
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · September 21, 2009 4:20:32 PM

2.4 Stacks and Queues

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

2

Stacks and queues

Fundamental data types.

• Values: sets of objects

• Operations: insert, remove, test if empty.

• Intent is clear when we insert.

• Which item do we remove?

Stack. Remove the item most recently added.
Analogy. Cafeteria trays, Web surfing.

Queue. Remove the item least recently added.
Analogy. Registrar's line.

FIFO = "first in first out"

LIFO = "last in first out"

enqueue dequeue

pop

push

3

Client, implementation, interface

Separate interface and implementation so as to:

• Build layers of abstraction.

• Reuse software.

• Ex: stack, queue, symbol table, union-find,

Client: program using operations defined in interface.
Implementation: actual code implementing operations.
Interface: description of data type, basic operations.

4

Client, Implementation, Interface

Benefits.

• Client can't know details of implementation ⇒
client has many implementation from which to choose.

• Implementation can't know details of client needs ⇒
many clients can re-use the same implementation.

• Design: creates modular, reusable libraries.

• Performance: use optimized implementation where it matters.

Client: program using operations defined in interface.
Implementation: actual code implementing operations.
Interface: description of data type, basic operations.

5

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

Stack operations.

• push() Insert a new item onto stack.
• pop() Remove and return the item most recently added.

• isEmpty() Is the stack empty?

6

Stacks

pop

push

public static void main(String[] args)
{
 StackOfStrings stack = new StackOfStrings();
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.equals("-")) StdOut.print(stack.pop());
 else stack.push(item);
 }
}

% more tobe.txt
to be or not to - be - - that - - - is

% java StackOfStrings < tobe.txt
to be not that or be

7

Stack pop: linked-list implementation

best the was it

best was it first = first.next;

best the was it return item;

first

first

first

of String item = first.item;

the

"of"

"of"

8

Stack push: linked-list implementation

best the was it

oldfirst

best the was it

best the was it

first

of

Node oldfirst = first;

first.item = "of";
first.next = oldfirst;

best the was it

oldfirst

first = new Node();

first oldfirst

first

first

9

Stack: linked-list implementation

public class StackOfStrings
{
 private Node first = null;

 private class Node
 {
 String item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public String pop()
 {
 if (isEmpty()) throw new RuntimeException();
 String item = first.item;
 first = first.next;
 return item;
 }
}

"inner class"

10

Stack: linked-list trace560 Algorithms and Data Structures

Trace of LinkedStackOfStrings test client

to

to

be

to

be
or

null

null

null

be

or
not

to

or

not
to

null

be

be

orto not

or

not
be

be

orbe not

to

benot

or

null

be

or
that

to

bethat or

null

toor be

be to

to

to

StdIn StdOut

be

or

not

to

-

be

-

-

that

-

-

-

is is

to
null

to
null

to
null

to
null

be
to

null

introJava.indb 560 1/4/08 10:43:11 AM

11

Stack: array implementation

Array implementation of a stack.

• Use array s[] to store N items on stack.
• push(): add new item at s[N].

• pop(): remove item from s[N-1].

s[]

N capacity = 10

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

public class StackOfStrings
{
 private String[] s;
 private int N = 0;

 public StackOfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 { return s[--N]; }
}

12

Stack: array implementation

this version avoids "loitering"

garbage collector only reclaims memory
if no outstanding references

public String pop()
{
 String item = s[--N];
 s[N] = null;
 return item;
}

decrement N;
then use to index into array

a cheat
(stay tuned)

13

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

14

Stack: dynamic array implementation

Problem. Requiring client to provide capacity does not implement API!
Q. How to grow and shrink array?

First try.
• push(): increase size of s[] by 1.

• pop(): decrease size of s[] by 1.

Too expensive.

• Need to copy all item to a new array.

• Inserting first N items takes time proportional to 1 + 2 + … + N ~ N2/2.

Goal. Ensure that array resizing happens infrequently.

infeasible for large N

15

Q. How to grow array?
A. If array is full, create a new array of twice the size, and copy items.

Consequence. Inserting first N items takes time proportional to N (not N2).

