
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · September 17, 2009 5:42:37 AM

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

0. Prologue
Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

2

Subtext of today’s lecture (and this course)

3

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Given a set of objects

• Union: connect two objects.

• Find: is there a path connecting the two objects?

4

Dynamic connectivity

6 5 1

4

87

32

0

union(3, 4)

union(8, 0)

union(2, 3)

union(5, 6)

 find(0, 2) no

 find(2, 4) yes

union(5, 1)

union(7, 3)

union(1, 6)

 find(0, 2) yes

 find(2, 4) yes

union(4, 8)

more difficult problem: find the path

5

Network connectivity: larger example

p

q

Dynamic connectivity applications involve manipulating objects of all types.

• Variable name aliases.

• Pixels in a digital photo.

• Computers in a network.

• Web pages on the Internet.

• Transistors in a computer chip.

• Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

• Use integers as array index.

• Suppress details not relevant to union-find.

6

Modeling the objects

can use symbol table to translate from
object names to integers (stay tuned)

Transitivity. If p is connected to q and q is connected to r,
then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

7

Modeling the connections

4

87

32

0

{ 1 5 6 } { 2 3 4 7 } { 0 8 }

connected components

6 5 1

Find query. Check if two objects are in the same set.

Union command. Replace sets containing two objects with their union.

8

Implementing the operations

6 5 1

4

87

32

0

{ 1 5 6 } { 2 3 4 7 } { 0 8 }

6 5 1

7

32

0

{ 1 5 6 } { 0 2 3 4 7 8 }

4

8

union(4, 8)

connected components

9

Goal. Design efficient data structure for union-find.

• Number of objects N can be huge.

• Number of operations M can be huge.

• Find queries and union commands may be intermixed.

Union-find data type (API)

 public class UnionFind public class UnionFind

UnionFind(int N) create union-find data structure with
N objects and no connections

boolean find(int p, int q) are p and q in the same set?

void unite(int p, int q) replace sets containing p and q
with their union

10

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

11

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

Quick-find [eager approach]

0 1 2 3 4

5 6 7 8 9

12

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

id[3] = 9; id[6] = 6
3 and 6 not connected

Quick-find [eager approach]

5 and 6 are connected
2, 3, 4, and 9 are connected

13

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

Union. To merge sets containing p and q, change all entries with id[p] to id[q].

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 6 6 6 6 6 7 8 6

problem: many values can change

Quick-find [eager approach]

5 and 6 are connected
2, 3, 4, and 9 are connected

id[3] = 9; id[6] = 6
3 and 6 not connected

14

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 9 9 5 6 7 8 9

8-0 0 1 2 9 9 5 6 7 0 9

2-3 0 1 9 9 9 5 6 7 0 9

5-6 0 1 9 9 9 6 6 7 0 9

5-9 0 1 9 9 9 9 9 7 0 9

7-3 0 1 9 9 9 9 9 9 0 9

4-8 0 1 0 0 0 0 0 0 0 0

6-1 1 1 1 1 1 1 1 1 1 1

Quick-find example

problem: many values can change

public class QuickFind
{
 private int[] id;

 public QuickFind(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean find(int p, int q)
 {
 return id[p] == id[q];
 }

 public void unite(int p, int q)
 {
 int pid = id[p];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = id[q];
 }
}

15

check if p and q have same id
(1 operation)

change all entries with id[p] to id[q]
(N operations)

set id of each object to itself
(N operations)

Quick-find: Java implementation

Quick-find defect.

• Union too expensive (N operations).

• Trees are flat, but too expensive to keep them flat.

Ex. Takes N2 operations to process sequence of N union commands
on N objects.

16

Quick-find is too slow

algorithm union find

quick-find N 1

Rough standard (for now).

• 109 operations per second.

• 109 words of main memory.

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

• 109 union commands on 109 objects.

• Quick-find takes more than 1018 operations.

• 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

• New computer may be 10x as fast.

• But, has 10x as much memory so problem may be 10x bigger.

• With quadratic algorithm, takes 10x as long!

