JFS.

* Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

51

Balance in B-tree

Probes. A search or insert in a B-tree of order M with N items requires
between loguN and logm/2N probes.

Pf. All internal nodes (besides root) have between M/2 and M links.

M =1000; N = 62 billion

Inpractice. Number of probes is at most 41 «~—— """ " '\ *,

Optimization. Always keep root page in memory.

50

