
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · October 8, 2009 2:42:15 PM

3.4 Priority Queues

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

2

Priority queue API

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create a priority queue

MaxPQ(maxN) create a priority queue of initial capacity maxN

void insert(Key v) insert a key into the priority queue

Key max() return the largest key

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

int size() number of entries in the priority queue

API for a generic priority queue

P 1 P P
Q 2 P Q P Q
E 3 P Q E E P Q
 Q 2 P E E P
X 3 P E X E P X
A 4 P E X A A E P X
M 5 P E X A M A E M P X
 X 4 P E M A A E M P
P 5 P E M A P A E M P P
L 6 P E M A P L A E L M P P
E 7 P E M A P L E A E E L M P P
 P 6 E M A P L E A E E L M P

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

data type delete

stack last in, first out

queue first in, first out

priority queue largest value out

3

Priority queue applications

• Event-driven simulation. [customers in a line, colliding particles]

• Numerical computation. [reducing roundoff error]

• Data compression. [Huffman codes]

• Graph searching. [Dijkstra's algorithm, Prim's algorithm]

• Computational number theory. [sum of powers]

• Artificial intelligence. [A* search]

• Statistics. [maintain largest M values in a sequence]

• Operating systems. [load balancing, interrupt handling]

• Discrete optimization. [bin packing, scheduling]

• Spam filtering. [Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Problem. Find the largest M in a stream of N elements.

• Fraud detection: isolate $$ transactions.

• File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N elements.
Solution. Use a min-oriented priority queue.

4

Priority queue client example

implementation time space

sort N log N N

elementary PQ M N M

binary heap N log M M

best in theory N M

cost of finding the largest M
in a stream of N items

MinPQ<String> pq = new MinPQ<String>();

while(!StdIn.isEmpty())
{
 String s = StdIn.readString();
 pq.insert(s);
 if (pq.size() > M)
 pq.delMin();
}

while (!pq.isEmpty())
 System.out.println(pq.delMin());

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

5 6

Priority queue: unordered and ordered array implementation

P 1 P P
Q 2 P Q P Q
E 3 P Q E E P Q
 Q 2 P E E P
X 3 P E X E P X
A 4 P E X A A E P X
M 5 P E X A M A E M P X
 X 4 P E M A A E M P
P 5 P E M A P A E M P P
L 6 P E M A P L A E L M P P
E 7 P E M A P L E A E E L M P P
 P 6 E M A P L E A E E L M P

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

7

Priority queue: unordered array implementation

public class UnorderedMaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq; // pq[i] = ith element on pq
 private int N; // number of elements on pq

 public UnorderedMaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void insert(Key x)
 { pq[N++] = x; }

 public Key delMax()
 {
 int max = 0;
 for (int i = 1; i < N; i++)
 if (less(max, i)) max = i;
 exch(max, N-1);
 return pq[--N];
 }
}

no generic
array creation

less() and exch()
as for sorting

8

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

order-of-growth running time for PQ with N items

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

goal log N log N log N

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

9

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with N nodes is 1 + lg N.
Pf. Height only increases when N is exactly a power of 2.

10

Binary tree

complete tree of height 5
 N = 16

lg N = 4
height = 5

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations
11

Binary heap

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

• Keys in nodes.

• No smaller than children’s keys.

Array representation.

• Take nodes in level order.

• No explicit links needed!

12

Binary heap properties

Property A. Largest key is a[1], which is root of binary tree.

Property B. Can use array indices to move through tree.

• Parent of node at k is at k/2.

• Children of node at k are at 2k and 2k+1.

indices start at 1

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations

Scenario. Node's key becomes larger key than its parent's key.

To eliminate the violation:

• Exchange key in node with key in parent.

• Repeat until heap order restored.

Peter principle. Node promoted to level of incompetence.

private void swim(int k)
{
 while (k > 1 && less(k/2, k))
 {
 exch(k, k/2);
 k = k/2;
 }
}

13

Promotion in a heap

parent of node at k is at k/2

5

E

G

I

P

H

T

G

S

O

R

A

violates heap order
(larger key than parent)

E

G

I

S

H

P

G

T

O

R

A5

2

1

Bottom-up heapify (swim)

14

Insertion in a heap

Insert. Add node at end, then swim it up.
Running time. At most ~ lg N compares.

public void insert(Key x)
{
 pq[++N] = x;
 swim(N);
}

Heap operations

E

P

I

N

G

H

S

T

O

R

A

key to insert

E

P

I

N

G

H

S

T

O

R

A

add key to heap
violates heap order

E

P

I

S

G

N

H

T

O

R

A

swim up

E

P

I

S

G

N

H

T

O

R

A

key to remove

violates
heap order

exchange keys
with root

E

P

I

S

G

N

T

H

O

R

A

remove node
from heap

E

H

I

P

G

N

S

O

R

A

sink down

insert remove the maximum

Scenario. Node's key becomes smaller than one (or both) of its children's keys.