Stack: dynamic array implementation

1 + 2 + 4 + … + N/2 + N ~ 2N

"repeated doubling"

 public StackOfStrings() { s = new String[2]; }

 public void push(String item)
 {
 if (N == s.length) resize(2 * s.length);
 s[N++] = item;
 }

 private void resize(int capacity)
 {
 String[] dup = new String[capacity];
 for (int i = 0; i < N; i++)
 dup[i] = s[i];
 s = dup;
 }

16

Q. How to shrink array?

First try.

• push(): double size of s[] when array is full.
• pop(): halve size of s[] when array is half full.

Too expensive

• Consider push-pop-push-pop-… sequence when array is full.

• Time proportional to N per operation.

Stack: dynamic array implementation

"thrashing"

it was the best of null null null

it was the best

it was the best of null null null

it was the best

N = 5

N = 4

N = 5

N = 4

17

Q. How to shrink array?

Efficient solution.

• push(): double size of s[] when array is full.
• pop(): halve size of s[] when array is one-quarter full.

Invariant. Array is always between 25% and 100% full.

Stack: dynamic array implementation

 public String pop()
 {
 String item = s[--N];
 s[N] = null;
 if (N > 0 && N == s.length/4) resize(s.length / 2);
 return item;
 }

18

Stack: dynamic array implementation trace
564 Algorithms and Data Structures

that the appropriate test is whether the stack size is less than one-fourth the array
size. Then, after the array is halved, it will be about half full and can accommodate
a substantial number of push() and pop() operations before having to change
the size of the array again. This characteristic is important: for example, if we were
to use to policy of halving the array when the stack size is one-half the array size,
then the resulting array would be full, which would mean it would be doubled for a
push(), leading to the possibility of an expensive cycle of doubling and halving.

Amortized analysis. This doubling and halving strategy is a judicious tradeoff
between wasting space (by setting the size of the array to be too big and leaving
empty slots) and wasting time (by reorganizing the array after each insertion).
The specific strategy in DoublingStackOfStrings guarantees that the stack never
overflows and never becomes less than one-quarter full (unless the stack is empty,
in which case the array size is 1). If you are mathematically inclined, you might en-
joy proving this fact with mathematical induction (see EXERCISE 4.3.20). More im-
portant, we can prove that the cost of doubling and halving is always absorbed (to
within a constant factor) in the cost of other stack operations. Again, we leave the
details to an exercise for the mathematically inclined, but the idea is simple: when

StdIn StdOut N a.length
a

0 1 2 3 4 5 6 7

0 1 null

to 1 1 to

be 2 2 to be

or 3 4 to be or null

not 4 4 to be or not

to 5 8 to be or not to null null null

- to 4 8 to be or not null null null null

be 5 8 to be or not be null null null

- be 4 8 to be or not null null null null

- not 3 8 to be or null null null null null

that 4 8 to be or that null null null null

- that 3 8 to be or null null null null null

- or 2 4 to be null null

- be 1 2 to null

is 2 2 to is

Trace of DoublingStackOfStrings test client

introJava.indb 564 1/4/08 10:43:12 AM

19

Amortized analysis. Average running time per operation over
a worst-case sequence of operations.

Proposition. Starting from empty data structure, any sequence of M push and
pop ops takes time proportional to M.

Remark. WQUPC used amortized bound.

Amortized analysis

worst best amortized

construct

push

pop

1 1 1

N 1 1

N 1 1

doubling or shrinking

running time for doubling stack with N elements

20

Linked list implementation. ~ 16N bytes.

Doubling array. Between ~ 4N (100% full) and ~ 16N (25% full).

Remark. Our analysis doesn't include the memory for the items themselves.

Stack implementations: memory usage

4 bytes

private class Node
{
 String item;
 Node next;
}

4 bytes

8 bytes overhead for object

16 bytes per item

public class DoublingStackOfStrings
{
 private String[] s;
 private int N = 0;
 …
}

4 bytes × array size
4 bytes

21

Stack implementations: dynamic array vs. linked List

Tradeoffs. Can implement with either array or linked list;
client can use interchangeably. Which is better?

Linked list.

• Every operation takes constant time in worst-case.

• Uses extra time and space to deal with the links.

Array.

• Every operation takes constant amortized time.

• Less wasted space.

22

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

Queue operations.

