Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.
* Model the problem.
0. Pr0|og ue * Find an algorithm to solve it.

* Fast enough? Fits in memory?

* If not, figure out why.

00803 * Find a way to address the problem.
0:8 s . -
= é “ﬁ;gj‘g! Iterate until satisfied.
oo 2%(?” :g‘v . Guf
= @31 233 » dynamic connectivity
N 2y e £ 0 g S 1 g The scientific method
v .
2a gont !:n » quick find
23 &3 ONEd = & » quick union
= connected =, q athematical analysis.
. oz » improvements Mathematical analy
2 weighted o233 icati
5quick?union§§-3 @ » applications
5 SX0
Py Spar
§%3 282
cl&pterg_gg
Algorithms in Java, 4" Edition . Robert Sedgewick and Kevin Wayne . Copyright © 2009 . September 17, 2009 5:42:37 AM

Dynamic connectivity

Given a set of objects

* Union: connect two ObjeCTS- more difficult problem: find the path

~

* Find: is there a path connecting the two objects?

union (3, 4)

union (8, 0)

union (2, 3)

» dynamic connectivity union (5, 6)

£find (0, 2) no
find (2, 4) yes

union (5, 1)
union (7, 3)
union(1l, 6)
union (4, 8)

£find (0, 2) yes

find (2, 4) yes

Network connectivity: larger example Modeling the objects

%ﬁ:ﬁﬁ% %.H Dynamic connectivity applications involve manipulating objects of all types.
é * Variable name aliases.

* Pixels in a digital photo.

!

-
—ye

D

» Computers in a network.

* Web pages on the Internet.

* Transistors in a computer chip.

1.
i
1}41

i

* Metallic sites in a composite system.

3
3t
1

When programming, convenient to hame objects O to N-1.

!
i
i

* Use integers as array index.

L

1] * Suppress details not relevant to union-find.
S N\
! T can use symbol table to translate from
J L‘I - q object names to integers (stay tuned)
LHE%E
5
Modeling the connections Implementing the operations
Transitivity. If p is connected to q and q is connected to r, Find query. Check if two objects are in the same set.

then p is connected to r.
Union command. Replace sets containing two objects with their union.

Connected components. Maximal set of objects that are mutually connected.

® ® ® ® ® ®

(5
union (4, 8)
©) ©
@ @ (®
{156} {2347} {08} {156} {23471} {081} {156}{023478}'
AN 4 . AN A P

I

connected components connected components

Union-find data type (APT)

Goal. Design efficient data structure for union-find.
* Number of objects N can be huge.
* Number of operations M can be huge.

* Find queries and union commands may be intermixed.

public class UnionFind

UnionFind (int N) create union-find data structure with
N objects and no connections N qUiCk find

boolean find(int p, int q) are p and q in the same set?

. . . . replace sets containing p and
void unite(int p, int q) P with theiruniognp 1

Quick-find [eager approach] Quick-find [eager approach]

Data structure.

Data structure.
* Integer array id[] of size n.

* Integer array id[] of size n.
 Interpretation: p and q are connected if they have the same id.

* Interpretation: pand qare connected if they have the same id.

i 0 1 2 3 4 5 6 7 8 9 5 and 6 are connected i 0 1.2 3 45 6 7 8 9 5 and 6 are connected
idf[iJ] 0 1 9 9 9 6 6 7 8 9 2,3,4,and 9 are connected idf[i1] 0 1 9 9 9 6 6 7 8 9 2,3,4,and 9 are connected
Find. Check if p and q have the same id. id[3] = 9;id[6] = 6
3 and 6 not connected

public class QuickFind

{

Quick-find [eager approach]

Data structure.
 Integer array id[] of size N.
» Interpretation: pand qare connected if they have the same id.

i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2,3,4,and 9 are connected

Find. Check if p and q have the same id. id[3] = 9;id[6] = 6
3 and 6 not connected

