0. Prologue

- **‣** dynamic connectivity
- **‣** quick find
- **‣** quick union
- **‣** improvements
- **‣** applications

Algorithms in Java, 4th Edition **·** *Robert Sedgewick and Kevin Wayne* **·** *Copyright © 2009* **·** *September 17, 2009 5:42:37 AM*

‣ dynamic connectivity

- **‣** quick find
-
-

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

Dynamic connectivity

Given a set of objects

- Union: connect two objects.
- Find: is there a path connecting the two objects? more difficult problem: find the path

2

Network connectivity: larger example

Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.

- Variable name aliases.
- Pixels in a digital photo.
- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

- Use integers as array index.
- Suppress details not relevant to union-find.

6

8

Modeling the connections

Transitivity. If **p** is connected to **q** and **q** is connected to **r**, then **p** is connected to **r**.

Connected components. Maximal set of objects that are mutually connected.

Implementing the operations

Find query. Check if two objects are in the same set.

Union command. Replace sets containing two objects with their union.

Union-find data type (API)

Goal. Design efficient data structure for union-find.

- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.

Quick-find [eager approach]

Data structure.

- Integer array **id[]** of size **N**.
- Interpretation: **p** and **q** are connected if they have the same id.

Quick-find [eager approach]

Data structure.

- Integer array **id[]** of size **N**.
- Interpretation: **p** and **q** are connected if they have the same id.

Find. Check if **p** and **q** have the same id.

id[3] = 9; **id[6] = 6** 3 and 6 not connected

9

Quick-find [eager approach]

Quick-find example

Data structure.

- Integer array **id[]** of size **N**.
- Interpretation: **p** and **q** are connected if they have the same id.

Find. Check if **p** and **q** have the same id.

id[3] = 9; **id[6] = 6** 3 and 6 not connected

Union. To merge sets containing **p** and **q**, change all entries with **id[p]** to **id[q]**.

Quick-find: Java implementation

3-4 0 1 2 4 4 5 6 7 8 9 4-9 0 1 2 9 9 5 6 7 8 9 8-0 0 1 2 9 9 5 6 7 0 9 2-3 0 1 9 9 9 5 6 7 0 9 5-6 0 1 9 9 9 6 6 7 0 9 5-9 0 1 9 9 9 9 9 7 0 9 \odot **7-3 0 1 9 9 9 9 9 9 0 9 4-8 0 1 0 0 0 0 0 0 0 0 6-1 1 1 1 1 1 1 1 1 1 1** problem: many values can change

Quick-find is too slow

Quick-find defect.

- Union too expensive (N operations).
- Trees are flat, but too expensive to keep them flat.

Ex. Takes N^2 operations to process sequence of N union commands on N objects.

Quadratic algorithms do not scale

Rough standard (for now).

• 10⁹ operations per second. \cdot 10⁹ words of main memory.

a truism (roughly) since 1950 !

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10⁹ union commands on 10⁹ objects.
- Quick-find takes more than 1018 operations.
- 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be 10x as fast.
- But, has 10x as much memory so problem may be 10x bigger.
- With quadratic algorithm, takes 10x as long!

‣ quick union

‣ improvements

17

Quick-union [lazy approach]

Data structure.

- Integer array **id[]** of size **^N**.
- Interpretation: **id[i]** is parent of **i**.
- Root of **i** is **id[id[id[...id[i]...]]]**.

keep going until it doesn't change

Quick-union [lazy approach]

Data structure.

• Integer array **id[]** of size **^N**.

• Interpretation: **id[i]** is parent of **i**. keep going until it doesn't change

• Root of **i** is **id[id[id[...id[i]...]]]**.

 i 0 1 2 3 4 5 6 7 8 9 id[i] 0 1 9 4 9 6 6 7 8 9

Find. Check if **p** and **q** have the same root.

Quick-union [lazy approach]

Data structure.

- Integer array **id[]** of size **^N**.
- Interpretation: **id[i]** is parent of **i**. keep going until it doesn't change
- Root of **i** is **id[id[id[...id[i]...]]]**.

Find. Check if **p** and **q** have the same root.

Union. To merge sets containing **p** and **q**, set the id of **p**'s root to the id of **q**'s root.

Quick-union example

Quick-union: Java implementation

Quick-union is also too slow

Quick-find defect.