• enqueue() Insert a new item onto queue.
• dequeue() Delete and return the item least recently added.

• isEmpty() Is the queue empty?

23

Queues

public static void main(String[] args)
{
 QueueOfStrings q = new QueueOfStrings();
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.equals("-")) StdOut.print(q.dequeue());
 else q.enqueue(item);
 }
}

% more tobe.txt
to be or not to - be - - that - - - is

% java QueueOfStrings < tobe.txt
to be or not to be

24

Queue dequeue: linked list implementation

was the best of

was the best of first = first.next;

was the best of return item;

first

first

first

it String item = first.item;

last

last

last

"it"

"it"

25

Queue enqueue: linked list implementation

last = new Node();
last.item = "of";
last.next = null;

oldlast.next = last;

Node oldlast = last;

first

it was the best

oldlast

last

first

it was the best

last

it was the best of

it was the best of

first last

first last

oldlast

oldlast

26

 Queue: linked list implementation

public class QueueOfStrings
{
 private Node first, last;

 private class Node
 { String item; Node next; }

 public boolean isEmpty()
 { return first == null; }

 public void enqueue(String item)
 {
 Node oldlast = last;
 last = new Node();
 last.item = item;
 last.next = null;
 if (isEmpty()) first = last;
 else oldlast.next = last;
 }

 public String dequeue()
 {
 String item = first.item;
 first = first.next;
 if (isEmpty()) last = null;
 return item;
 }
}

27

Queue: dynamic array implementation

Array implementation of a queue.

• Use array q[] to store items in queue.
• enqueue(): add new item at q[tail].

• dequeue(): remove item from q[head].

• Update head and tail modulo the capacity.

• Add repeated doubling and shrinking.

q[]

head tail capacity = 10

null null the best of times null null null null

0 1 2 3 4 5 6 7 8 9

28

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

29

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 1. Implement a separate stack class for each type.

• Rewriting code is tedious and error-prone.

• Maintaining cut-and-pasted code is tedious and error-prone.

@#$*! most reasonable approach until Java 1.5.
[hence, used in Algorithms in Java, 3rd edition]

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 2. Implement a stack with items of type Object.

• Casting is required in client.

• Casting is error-prone: run-time error if types mismatch.

 StackOfObjects s = new StackOfObjects();
 Apple a = new Apple();
 Orange b = new Orange();
 s.push(a);
 s.push(b);
 a = (Apple) (s.pop());

30

Parameterized stack

run-time error

31

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 3. Java generics.

• Avoid casting in both client and implementation.

• Discover type mismatch errors at compile-time instead of run-time.

Guiding principles. Welcome compile-time errors; avoid run-time errors.

 Stack<Apple> s = new Stack<Apple>();
 Apple a = new Apple();
 Orange b = new Orange();
 s.push(a);
 s.push(b);
 a = s.pop();

compile-time error

type parameter

public class Stack<Item>
{
 private Node first = null;

 private class Node
 {
 Item item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(Item item)
 {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public Item pop()
 {
 Item item = first.item;
 first = first.next;
 return item;
 }
}

32

Generic stack: linked list implementation

generic type name

public class StackOfStrings
{
 private Node first = null;

 private class Node
 {
 String item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public String pop()
 {
 String item = first.item;
 first = first.next;
 return item;
 }
}

public class StackOfStrings
{
 private String[] s;
 private int N = 0;

 public StackOfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 { return s[--N]; }
}

public class Stack<Item>
{
 private Item[] s;
 private int N = 0;

 public Stack(int capacity)
 { s = new Item[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(Item item)
 { s[N++] = item; }

 public Item pop()
 { return s[--N]; }
}

33

Generic stack: array implementation

the way it should be

@#$*! generic array creation not allowed in Java

34

Generic stack: array implementation

public class Stack<Item>
{
 private Item[] s;
 private int N = 0;

 public Stack(int capacity)
 { s = (Item[]) new Object[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(Item item)
 { s[N++] = item; }

 public Item pop()
 { return s[--N]; }
}

the ugly cast

the way it is

public class StackOfStrings
{
 private String[] s;
 private int N = 0;

 public StackOfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 { return s[--N]; }
}

35

Generic data types: autoboxing

Q. What to do about primitive types?

Wrapper type.

