0. Prologue

- dynamic connectivity
- quick find
- → quick union
- improvements
- ▶ applications

Algorithms in Java, 4th Edition . Robert Sedgewick and Kevin Wayne . Copyright © 2009 . September 17, 2009 5:42:37 AM

Steps to developing a usable algorithm.

Subtext of today's lecture (and this course)

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

Dynamic connectivity

Given a set of objects

union(3, 4)

find(0, 2)

find(2, 4)

• Union: connect two objects.

more difficult problem: find the path

2

• Find: is there a path connecting the two objects? *

no yes

yes

yes

union (8	3, 0)
union (2	2,3)
union (!	5,6	5)
find(), 2)
find(2	2,4)
union (!	5, 1)
union (1, З	;)
union (1	L, 6	;)
union (4	4, 8)

• dynamic connectivity

- improvements
- ▶ application

Network connectivity: larger example

Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.

- Variable name aliases.
- Pixels in a digital photo.
- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

- Use integers as array index.
- Suppress details not relevant to union-find.

Modeling the connections

Transitivity. If p is connected to q and q is connected to r, then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

Implementing the operations

Find query. Check if two objects are in the same set.

Union command. Replace sets containing two objects with their union.

Union-find data type (API)

- Goal. Design efficient data structure for union-find.
- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.

public class UnionFind									
UnionFind(int N)	create union-find data structure with N objects and no connections								
boolean find(int p, int q)	are <i>p</i> and <i>q</i> in the same set?								
<pre>void unite(int p, int q)</pre>	replace sets containing p and q with their union								

Quick-find [eager approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: p and q are connected if they have the same id.

Quick-find [eager approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: p and q are connected if they have the same id.

i	0	1	2	3	4	5	6	7	8	9	5 and 6 are connected
id[i]	0	1	9	9	9	6	6	7	8	9	2, 3, 4, and 9 are connected

Find. Check if p and q have the same id.

id[3] = 9; id[6] = 6 3 and 6 not connected

11

9

Quick-find [eager approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: p and q are connected if they have the same id.

i	0	1	2	3	4	5	6	7	8	9	5 and 6 are connected
id[i] 0	1	9	9	9	6	6	7	8	9	2, 3, 4, and 9 are connected

Find. Check if p and q have the same id.

id[3] = 9; id[6] = 6
3 and 6 not connected

Union. To merge sets containing p and q, change all entries with id[p] to id[q].

Quick-find: Java implementation

Quick-find example

14

Quick-find is too slow

Quick-find defect.

- Union too expensive (N operations).
- Trees are flat, but too expensive to keep them flat.

algorithm	union	find
quick-find	Ν	1

 $\mathsf{E} \mathsf{x}.\;$ Takes N^2 operations to process sequence of N union commands on N objects.

Quadratic algorithms do not scale

Rough standard (for now).

10⁹ operations per second.
10⁹ words of main memory.

a truism (roughly) since 1950 !

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10⁹ union commands on 10⁹ objects.
- Quick-find takes more than 10¹⁸ operations.
- 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be 10x as fast.
- But, has 10x as much memory so problem may be 10x bigger.
- With quadratic algorithm, takes 10x as long!

dvnamic connectivity

quick find

• quick union

improvements

applications

17

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: ia[i] is parent of i.
- Root of i is ia[ia[ia[...ia[i]...]]].

keep going until it doesn't change

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: ia[i] is parent of i.
- Root of i is ia[ia[ia[...ia[i]...]]].

Find. Check if p and q have the same root.

Data structure.

- Integer array id[] of size N.
- Interpretation: ia[i] is parent of i.
- Root of i is ia[ia[ia[...ia[i]...]]].

i	0	1	2	3	4	5	6	7	8	9	
id[i]	0	1	9	4	9	6	6	7	8	9	

Find. Check if p and q have the same root.

Union. To merge sets containing p and q, set the id of p's root to the id of q's root.

3-4 012445

Quick-union example

Quick-union: Java implementation

Quick-union is also too slow

Quick-find defect.

- Union too expensive (N operations).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N operations).

algorithm	union	find	1
quick-find	N	1	
quick-union	N [†]	Ν	← worst case

$\ensuremath{^\dagger}$ includes cost of finding root

> dynamic connectivity > quick find > quick union > improvements > applications

Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each set.
- Balance by linking small tree below large one.

Ex. Union of 3 and 5.

- Quick union: link 9 to 6.
- Weighted quick union: link 6 to 9.

Weighted quick-union example

3-4	0	1	2	3	3	5	6	7	8	9	0	1 2 <mark>3</mark> 5 6 7 8 9
4-9	0	1	2	3	3	5	6	7	8	3	0	1236678 49
8-0	8	1	2	3	3	5	6	7	8	3	8	023567
2-3	8	1	3	3	3	5	6	7	8	3) 1 3 5 6 7) 2 4 9
5-6	8	1	3	3	3	5	5	7	8	3		0 1 3 3 7 0 2 4 9 6
5-9	8	1	3	3	3	3	5	7	8	3		0 2 4 5 9 6 2 4 6 9
7-3	8	1	3	3	3	3	5	3	8	3		
4-8	8	1	3	3	3	3	5	3	3	3		
6-1	8	3	3	3	3	3	5	3	3	3		0 1 2 4 5 7 9 0 6 6

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

return root(p) == root(q);

Union. Modify quick-union to:

- Merge smaller tree into larger tree.
- Update the sz[] array.