To eliminate the violation:

• Exchange key in node with key in larger child.

• Repeat until heap order restored.

Power struggle. Better subordinate promoted.

private void sink(int k)
{
 while (2*k <= N)
 {
 int j = 2*k;
 if (j < N && less(j, j+1)) j++;
 if (!less(k, j)) break;
 exch(k, j);
 k = j;
 }
}

15

Demotion in a heap

children of node
at k are 2k and 2k+1

5

E

P

I

H

N

S

G

T

O

R

A

violates heap order
(smaller than a child)

E

P

I

S

H

N

G

T

O

R

A5

10

2

2

Top-down reheapify (sink)

Delete max. Exchange root with node at end, then sink it down.
Running time. At most ~ 2 lg N compares.

16

Delete the maximum in a heap

public Key delMax()
{
 Key max = pq[1];
 exch(1, N--);
 sink(1);
 pq[N+1] = null;
 return max;
}

prevent loitering

Heap operations

E

P

I

N

G

H

S

T

O

R

A

key to insert

E

P

I

N

G

H

S

T

O

R

A

add key to heap
violates heap order

E

P

I

S

G

N

H

T

O

R

A

swim up

E

P

I

S

G

N

H

T

O

R

A

key to remove

violates
heap order

exchange keys
with root

E

P

I

S

G

N

T

H

O

R

A

remove node
from heap

E

H

I

P

G

N

S

O

R

A

sink down

insert remove the maximum

17

Heap operations

P

Q

P

Q

E

E

P

E

X

P

A

M

E

X

P

A

M

P

E

A

P

M

P

E

A

P

M

P

E

L

A

P

M

P

E

L

E

A

M

E

P

L

L

P

E

X

P

A

Priority queue operations
in a heap

insert P

insert Q

insert E

remove max (Q)

insert X

insert A

insert M

remove max (X)

insert P

insert L

insert E

remove max (P)

P

Q

P

Q

E

E

P

E

X

P

A

M

E

X

P

A

M

P

E

A

P

M

P

E

A

P

M

P

E

L

A

P

M

P

E

L

E

A

M

E

P

L

L

P

E

X

P

A

Priority queue operations
in a heap

insert P

insert Q

insert E

remove max (Q)

insert X

insert A

insert M

remove max (X)

insert P

insert L

insert E

remove max (P)

18

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq;
 private int N;

 public MaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity+1]; }

 public boolean isEmpty()
 { return N == 0; }
 public void insert(Key key)
 { /* see previous code */ }
 public Key delMax()
 { /* see previous code */ }

 private void swim(int k)
 { /* see previous code */ }
 private void sink(int k)
 { /* see previous code */ }

 private boolean less(int i, int j)
 { return pq[i].compareTo(pq[j] < 0; }
 private void exch(int i, int j)
 { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}

array helper functions

heap helper functions

PQ ops

19

Priority queues implementation cost summary

Hopeless challenge. Make all operations constant time.
Q. Why hopeless?

order-of-growth running time for PQ with N items

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1

20

Binary heap considerations

Minimum-oriented priority queue.

• Replace less() with greater().

• Implement greater().

Dynamic array resizing.

• Add no-arg constructor.

• Apply repeated doubling and shrinking.

Immutability of keys.

• Assumption: client does not change keys while they're on the PQ.

• Best practice: use immutable keys.

Other operations.

• Remove an arbitrary item.

• Change the priority of an item.

leads to O(log N) amortized time per op

easy to implement with sink() and swim() [stay tuned]

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

21 22

Heapsort

Basic plan for in-place sort.

• Create max-heap with all N keys.

• Repeatedly remove the maximum key.

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

start with array of keys
in arbitrary order

build a max-heap
(in place)

sorted result
(in place)

23

Heapsort: heap construction

First pass. Build heap using bottom-up method.

for (int k = N/2; k >= 1; k--)
 sink(a, k, N);

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

24

Heapsort: sortdown

Second pass.