17

a truism (roughly) since 1950 !

Quadratic algorithms do not scale

18

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

19

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Quick-union [lazy approach]

keep going until it doesn’t change

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

3

542

70 1 9 6 8

3's root is 9; 5's root is 6

p

q

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

20

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

Quick-union [lazy approach]

keep going until it doesn’t change

3

542

70 1 9 6 8

3's root is 9; 5's root is 6
3 and 5 are not connected

p

q

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. To merge sets containing p and q,
set the id of p's root to the id of q's root.

3

5

4

70 1

9

6 8

2

3

542

70 1 9 6 8

21

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

3's root is 9; 5's root is 6
3 and 5 are not connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 9 7 8 9

only one value changes
p

q

Quick-union [lazy approach]

p

q

keep going until it doesn’t change

22

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 4 9 5 6 7 8 9

8-0 0 1 2 4 9 5 6 7 0 9

2-3 0 1 9 4 9 5 6 7 0 9

5-6 0 1 9 4 9 6 6 7 0 9

5-9 0 1 9 4 9 6 9 7 0 9

7-3 0 1 9 4 9 6 9 9 0 9

4-8 0 1 9 4 9 6 9 9 0 0

6-1 1 1 9 4 9 6 9 9 0 0

problem:
trees can get tall

Quick-union example

Quick-union: Java implementation

public class QuickUnion
{
 private int[] id;

 public QuickUnion(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean find(int p, int q)
 {
 return root(p) == root(q);
 }

 public void unite(int p, int q)
 {
 int i = root(p), j = root(q);
 id[i] = j;
 }
}

set id of each object to itself
(N operations)

chase parent pointers until reach root
(depth of i operations)

check if p and q have same root
(depth of p and q operations)

change root of p to point to root of q
(depth of p and q operations)

23 24

Quick-find defect.

• Union too expensive (N operations).

• Trees are flat, but too expensive to keep them flat.

Quick-union defect.

• Trees can get tall.

• Find too expensive (could be N operations).

worst case

† includes cost of finding root

Quick-union is also too slow

algorithm union find

quick-find N 1

quick-union N † N

25

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Weighted quick-union.

• Modify quick-union to avoid tall trees.

• Keep track of size of each set.

• Balance by linking small tree below large one.

Ex. Union of 3 and 5.

• Quick union: link 9 to 6.

• Weighted quick union: link 6 to 9.

1

3

542

70 1 6 8

26

q

p

21 1 1size

Improvement 1: weighting

4

9

27

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 5 3 3 3

no problem:
trees stay flat

Weighted quick-union example

28

Data structure. Same as quick-union, but maintain extra array sz[i]
to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to:

• Merge smaller tree into larger tree.

• Update the sz[] array.

 int i = root(p);
 int j = root(q);
 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
 else { id[j] = i; sz[i] += sz[j]; }

Weighted quick-union: Java implementation

return root(p) == root(q);

29

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Weighted quick-union analysis

3

x

5

4

2

7

0

1

8

9

6

N = 10
depth(x) = 3 ≤ lg N

30

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.
Pf. When does depth of x increase?
Increases by 1 when tree T1 containing x is merged into another tree T2.

• The size of the tree containing x at least doubles since |T2| ≥ |T1|.

• Size of tree containing x can double at most lg N times. Why?

Weighted quick-union analysis

 T2

T1

x

31

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

† includes cost of finding root

Weighted quick-union analysis

algorithm union find

quick-find N 1

quick-union N † N

weighted QU lg N † lg N
10

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to root(p).

2

41211

0

9

78

136

5

2

54

7

8

1211

0

1

3

6

9

32

root(9)

Improvement 2: path compression

p

10

Standard implementation: add second loop to root() to set the id[]
of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other
node in path point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

33

only one extra line of code !

public int root(int i)
{
 while (i != id[i])
 {
 id[i] = id[id[i]];
 i = id[i];
 }
 return i;
}

Path compression: Java implementation

34

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 3 3 3 3

no problem:
trees stay VERY flat

Weighted quick-union with path compression example

35

Proposition. [Tarjan 1975] Starting from an empty data structure,
any sequence of M union and find ops on N objects takes O(N + M lg* N) time.