• Each primitive type has a wrapper object type.

• Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.

Syntactic sugar. Behind-the-scenes casting.

Bottom line. Client code can use generic stack for any type of data.

Stack<Integer> s = new Stack<Integer>();
s.push(17); // s.push(new Integer(17));
int a = s.pop(); // int a = s.pop().intValue();

36

Autoboxing challenge

Q. What does the following program print?

Best practice. Avoid using wrapper types whenever possible.

public class Autoboxing {

 public static void cmp(Integer a, Integer b) {
 if (a < b) StdOut.printf("%d < %d\n", a, b);
 else if (a == b) StdOut.printf("%d == %d\n", a, b);
 else StdOut.printf("%d > %d\n", a, b);
 }

 public static void main(String[] args) {
 cmp(new Integer(42), new Integer(42));
 cmp(43, 43);
 cmp(142, 142);
 }
} % java Autoboxing

42 > 42
43 == 43
142 > 142

37

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

Design challenge. Support iteration over stack items by client,
without revealing the internal representation of the stack.

Java solution. Make stack implement the Iterable interface.

Iteration

38

s[]

N

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i

best the was it

first

of

current

null

public interface Iterator<Item>
{
 boolean hasNext();
 Item next();
 void remove();
}

Iterators

Q. What is an Iterable ?
A. Has a method that returns an Iterator.

Q. What is an Iterator ?
A. Has methods hasNext() and next().

Q. Why make data structures Iterable ?
A. Java supports elegant client code.

39

optional; use
at your own risk

“foreach” statement equivalent code

for (String s : stack)
 StdOut.println(s);

Iterator<String> i = stack.iterator();
while (i.hasNext())
{
 String s = i.next();
 StdOut.println(s);
}

public interface Iterable<Item>
{
 Iterator<Item> iterator();
}

Stack iterator: linked list implementation

40

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
 ...

 public Iterator<Item> iterator() { return new ListIterator(); }

 private class ListIterator implements Iterator<Item>
 {
 private Node current = first;

 public boolean hasNext() { return current != null; }
 public void remove() { /* not supported */ }
 public Item next()
 {
 Item item = current.item;
 current = current.next;
 return item;
 }
 }
}

best the was it

first

of

current

null

Stack iterator: array implementation

41

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
 …

 public Iterator<Item> iterator() { return new ArrayIterator(); }

 private class ArrayIterator implements Iterator<Item>
 {
 private int i = N;

 public boolean hasNext() { return i > 0; }
 public void remove() { /* not supported */ }
 public Item next() { return s[--i]; }
 }
}

s[]

N

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i

42

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

43

Stack applications

Real world applications.

• Parsing in a compiler.

• Java virtual machine.

• Undo in a word processor.

• Back button in a Web browser.

• PostScript language for printers.

• Implementing function calls in a compiler.

44

Function calls

How a compiler implements a function.

• Function call: push local environment and return address.

• Return: pop return address and local environment.

Recursive function. Function that calls itself.
Note. Can always use an explicit stack to remove recursion.

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (216, 192)

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (192, 24)

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (24, 0)
p = 192, q = 24

p = 216, q = 192

p = 24, q = 0

Goal. Evaluate infix expressions.

Two-stack algorithm. [E. W. Dijkstra]

• Value: push onto the value stack.

• Operator: push onto the operator stack.

• Left parens: ignore.

• Right parens: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.

Context. An interpreter!

(1 + ((2 + 3) * (4 * 5)))

45

Arithmetic expression evaluation

5734.3 Stacks and Queues

it is easy to convince yourself that it computes the proper value: any time the algo-
rithm encounters a subexpression consisting of two operands separated by an op-
erator, all surrounded by parentheses, it leaves the result of performing that opera-
tion on those operands on the operand stack. The result is the same as if that value
had appeared in the input instead of the sub-
expression, so we can think of replacing the
subexpression by the value to get an expression
that would yield the same result. We can apply
this argument again and again until we get a
single value. For example, the algorithm com-
putes the same value of all of these expres-
sions:

