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COS 597A:
Principles of

Database and Information Systems

Query Optimization
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Query Optimization

• Query as expression over relational
algebraic operations

• Get evaluation (parse) tree
– Leaves:  base relations
– Interior nodes: operations
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Example
Πbname (σcity=‘Rome’ ( ( customer ◊◊ depositor ) ◊◊ acct ) )

◊◊

◊◊ acct

customer depositor

Πbname

σcity=‘Rome’
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Optimization considerations
• Choice of algorithm at each interior node

– Cost Estimates
• We’ve just studied analysis

• Rearrange tree
– Use algebra of operations

• e.g. associativity of JOIN

◊◊

◊◊ C

A B

◊◊

◊◊A

B C

( A ◊◊ B ) ◊◊ C 
= 

A ◊◊ (B ◊◊ C )
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Interaction of algorithm choice and
tree arrangement

• Convention:  for any nested loop join, left branch
represents outer relation
– Control with commutativity of JOIN

(A ◊◊ B) = (B ◊◊ A)
◊◊

A B

◊◊

B A

•  Result of an interior node is input to parent
-  Algorithm affects properties of presentation of result

-Sorted?
•  Cost analysis must proceed bottom up
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Issues
• Need size estimates of result relation

– # records per block (size of record)
– # of blocks (# of records)
– Note:

• block size fixed system parameter
• Duplicates significantly affect # of records

• Need plan for buffer use
– Write out all results of interior nodes to disk

• Costs of writes for intermediate results count!
– Intermediate result fits in buffer

• Algorithm for parent use this?
• Can save cost of writing result by child AND reading result by

parent
– Pipeline result of child as input to parent
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Pipelining

• Parent and child execute concurrently
• Parent and child share buffer space

–  k-block shared (sub)buffer
– child produces k blocks of output – Fill buffer
–  parent consumes k blocks of input from child –

Empty buffer
– NO disk write cost child;
– NO disk read cost parent

• Algorithms of child and parent must support this
– Child: usually does;  produce 1 block output at a time
– Parent:  choice of algorithm critical !
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Algorithms for parent - JOIN
• Block nested loop?

• Index nested loop?

• Sort-merge

• Hash
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Algorithms for parent - JOIN
• Block nested loop?

– Outer relation – ok
• Read relation once, “chunk” by “chunk”
• Use shared buffer for “chunk”

– Inner relation – NO
• Must re-read entire inner relation for every “chunk”

of  outer

• Index nested loop?

• Sort-merge

• Hash
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Algorithms for parent - JOIN
• Block nested loop?

– Outer relation – OK
– Inner relation  – NO

• Index nested loop?
– Outer relation – ok – same as Block nested loop
– Inner relation – NO

• Using index

• Sort-merge

• Hash
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Algorithms for parent - JOIN
• Block nested loop?

– Outer relation – OK
– Inner relation  – NO

• Index nested loop?
– Outer relation – OK
– Inner relation  – NO

• Sort-merge
– To sort input relation:

• Can pipeline from child to group of buffer blocks for Stage 1
 (Stage 1: sorting individual groups to make runs)

– If child produced in sorted order, pipeline merge
• Child must be outer relation if duplicates

• Hash
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Algorithms for parent - JOIN
• Block nested loop?

– Outer relation – OK
– Inner relation  – NO

• Index nested loop?
– Outer relation – OK
– Inner relation  – NO

• Sort-merge – OK

• Hash
– To partition input relation:

• Can pipeline from child to buckets in buffer for
Stage 1

– OK
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Allocating buffer blocks

• If have simultaneous pipelining up tree
– How many buffer blocks for each child-to-

parent exchange?
– Affects speed of algorithms

• Limit number of simultaneous pipelines
• If no pipeline between child and parent
   materialize result of child

– Child writes result to disk
– Parent reads from disk
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Multi-operation query

• Want plan
– Parse tree
– Pipelining plan for each edge
– Algorithm  for each interior node (operation)

• To build plan
– Consider alternatives

• ALL?
– Estimate costs
– Choose “best”

• Really “good enough”
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Catalog
• Need info about base relations
• In catalog:

– For each base relation:
• # tuples
• # blocks

– List of existing indexes
– For each index

• # distinct search-key values
• # blocks

– For each tree index
• Tree height
• high/low search keys 16

Calculating size estimates of result
• Assume

– independence of attributes of a tuple
– Uniform distribution of values of each attribute among

tuples
• Calculate reduction factor (RF) for # tuples of  result

– Examples:
σA = constant   and index on attribute A:
                     RF =  1/(# search key values)

σA > constant  and tree index on attribute A:
                                (high key value) – constant
                     RF =
                               (high key value) – (low key value)

– Estimate # blocks output as RF * (# blocks input relation)
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Reduction factor of joins
• Estimate # tuples of (R◊◊S) on shared

attribute A as
        RF * ( # tuples R) * (# tuples S)

– Looking at join as selection on RXS

• Example: ◊◊ for join attribute A
– If indexes on R.A and S.A

         RF = 1/max (# key values R.A, # key values S.A)
– If no indexes, could use # distinct values

– What if real-valued?
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Size of tuples of result

• If attributes of fixed length, calculate
– Projection:  sizes of attributes retained
– Cross-product RXS:  sum of sizes of tuples in

R and S
• Join with single occurrence equal attributes

– Projection of Cross-product
– Selection & Union-compatible set operations:

no change

• If attributes of variable length, estimate
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Planning
• Know how estimate costs of algorithms
• Know how estimate sizes of results ON
• How use to make plan for query eval?

determine operation order for expression
• algebraic equivalences

select algorithm for each operation
• best depends on operation order

• Can’t try all possibilities - exponential time

interact
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Heuristics

Consider k joins:  R1 ◊◊ R2 ◊◊ … ◊◊ Rk

• Too many parse trees
– associativity and commutativity

• Example heuristic:
    consider only “Left-deep join trees”

– IBM system R 1979
– determines tree shape, not order Ri
– why this shape?
– still a lot of trees:  k!
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Algorithm design
• Observe for (R1 ◊◊ R2 ◊◊ … Rk-1)◊◊ Rk :

– once decide least-cost way do (  )
   actual order compute w/in ( ) not affect
   best choice for (  ) ◊◊ Rk

– whether (  ) result sorted or hashed does
affect best choice for (  ) ◊◊ Rk

⇒dynamic programming algorithm
• walk up left-deep tree
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Using dynamic programming
For node distance d from leftmost leaf,
• estimate lowest cost of evaluating subtree for

each size-(d+1) subset of {Ri}
1. without regard to order of result records
2. in each “natural” sorted order of result records

• Use results from child node
• Include pipelining strategy
• Remember best plans and pipelining strategy

for each subset
– can reconstruct order going back down tree

• Running time exponential in k
– still consider each subset of {Ri}
– don’t consider each order of Ri’s at next level
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Other operations

• Move selects and projects up/down tree
• Try to push selects down tree

Pushing projects can also be useful
– why?
– not always good idea:  destroys indexes

• can include in left-join-tree analysis
• Text has detailed discussion equivalences

for relational algebra operations
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Index-only Algorithms

If have indexes giving pointers to records for
all relations in query, consider:
– Use indexes to execute operations

• must have right search keys
– Retrieve records only at end
– If need only count, never retrieve full records
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Summary

• Have seen in detail how to execute joins
• Have considered execution of other relational

alg. op.s
• Have looked at how estimate sizes of results
• Have briefly considered one heuristic for making

plan for several joins
– restrict to left-deep trees

• Have looked briefly at planning when relational
alg. expr. has more than just joins