• Proof is very difficult.

• But the algorithm is still simple!

Linear algorithm?

• Cost within constant factor of reading in the data.

• In theory, WQUPC is not quite linear.

• In practice, WQUPC is linear.

Amazing fact. No linear-time linking strategy exists.

because lg* N is a constant in this universe

actually O(N + M α(M, N))
see COS 423

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

WQUPC performance

lg* function
number of times needed to take

the lg of a number until reaching 1

Bottom line. WQUPC makes it possible to solve problems that
could not otherwise be addressed.

Ex. [109 unions and finds with 109 objects]

• WQUPC reduces time from 30 years to 6 seconds.

• Supercomputer won't help much; good algorithm enables solution.
36

M union-find operations on a set of N objects

algorithm worst-case time

quick-find M N

quick-union M N

weighted QU N + M log N

QU + path compression N + M log N

weighted QU + path compression N + M lg* N

Summary

37

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

38

• Percolation.

• Games (Go, Hex).
✓ Network connectivity.

• Least common ancestor.

• Equivalence of finite state automata.

• Hoshen-Kopelman algorithm in physics.

• Hinley-Milner polymorphic type inference.

• Kruskal's minimum spanning tree algorithm.

• Compiling equivalence statements in Fortran.

• Morphological attribute openings and closings.

• Matlab's bwlabel() function in image processing.

Union-find applications

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1-p).

• System percolates if top and bottom are connected by open sites.

39

Percolation

Percolation examples

does not percolate

percolates

site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to top

Percolation examples

does not percolate

percolates

site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to topN = 8

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1-p).

• System percolates if top and bottom are connected by open sites.

40

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation

Depends on site vacancy probability p.

41

Likelihood of percolation

p low
does not percolate

p high
percolates

p medium
percolates?

N = 20

When N is large, theory guarantees a sharp threshold p*.

• p > p*: almost certainly percolates.

• p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

42

Percolation phase transition

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

N = 100

• Initialize N-by-N whole grid to be blocked.

• Declare random sites open until top connected to bottom.

• Vacancy percentage estimates p*.

43

empty open site
(not connected to top)

full open site
(connected to top)

Monte Carlo simulation

blocked site

44

How to check whether system percolates?

• Create an object for each site.

• Sites are in same set if connected by open sites.

• Percolates if any site in top row is in same set as any site in bottom row.

UF solution to find percolation threshold

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 28 29 29 31

32 33 25 35 36 37 38 39

40 41 25 43 36 45 46 47

48 49 25 51 36 53 47 47

56 57 58 59 60 61 62 47

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

brute force algorithm needs to check N2 pairs

N = 8

Q. How to declare a new site open?

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 28 29 29 31

32 33 25 35 36 37 38 39

40 41 25 43 36 45 46 47

48 49 25 51 36 53 47 47

56 57 58 59 60 61 62 47

45

open this site

UF solution to find percolation threshold

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

Q. How to declare a new site open?
A. Take union of new site and all adjacent open sites.

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

56 57 58 59 60 61 62 47

46

open this site

UF solution to find percolation threshold

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

47

Q. How to avoid checking all pairs of top and bottom sites?

UF solution: a critical optimization

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

56 57 58 59 60 61 62 47

48

Q. How to avoid checking all pairs of top and bottom sites?
A. Create a virtual top and bottom objects;
 system percolates when virtual top and bottom objects are in same set.

UF solution: a critical optimization

virtual top row

virtual bottom row

00000000

0 0 2 3 4 5 0 7

8 9 10 10 12 13 0 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

47 57 58 59 60 61 62 47

4747474747474747

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

49

Q. What is percolation threshold p* ?
A. About 0.592746 for large square lattices.

percolation constant known
 only via simulation

Percolation threshold

p*

0.5930
0

1

1

site vacancy probability p

percolation
probability

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

50

Subtext of today’s lecture (and this course)