(1 + ((2 + 3) * (4 * 5)))
(1 + (5 * (4 * 5)))
(1 + (5 * 20))
(1 + 100)
101

Evaluate (PROGRAM 4.3.5) is an implemen-
tation of this method. This code is a simple
example of an interpreter : a program that in-
terprets the computation specified by a given
string and performs the computation to ar-
rive at the result. A compiler is a program that
converts the string into code on a lower-level
machine that can do the job. This conversion
is a more complicated process than the step-
by-step conversion used by an interpreter, but
it is based on the same underlying mechanism.
Initially, Java was based on using an interpret-
er. Now, however, the Java system includes a
compiler that converts arithmetic expressions
(and, more generally, Java programs) into code
for the Java virtual machine, an imaginary ma-
chine that is easy to simulate on an actual com-
puter. Trace of expression evaluation (Program 4.3.5)

(1 + ((2 + 3) * (4 * 5)))

+ ((2 + 3) * (4 * 5)))

((2 + 3) * (4 * 5)))

+ 3) * (4 * 5)))

3) * (4 * 5)))

) * (4 * 5)))

* (4 * 5)))

(4 * 5)))

* 5)))

5)))

)))

))

)

 1

 1
 +

 1 2
 +

 1 2
 + +

 1 2 3
 + +

 1 5
 +

 1 5
 + *

 1 5 4
 + *

 1 5 4
 + * *

 1 5 4 5
 + * *

 1 5 20
 + *

 1 100
 +

 101

introJava.indb 573 1/3/08 4:16:56 PM

operand operator

value stack
operator stack

46

Arithmetic expression evaluation

public class Evaluate
{
 public static void main(String[] args)
 {
 Stack<String> ops = new Stack<String>();
 Stack<Double> vals = new Stack<Double>();
 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 if (s.equals("(")) ;
 else if (s.equals("+")) ops.push(s);
 else if (s.equals("*")) ops.push(s);
 else if (s.equals(")"))
 {
 String op = ops.pop();
 if (op.equals("+")) vals.push(vals.pop() + vals.pop());
 else if (op.equals("*")) vals.push(vals.pop() * vals.pop());
 }
 else vals.push(Double.parseDouble(s));
 }
 StdOut.println(vals.pop());
 }
}

% java Evaluate
(1 + ((2 + 3) * (4 * 5)))
101.0

47

Correctness

Q. Why correct?
A. When algorithm encounters an operator surrounded by two values within
parentheses, it leaves the result on the value stack.

as if the original input were:

Repeating the argument:

Extensions. More ops, precedence order, associativity.

(1 + ((2 + 3) * (4 * 5)))

(1 + (5 * (4 * 5)))

(1 + (5 * 20))
(1 + 100)
101

48

Stack-based programming languages

Observation 1. The 2-stack algorithm computes the same value if the
operator occurs after the two values.

Observation 2. All of the parentheses are redundant!

Bottom line. Postfix or "reverse Polish" notation.
Applications. Postscript, Forth, calculators, Java virtual machine, …

Jan Lukasiewicz

1 2 3 + 4 5 * * +

(1 ((2 3 +) (4 5 *) *) +)

Page description language.

• Explicit stack.

• Full computational model

• Graphics engine.

Basics.

• %!: “I am a PostScript program.”

• Literal: “push me on the stack.”

• Function calls take arguments from stack.

• Turtle graphics built in.

PostScript

49

a PostScript program

%!
72 72 moveto
0 72 rlineto
72 0 rlineto
0 -72 rlineto
-72 0 rlineto
2 setlinewidth
stroke

its output

PostScript

Data types.

• basic: integer, floating point, boolean, ...

• Graphics: font, path, curve,

• Full set of built-in operators.

Text and strings.

• Full font support.
• show (display a string, using current font).

• cvs (convert anything to a string).

50

System.out.print()

toString()

Square root of 2:
1.41421

%!
/Helvetica-Bold findfont 16 scalefont setfont
72 168 moveto
(Square root of 2:) show
72 144 moveto
2 sqrt 10 string cvs show

PostScript

Variables (and functions).

• Identifiers start with /.

• def operator associates id with value.

• Braces.

• args on stack.

51

function
definition

function calls

%!
/box
{
 /sz exch def
 0 sz rlineto
 sz 0 rlineto
 0 sz neg rlineto
 sz neg 0 rlineto
} def

72 144 moveto
72 box
288 288 moveto
144 box
2 setlinewidth
stroke

PostScript

For loop.