• Remove the maximum, one at a time.

• Leave in array, instead of nulling out.

while (N > 1)
{
 exch(a, 1, N--);
 sink(a, 1, N);
}

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

25

Heapsort: Java implementation

public class Heap
{
 public static void sort(Comparable[] pq)
 {
 int N = pq.length;
 for (int k = N/2; k >= 1; k--)
 sink(pq, k, N);
 while (N > 1)
 {
 exch(pq, 1, N);
 sink(pq, 1, --N);
 }
 }

 private static void sink(Comparable[] pq, int k, int N)
 { /* as before */ }

 private static boolean less(Comparable[] pq, int i, int j)
 { /* as before */ }

 private static void exch(Comparable[] pq, int i, int j)
 { /* as before */ }

}

but use 1-based indexing

26

Heapsort: trace

 a[i]
 N k 0 1 2 3 4 5 6 7 8 9 10 11
 S O R T E X A M P L E
 11 5 S O R T L X A M P E E
 11 4 S O R T L X A M P E E
 11 3 S O X T L R A M P E E
 11 2 S T X P L R A M O E E
 11 1 X T S P L R A M O E E
 X T S P L R A M O E E
 10 1 T P S O L R A M E E X
 9 1 S P R O L E A M E T X
 8 1 R P E O L E A M S T X
 7 1 P O E M L E A R S T X
 6 1 O M E A L E P R S T X
 5 1 M L E A E O P R S T X
 4 1 L E E A M O P R S T X
 3 1 E A E L M O P R S T X
 2 1 E A E L M O P R S T X
 1 1 A E E L M O P R S T X
 A E E L M O P R S T X

initial values

heap-ordered

sorted result

Heapsort trace (array contents just after each sink)

Proposition Q. At most 2 N lg N compares and exchanges.

Significance. Sort in N log N worst-case without using extra memory.

• Mergesort: no, linear extra space.

• Quicksort: no, quadratic time in worst case.

• Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

• Inner loop longer than quicksort’s.

• Makes poor use of cache memory.

• Not stable.

27

Heapsort: mathematical analysis

in-place merge possible, not practical

N log N worst-case quicksort possible,
not practical

Heapsort animation

28

http://www.sorting-algorithms.com/heap-sort

50 random elements

in order
algorithm position

not in order

29

Sorting algorithms: summary

key comparisons to sort N distinct randomly-ordered keys

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

heap

???

x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x N 2 / 2 2 N ln N N lg N N log N probabilistic guarantee
fastest in practice

x N 2 / 2 2 N ln N N improves quicksort in presence
of duplicate keys

x N lg N N lg N N lg N N log N guarantee, stable

x 2 N lg N 2 N lg N N lg N N log N guarantee, in-place

x x N lg N N lg N N lg N holy sorting grail

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

30

31

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave
according to the laws of elastic collision.

32

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave
according to the laws of elastic collision.

Hard disc model.

• Moving particles interact via elastic collisions with each other and walls.

• Each particle is a disc with known position, velocity, mass, and radius.

• No other forces.

Significance. Relates macroscopic observables to microscopic dynamics.

• Maxwell-Boltzmann: distribution of speeds as a function of temperature.

• Einstein: explain Brownian motion of pollen grains.

motion of individual
atoms and molecules

temperature, pressure,
diffusion constant

Time-driven simulation. N bouncing balls in the unit square.

Warmup: bouncing balls

33

public class BouncingBalls
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Ball balls[] = new Ball[N];
 for (int i = 0; i < N; i++)
 balls[i] = new Ball();
 while(true)
 {
 StdDraw.clear();
 for (int i = 0; i < N; i++)
 {
 balls[i].move(0.5);
 balls[i].draw();
 }
 StdDraw.show(50);
 }
 }
}

% java BouncingBalls 100

main simulation loop
Missing. Check for balls colliding with each other.

• Physics problems: when? what effect?

• CS problems: which object does the check? too many checks?

Warmup: bouncing balls

34

public class Ball
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 public Ball()
 { /* initialize position and velocity */ }

 public void move(double dt)
 {
 if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
 if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
 rx = rx + vx*dt;
 ry = ry + vy*dt;
 }
 public void draw()
 { StdDraw.filledCircle(rx, ry, radius); }
}

check for collision with walls

35

Time-driven simulation

• Discretize time in quanta of size dt.