Union. To merge sets containing p and q, change all entries with id[p] to id[q].

i 01 2 3 4 5 6 7 8 9 union of 3 and 6
id[i] 0 1 6 6 6 6 6 7 8 6 2,3,4,5,6,and 9 are connected
h\k\ »\ /ﬂ

problem: many values can change

Quick-find: Java implementation

private int[] id;

public QuickFind (int N)
{
id = new int[N];
for (int i = 0; i < N; i++) set id of each object to itself

id[i] = i; (N operations)

public boolean find(int p, int q)
{

check if p and q have same id

return id[p] == id[q]; NN (1 operation)

public void unite(int p, int q)
{
int pid = id[p];
for (int i = 0; i < id.length; i++) 1
if (id[i] == pid) id[i] = id[4q];

change all entries with id[p] to id[q]
(N operations)

Quick-find example

@@@@@@@
@@@@@@
@@@@@
@@@@
O M

oo ”®
® o9% Dwe b

4-8 0100000000 @ o
OTO G VOO

6-1 1111111111 A

OTEUWE ©TEE

N

problem: many values can change

Quick-find is too slow

Quick-find defect.
* Union too expensive (N operations).
* Trees are flat, but too expensive to keep them flat.

T

quick-find N 1

Ex. Takes N2 operations to process sequence of N union commands
on N objects.

Quadratic algorithms do not scale

Rough standard (for now).

* 10° operations per second.

* 10° words of main memory. pd
* Touch all words in approximately 1 second.

a truism (roughly) since 1950 !

Ex. Huge problem for quick-find.

* 10° union commands on 10° objects.

* Quick-find takes more than 10'® operations.
* 30+ years of computer time!

» quick union
Paradoxically, quadratic algorithms get worse with newer equipment.

* New computer may be 10x as fast.
* But, has 10x as much memory so problem may be 10x bigger.
» With quadratic algorithm, takes 10x as long!

Quick-union [lazy approach] Quick-union [lazy approach]

Data structure. Data structure.

* Integer array id[] of size n.

* Integer array id[] of size N.
keep going until it doesn't change

* Interpretation: id[i] is parent of i. e
* Root of i is id[id[id[...id[i]...]]].

. . keep going until it doesn't change
* Interpretation: id[i] is parent of i. -

e Root of i is id[id[id[...id[i]...]]].

i 0 1 2 3 4 5 6 7 8 9 I@@@@ @@@@

i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 id[i] 0 1 9 4 9 6 6 7 8
ONOX - K ONOX - X
P 9 9 P
Find. Check if p and q have the same root.

3'sroot is 9; 5's root is 6 3'sroot is 9; 5's root is 6

3 and 5 are not connected

20

Quick-union [lazy approach]

Data structure.
 Integer array id[] of size N.

.) keep going until it doesn't change
* Interpretation: id[i] is parent of i.

e Root of i is id[id[id[...id[i]...]]1].

@O ® ONO)
® ©®O -

i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

Find. Check if p and q have the same root. P @

3'sroot is 9; 5's root is 6
3 and 5 are not connected

Union. To merge sets containing p and q,
set the id of p's root to the id of q's root.

® ® ® @ ®
6 8 9 I (&
T @ ®

only one value changes

i 0 1
id[i] 0 1

o N
S W
o s
o u
SR |

21

Quick-union: Java implementation

public class QuickUnion
{
private int[] id;
public QuickUnion (int N)
{
id = new int[N]; set id of each object fo itself
for (int i = 0; i < N; i++) id[i] = i; (N operations)
}
private int root(int i)
{
while (i !'= id[i]) i = id[i]; chase parent pointers until reach root
return i; (depth of i operations)
}
public boolean find(int p, int q)
{ .
return root(p) == root(q) ; check if p and q have sarr\e root
} (depth of p and q operations)
public void unite(int p, int q)
{
int i = root(p), j = root(q); change root of p to point to root of q
id[i] = 3’ (depth of p and q operations)
}
}

23

Quick-union example

3-4 01244567809 0800060

o¥o¥eY YoXofeo
4-9 01249567809 S

@@@@@
®

G)@@@
®

5 8°8

@ ; @
TOW® @
@@

@

3
7-3 01949699009 eggt‘)o

Quick-union is also too slow

Quick-find defect.
* Union too expensive (N operations).
* Trees are flat, but too expensive to keep them flat.