• “from, increment, to” on stack.

• Loop body in braces.

• for operator.

If-else conditional.

• Boolean on stack.

• Alternatives in braces.

• if operator.

... (hundreds of operators)

52

%!
\box
{
 ...
}

1 1 20
{ 19 mul dup 2 add moveto 72 box }
for
stroke

PostScript

Application 1. All figures in Algorithms in Java
Application 2. Deluxe version of StdDraw also saves to PostScript
for vector graphics.

53

See page 218

%!
72 72 translate

/kochR
 {
 2 copy ge { dup 0 rlineto }
 {
 3 div
 2 copy kochR 60 rotate
 2 copy kochR -120 rotate
 2 copy kochR 60 rotate
 2 copy kochR
 } ifelse
 pop pop
 } def

0 0 moveto 81 243 kochR
0 81 moveto 27 243 kochR
0 162 moveto 9 243 kochR
0 243 moveto 1 243 kochR
stroke

54

Queue applications

Familiar applications.

• iTunes playlist.

• Data buffers (iPod, TiVo).

• Asynchronous data transfer (file IO, pipes, sockets).

• Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.

• Traffic analysis.

• Waiting times of customers at call center.

• Determining number of cashiers to have at a supermarket.

M/M/1 queue.

• Customers arrive according to Poisson process at rate of λ per minute.

• Customers are serviced with rate of µ per minute.

Q. What is average wait time W of a customer in system?
Q. What is average number of customers L in system?

55

M/M/1 queuing model

Arrival rate λ Departure rate μ

Infinite queue Server

interarrival time has exponential distribution Pr[X ≤ x] = 1 - e - λ x

service time has exponential distribution Pr[X ≤ x] = 1 - e - µ x

M/M/1 queuing model: example simulation

56

An M/D/1 queue

0

time (seconds)

10

20

30

0

0 1

0 1

1 2

2

2

1

4

3

3

3 4 5

5

4 5

3 4 5

arrival

0
2
7
17
19
21

departure

5
10
15
23
28
30

5
8
8
6
9
9

wait
0

1

2

3

4

5

An M/D/1 queue

0

time (seconds)

10

20

30

0

0 1

0 1

1 2

2

2

1

4

3

3

3 4 5

5

4 5

3 4 5

arrival

0
2
7
17
19
21

departure

5
10
15
23
28
30

5
8
8
6
9
9

wait
0

1

2

3

4

5

57

M/M/1 queuing model: event-based simulation

public class MM1Queue
{
 public static void main(String[] args) {
 double lambda = Double.parseDouble(args[0]); // arrival rate
 double mu = Double.parseDouble(args[1]); // service rate
 double nextArrival = StdRandom.exp(lambda);
 double nextService = nextArrival + StdRandom.exp(mu);

 Queue<Double> queue = new Queue<Double>();
 Histogram hist = new Histogram("M/M/1 Queue", 60);

 while (true)
 {
 while (nextArrival < nextService)
 {
 queue.enqueue(nextArrival);
 nextArrival += StdRandom.exp(lambda);
 }

 double arrival = queue.dequeue();
 double wait = nextService - arrival;
 hist.addDataPoint(Math.min(60, (int) (Math.round(wait))));
 if (queue.isEmpty()) nextService = nextArrival + StdRandom.exp(mu);
 else nextService = nextService + StdRandom.exp(mu);
 }
 }
}

next event is an arrival

next event is a service completion

Observation. If service rate µ is much larger than arrival rate λ,
customers gets good service.

M/M/1 queuing model: experiments

58

% java MM1Queue .2 .333

Observation. As service rate µ approaches arrival rate λ, services goes to h***.

M/M/1 queuing model: experiments

59

% java MM1Queue .2 .25

Observation. As service rate µ approaches arrival rate λ, services goes to h***.

M/M/1 queuing model: experiments

60

% java MM1Queue .2 .21

M/M/1 queue. Exact formulas known.

More complicated queueing models. Event-based simulation essential!
Queueing theory. See ORF 309.

M/M/1 queuing model: analysis

61

Little’s Law

wait time W and queue length L approach infinity
as service rate approaches arrival rate

W =
1

µ− λ
, L = λ W