• Update the position of each particle after every dt units of time,
and check for overlaps.

• If overlap, roll back the clock to the time of the collision, update the
velocities of the colliding particles, and continue the simulation.

t t + dt t + 2 dt
(collision detected)

t + Δt
(roll back clock)

Main drawbacks.

• ~ N2/2 overlap checks per time quantum.

• Simulation is too slow if dt is very small.

• May miss collisions if dt is too large.
(if colliding particles fail to overlap when we are looking)

36

Time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation

Change state only when something happens.

• Between collisions, particles move in straight-line trajectories.

• Focus only on times when collisions occur.

• Maintain PQ of collision events, prioritized by time.

• Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,
when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according
to laws of elastic collisions.

37

Event-driven simulation

prediction (at time t)
 particles hit unless one passes
 intersection point before the other
 arrives (see Exercise 3.6.X)

resolution (at time t + dt)
 velocities of both particles
 change after collision (see Exercise 3.6.X)

Predicting and resolving a particle-particle collision
38

Particle-wall collision

Collision prediction and resolution.

• Particle of radius s at position (rx, ry).

• Particle moving in unit box with velocity (vx, vy).

• Will it collide with a vertical wall? If so, when?

Predicting and resolving a particle-wall collision

prediction (at time t)
 dt ! time to hit wall
 = distance/velocity

resolution (at time t + dt)
 velocity after collision = (− vx , vy)
 position after collision = (1 − s , ry + vydt)

 = (1 − s − rx)/vx

1 − s − rx

(rx , ry
)

s

wall at
x = 1

vx

vy

39

Particle-particle collision prediction

Collision prediction.

• Particle i: radius si, position (rxi, ryi), velocity (vxi, vyi).

• Particle j: radius sj, position (rxj, ryj), velocity (vxj, vyj).

• Will particles i and j collide? If so, when?

sj

si

(rxi , ryi)

time = t

(vxi , vyi)

m i

i

j

(rxi', ryi')

time = t + Δt

(vxj', vyj')

(vxi', vyi')

(vxj , vyj)

Collision prediction.

• Particle i: radius si, position (rxi, ryi), velocity (vxi, vyi).

• Particle j: radius sj, position (rxj, ryj), velocity (vxj, vyj).

• Will particles i and j collide? If so, when?

Particle-particle collision prediction

40

€

Δv = (Δvx, Δvy) = (vxi − vx j , vyi − vyj)

€

Δr = (Δrx, Δry) = (rxi − rx j , ryi − ryj)

€

Δv ⋅ Δv = (Δvx)2 + (Δvy)2

€

Δr ⋅ Δr = (Δrx)2 + (Δry)2

€

Δv ⋅ Δr = (Δvx)(Δrx)+ (Δvy)(Δry)

€

Δt =
 ∞ if Δv ⋅Δr ≥ 0
 ∞ if d < 0
 - Δv ⋅Δr + d

Δv ⋅Δv
 otherwise

€

d = (Δv ⋅Δr)2 − (Δv ⋅Δv) (Δr ⋅Δr − σ2)

€

σ = σ i +σ j

Important note: This is high-school physics, so we won’t be testing you on it!

Collision resolution. When two particles collide, how does velocity change?

41

Particle-particle collision resolution

€

vxi′ = vxi + Jx / mi

vyi′ = vyi + Jy / mi

vx j′ = vx j − Jx / mj

vyj′ = vx j − Jy / mj

€

Jx = J Δrx
σ

, Jy = J Δry
σ

, J =
2mi mj (Δv ⋅Δr)
σ(mi +mj)

impulse due to normal force
(conservation of energy, conservation of momentum)

Newton's second law
(momentum form)

Important note: This is high-school physics, so we won’t be testing you on it!