Quick-union defect.

* Trees can get tall.
* Find too expensive (could be N operations).

=
quick-find N 1
quick-union Nt N <—— worst case

T includes cost of finding root

problem:
trees can geft tall

22

24

» improvements

Weighted quick-union example

@®®g©@®0®

@@@é&@@@ﬁ

8()C)g%9()©(3

g() A OO0
O] @OW®

8¢ 8@

)
OT® 5@
® ® =
/ 9 Ny
Ofo)0p0R0)
5

Og6
©

25

no problem:

/ trees stay flat

27

Improvement 1: weighting

Weighted quick-union.

* Modify quick-union to avoid tall trees.

* Keep track of size of each set.

* Balance by linking small tree below large one.

Ex. Union of 3 and 5.
* Quick union: link 9 to 6.
» Weighted quick union: link 6 to 9.

1

@ ©®

size 1 1 4
@ © ®

®
b o

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i]
to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

return root(p) == root(q);

Union. Modify quick-union to:
* Merge smaller tree into larger tree.
* Update the sz[] array.

int i = root(p):;
int j = root(q):
if (sz[i] < sz[j]) { id[i] = j; sz[]j] += sz[i]; }
else { id[j] i; sz[i] += sz[]j]; }

28

Weighted quick-union analysis

Analysis.

 Find: takes time proportional to depth of p and q.
* Union: takes constant time, given roots.

Proposition. Depth of any node x is at most Ig N.

P

@ B e
. 0 ® @

N:= 10
depth(x)= 3 < IgN

Weighted quick-union analysis

Analysis.
* Find: takes time proportional to depth of p and q.
* Union: takes constant time, given roots.

Proposition. Depth of any node x is at most Ig N.

ECTEETE

quick-find N 1
quick-union Nt N
weighted QU IgN * Ig N

t includes cost of finding root

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

29

31

Weighted quick-union analysis

Analysis.

 Find: takes time proportional to depth of p and q.
* Union: takes constant time, given roots.

Proposition. Depth of any node x is at most Ig N.

Pf. When does depth of x increase?

Increases by 1 when tree T; containing x is merged into another tree T..
¢ The size of the tree containing x at least doubles since |Tz| > |Til.

* Size of tree containing x can double at most Ig N times. Why?

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to root (p).

32

30

Path compression: Java implementation

Standard implementation: add second loop o root () to set the id[]

of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other

node in path point to its grandparent.

public int root(int i)
{
while (i '= id[i])
{
id[i] = id[id[i]]; <—
i = id[i];

}

return i;

only one extra line of code !

In practice. No reason not to! Keeps tree almost completely flat.

WQUPC performance

33

Proposition. [Tarjan 1975] Starting from an empty data structure,

any sequence of M union and find ops on N objects takes O(N + M Ig* N) time.

* Proof is very difficult.
* But the algorithm is sftill simplel

Linear algorithm?

* Cost within constant factor of reading in the data.

* In theory, WQUPC is not quite linear.
* Inpractice, WQUPC is linear.

I

because Ig* N is a constant in this universe

Amazing fact. No linear-time linking strategy exists.