<pre>int i = root(p);</pre>										
<pre>int j = root(q);</pre>										
if (sz[i] < sz[j])	{ id[i] = j; sz[j] += sz[i]; }									
else	{ id[j] = i; sz[i] += sz[j]; }									

27

no problem: trees stay flat 25

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

algorithm	union	find
quick-find	N	1
quick-union	N†	Ν
weighted QU	lg N †	lg N

† includes cost of finding root

- Q. Stop at guaranteed acceptable performance?
- A. No, easy to improve further.

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Pf. When does depth of x increase?

Increases by 1 when tree T_1 containing x is merged into another tree T_2 .

- The size of the tree containing x at least doubles since $|\mathsf{T}_2| \geq |\mathsf{T}_1|.$
- Size of tree containing x can double at most Ig N times. Why?

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p, set the id of each examined node to root(p).

Path compression: Java implementation

Weighted quick-union with path compression example

Standard implementation: add second loop to root() to set the id[] of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other node in path point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

WQUPC performance

Proposition. [Tarjan 1975] Starting from an empty data structure, any sequence of M union and find ops on N objects takes O(N + M lg* N) time.

- Proof is very difficult.
- But the algorithm is still simple!

I actually O(N + M α(M, N)) see COS 423

Linear algorithm?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. No linear-time linking strategy exists.

265536

lg* function number of times needed to take the lg of a number until reaching 1

5

Summary

Bottom line. WQUPC makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time
quick-find	MN
quick-union	MN
weighted QU	N + M log N
QU + path compression	N + M log N
weighted QU + path compression	N + M lg* N

M union-find operations on a set of N objects

Ex. [10⁹ unions and finds with 10⁹ objects]

- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

dynamic connectivit

- quick find
- 🕨 quick unio

mprovemen

▶ applications

Union-find applications

- Percolation.
- Games (Go, Hex).
- ✓ Network connectivity.
- Least common ancestor.
- Equivalence of finite state automata.
- Hoshen-Kopelman algorithm in physics.
- Hinley-Milner polymorphic type inference.
- Kruskal's minimum spanning tree algorithm.
- Compiling equivalence statements in Fortran.
- Morphological attribute openings and closings.
- Matlab's bwlabel () function in image processing.

37

Percolation

A model for many physical systems:

- N-by-N grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates if top and bottom are connected by open sites.

Percolation

A model for many physical systems:

- N-by-N grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates if top and bottom are connected by open sites.

model	system	vacant site	occupied site	percolates
electricity	material	conductor	insulated	conducts
fluid flow	material	empty	blocked	porous
social interaction	population	person	empty	communicates

40

Depends on site vacancy probability p.

Monte Carlo simulation

- Initialize N-by-N whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p*.

41

43

Percolation phase transition

When N is large, theory guarantees a sharp threshold p*.

- p > p*: almost certainly percolates.
- p < p*: almost certainly does not percolate.
- Q. What is the value of p*?

42

UF solution to find percolation threshold

How to check whether system percolates?

- Create an object for each site.
- Sites are in same set if connected by open sites.
- Percolates if any site in top row is in same set as any site in bottom row.

brute force algorithm needs to check N² pairs

0	0	2	3	4	5	6	7
8	9	10	10	12	13		15
16	17	18	19	20	21	22	23
24	25	25	25	28	29	29	31
32	33	25	35	36	37	38	39
40	41	25	43	36	45	46	47
48	49	25	51	36	53	47	47
56	57	58	59	60	61	62	47

full open site (connected to top)
empty open site (not connected to top
blocked site

Q. How to declare a new site open?

UF solution to find percolation threshold

- Q. How to declare a new site open?
- A. Take union of new site and all adjacent open sites.

UF solution: a critical optimization

Q. How to avoid checking all pairs of top and bottom sites?

UF solution: a critical optimization

- Q. How to avoid checking all pairs of top and bottom sites?
- A. Create a virtual top and bottom objects;

system percolates when virtual top and bottom objects are in same set.

0	0	2	3	4	5	6	7
8	9	10	10	12	13	6	15
16	17	18	19	20	21	22	23
24	25	25	25	25	25	25	31
32	33	25	35	25	37	38	39
40	41	25	43	25	45	46	47
48	49	25	51	25	53	47	47
56	57	58	59	60	61	62	47

full open site (connected to top) empty open site (not connected to top) blocked site

virtual top row \longrightarrow										
	0	0	2	3	4	5	0	7		
	8	9	10	10	12	13	0	15		
	16	17	18	19	20	21	22	23		full open site
	24	25	25	25	25	25	25	31		(connected to
	32	33	25	35	25	37	38	39		empty open si [.] (not connecte
	40	41	25	43	25	45	46	47		blocked site
	48	49	25	51	25	53	47	47		
	47	57	58	59	60	61	62	47		
virtual bottom row>					17					

N = 8

- Q. What is percolation threshold p* ?
- A. About 0.592746 for large square lattices.

l percolation constant known only via simulation

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.