- Union too expensive (N operations).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N operations).

† includes cost of finding root

25 **‣** improvements **‣** applications

Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each set.
- Balance by linking small tree below large one.

Ex. Union of **3** and **5**.

- Quick union: link **9** to **6**.
- Weighted quick union: link **6** to **9**.

Weighted quick-union example

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array **sz[i]** to count number of objects in the tree rooted at **i**.

Find. Identical to quick-union.

return root(p) == root(q);

Union. Modify quick-union to:

- Merge smaller tree into larger tree.
- Update the **sz[]** array.

```
 int i = root(p);
int j = root(q);
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; } 
else { id[j] = i; sz[i] += sz[j]; }
```
Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most Ig N.

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most Iq N.

† includes cost of finding root

- Q. Stop at guaranteed acceptable performance?
- A. No, easy to improve further.

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

Pf. When does depth of x increase?

Increases by 1 when tree T_1 containing x is merged into another tree T_2 .

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Improvement 2: path compression

Quick union with path compression. Just after computing the root of **p**, set the id of each examined node to **root(p)**.

Path compression: Java implementation

Weighted quick-union with path compression example

Standard implementation: add second loop to **root()** to set the **id[]** of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other node in path point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

WQUPC performance

Proposition. [Tarjan 1975] Starting from an empty data structure, any sequence of M union and find ops on N objects takes $O(N + M \lg^* N)$ time.

- Proof is very difficult.
- But the algorithm is still simple!

actually $O(N + M \alpha(M, N))$ see COS 423

Linear algorithm?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. No linear-time linking strategy exists.

lg* function number of times needed to take the lg of a number until reaching 1

Summary

Bottom line. WQUPC makes it possible to solve problems that could not otherwise be addressed.

M union-find operations on a set of N objects

Ex. $[10^9$ unions and finds with 10^9 objects]

- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

‣ applications

Union-find applications

- Percolation.
- Games (Go, Hex).
- ✓ Network connectivity.
- Least common ancestor.
- Equivalence of finite state automata.
- Hoshen-Kopelman algorithm in physics.
- Hinley-Milner polymorphic type inference.
- Kruskal's minimum spanning tree algorithm.
- Compiling equivalence statements in Fortran.
- Morphological attribute openings and closings.
- Matlab's **bwlabel()** function in image processing.

37

Percolation

A model for many physical systems:

- N-by-N grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates if top and bottom are connected by open sites.

Percolation

A model for many physical systems:

- N-by-N grid of sites.
- Each site is open with probability p (or blocked with probability 1-p). *site*
- System percolates if top and bottom are connected by open sites.

Depends on site vacancy probability p.

Percolation phase transition

When N is large, theory guarantees a sharp threshold p*.

- p > p*: almost certainly percolates.
- p < p*: almost certainly does not percolate.
- Q. What is the value of p* ?

Monte Carlo simulation

- Initialize N-by-N whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p*.

41

43

UF solution to find percolation threshold

How to check whether system percolates?

- Create an object for each site.
- Sites are in same set if connected by open sites.
- Percolates if any site in top row is in same set as any site in bottom row.

brute force algorithm needs to check N^2 pairs

Q. How to declare a new site open?

UF solution to find percolation threshold

- Q. How to declare a new site open?
- A. Take union of new site and all adjacent open sites.

0 0 2 3 4 5 6 7 8 9 10 10 12 13 6 15 16 17 18 19 20 21 22 23 24 25 25 25 25 25 25 31 32 33 25 35 25 37 38 39 40 41 25 43 25 45 46 47 48 49 25 51 25 53 47 47 56 57 58 59 60 61 62 47 open this site empty open site (not connected to top) full open site (connected to top) blocked site *N* = 8

UF solution: a critical optimization

Q. How to avoid checking all pairs of top and bottom sites?

UF solution: a critical optimization

virtual top row

virtual bottom row

- Q. How to avoid checking all pairs of top and bottom sites?
- A. Create a virtual top and bottom objects;

system percolates when virtual top and bottom objects are in same set.

 $N = 8$

empty open site (not connected to top) full open site (connected to top) blocked site

 $N = 8$

47

open site

- Q. What is percolation threshold p* ?
- A. About 0.592746 for large square lattices.

percolation constant known only via simulation

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.