€

vxi′ = vxi + Jx / mi

vyi′ = vyi + Jy / mi

vx j′ = vx j − Jx / mj

vyj′ = vx j − Jy / mj

Particle data type skeleton

42

public class Particle
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 private final double mass; // mass
 private int count; // number of collisions

 public Particle(...) { }

 public void move(double dt) { }
 public void draw() { }

 public double timeToHit(Particle that) { }
 public double timeToHitVerticalWall() { }
 public double timeToHitHorizontalWall() { }

 public void bounceOff(Particle that) { }
 public void bounceOffVerticalWall() { }
 public void bounceOffHorizontalWall() { }

}

predict collision with
particle or wall

resolve collision with
particle or wall

Particle-particle collision and resolution implementation

43

 public double timeToHit(Particle that)
 {
 if (this == that) return INFINITY;
 double dx = that.rx - this.rx, dy = that.ry - this.ry;
 double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
 double dvdr = dx*dvx + dy*dvy;
 if(dvdr > 0) return INFINITY;
 double dvdv = dvx*dvx + dvy*dvy;
 double drdr = dx*dx + dy*dy;
 double sigma = this.radius + that.radius;
 double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);
 if (d < 0) return INFINITY;
 return -(dvdr + Math.sqrt(d)) / dvdv;
 }

 public void bounceOff(Particle that)
 {
 double dx = that.rx - this.rx, dy = that.ry - this.ry;
 double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
 double dvdr = dx*dvx + dy*dvy;
 double dist = this.radius + that.radius;
 double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
 double Jx = J * dx / dist;
 double Jy = J * dy / dist;
 this.vx += Jx / this.mass;
 this.vy += Jy / this.mass;
 that.vx -= Jx / that.mass;
 that.vy -= Jy / that.mass;
 this.count++;
 that.count++;
 }

no collision

Important note: This is high-school physics, so we won’t be testing you on it!

44

Collision system: event-driven simulation main loop

Initialization.

• Fill PQ with all potential particle-wall collisions.

• Fill PQ with all potential particle-particle collisions.

Main loop.

• Delete the impending event from PQ (min priority = t).

• If the event has been invalidated, ignore it.

• Advance all particles to time t, on a straight-line trajectory.

• Update the velocities of the colliding particle(s).

• Predict future particle-wall and particle-particle collisions involving the
colliding particle(s) and insert events onto PQ.

“potential” since collision may not happen if
some other collision intervenes

An invalidated event

two particles on a collision course

third particle interferes: no collision

Conventions.

• Neither particle null ⇒ particle-particle collision.

• One particle null ⇒ particle-wall collision.

• Both particles null ⇒ redraw event.

Event data type

45

private class Event implements Comparable<Event>
{
 private double time; // time of event
 private Particle a, b; // particles involved in event
 private int countA, countB; // collision counts for a and b

 public Event(double t, Particle a, Particle b) { }

 public int compareTo(Event that)
 { return this.time - that.time; }

 public boolean isValid()
 { }
}

ordered by time

invalid if intervening
collision

create event

public class CollisionSystem
{
 private MinPQ<Event> pq; // the priority queue
 private double t = 0.0; // simulation clock time
 private Particle[] particles; // the array of particles

 public CollisionSystem(Particle[] particles) { }

 private void predict(Particle a)
 {
 if (a == null) return;
 for (int i = 0; i < N; i++)
 {
 double dt = a.timeToHit(particles[i]);
 pq.insert(new Event(t + dt, a, particles[i]));
 }
 pq.insert(new Event(t + a.timeToHitVerticalWall() , a, null));
 pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));
 }

 private void redraw() { }

 public void simulate() { /* see next slide */ }
}

Collision system implementation: skeleton

46

add to PQ all particle-wall and particle-
particle collisions involving this particle

public void simulate()
{
 pq = new MinPQ<Event>();
 for(int i = 0; i < N; i++) predict(particles[i]);
 pq.insert(new Event(0, null, null));

 while(!pq.isEmpty())
 {
 Event event = pq.delMin();
 if(!event.isValid()) continue;
 Particle a = event.a;
 Particle b = event.b;

 for(int i = 0; i < N; i++)
 particles[i].move(event.time - t);
 t = event.time;

 if (a != null && b != null) a.bounceOff(b);
 else if (a != null && b == null) a.bounceOffVerticalWall()
 else if (a == null && b != null) b.bounceOffHorizontalWall();
 else if (a == null && b == null) redraw();

 predict(a);
 predict(b);
 }
}

Collision system implementation: main event-driven simulation loop

47

initialize PQ with
collision events and
redraw event

get next event

update positions
and time

process event

predict new events
based on changes

48

Simulation example 1

% java CollisionSystem 100

49

Simulation example 2

% java CollisionSystem < billiards.txt

50

Simulation example 3

% java CollisionSystem < brownian.txt

51

Simulation example 4

% java CollisionSystem < diffusion.txt