I

actually O(N + M (M, N))

see COS 423

1 [¢]
2
4

65536
265536

1
2
16 3
4
5

Ig* function
number of fimes needed to take
the Ig of a number until reaching 1

35

Weighted quick-union with path compression example

Summary

356789 ®®®8©®®®
356783 @@@a@@@
356783 ®®©®®

g@ @ OO0
356783 ® @0V

® @ z @

O] @T®O
355783 8

@ ONO)

O] @® 0@
335783 E

® 0 (3)
335383 eo’g‘oe

@) @

335333 O TR e

® ® /
333333 o

O VEOEORAOARO)]

O]

Bottom line. WQUPC makes it possible to solve problems that

could not otherwise be addressed.

quick-find MN
quick-union MN
weighted QU N+ M log N
QU + path compression N+ M log N
weighted QU + path compression N+ Mlg* N
M union-find operations on a set of N objects

Ex. [10° unions and finds with 10° objects]
* WQUPC reduces time from 30 years to 6 seconds.

* Supercomputer won't help much; good algorithm enables solution.

no problem:

- trees stay VERY flat

34

36

Union-find applications

* Percolation.

* Games (6o, Hex).

¥ Network connectivity.

* Least common ancestor.

* Equivalence of finite state automata.

* Hoshen-Kopelman algorithm in physics.

* Hinley-Milner polymorphic type inference.

* Kruskal's minimum spanning tree algorithm.

* Compiling equivalence statements in Fortran.
* Morphological attribute openings and closings.
* Matlab's bwlabel () function in image processing.

» applications

37

Percolation Percolation

A model for many physical systems: A model for many physical systems:

* N-by-N grid of sites. * N-by-N grid of sites.

* Each site is open with probability p (or blocked with probability 1-p). * Each site is open with probability p (or blocked with probability 1-p).
+ System percolates if top and bottom are connected by open sites. » System percolates if top and bottom are connected by open sites.

percolates does not percolate
blocked
D
site

electricity material conductor insulated conducts
full
4;(7]7L’7I H H
empty site fluid flow material empty blocked porous
open —
site W social interaction population person empty communicates

site connected to top o .
N=8 no open site connected to top

39

Likelihood of percolation

Depends on site vacancy probability p.

p low
does not percolate

p medium p high
percolates? percolates

Monte Carlo simulation

* Initialize N-by-N whole grid to be blocked.

* Declare random sites open until top connected to bottom.
* Vacancy percentage estimates p*.

Sites = 135

41

full open site
(connected to top)

empty open site
(not connected to top)

blocked site

43

Percolation phase transition

When N is large, theory guarantees a sharp threshold p*.

* p > p*: almost certainly percolates.
* p<p*: almost certainly does not percolate.

Q. What is the value of p* ?

percolation
probability

0 : T
0 p* 1

=100 site vacancy probability p

UF solution to find percolation threshold

How to check whether system percolates?
* Create an object for each site.
* Sites are in same set if connected by open sites.

* Percolates if any site in top row is in same set as any site in bottom row.

N

brute force algorithm needs to check N? pairs

- - B

42

full open site
(connected to top)

empty open site
(not connected to top)

blocked site

N=8

44

UF solution to find percolation threshold

Q. How to declare a new site open?

open this site

N=8

UF solution: a critical optimization

Q. How to avoid checking all pairs of top and bottom sites?

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

45

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

47

UF solution to find percolation threshold

Q. How to declare a new site open?
A. Take union of new site and all adjacent open sites.

UF solution: a critical optimization

open this site

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

Q. How to avoid checking all pairs of top and bottom sites?

A. Create a virtual top and bottom objects;

system percolates when virtual op and bottom objects are in same set.

virtual top row

virtual bottom row

—_—

—_—

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

46

48

Percolation threshold

Q. What is percolation threshold p* ?
A. About 0.592746 for large square lattices.

percolation constant known
only via simulation

percolation
probability

1 I
0 0.593 1
site vacancy probability p

49

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.
* Model the problem.

* Find an algorithm to solve it.

* Fast enough? Fits in memory?

If not, figure out why.
* Find a way to address the problem.

Iterate until satisfied.

The scientific method.

Mathematical analysis.

50

