COS 597A:
Principles of
Database and Information Systems

Query Optimization

Query as expression over relational
algebraic operations

+ Get evaluation (parse) tree
— Leaves: base relations
— Interior nodes: operations

Query Optimization
1
Example
Moname (Tcity=rome: ((CUStOMer 00 depositor) 00 acct))
rlbname
0-city=' Rome’
00 acct
/ \
customer depositor

Optimization considerations

Choice of algorithm at each interior node
— Cost Estimates
« We've just studied analysis

* Rearrange tree

— Use algebra of operations
« e.g. associativity of JOIN

Interaction of algorithm choice and
tree arrangement

» Convention: for any nested loop join, left branch
represents outer relation

— Control with commutativity of JOIN
(A00B) = (B 00 A)

A A

» Result of an interior node is input to parent

- Algorithm affects properties of presentation of result
-Sorted?

» Cost analysis must proceed bottom up

A00OB)00C & %
(=) /\ /\
A 00 (B0OC) 00 C A %
/\ /N
A B B C
Issues

» Need size estimates of result relation
— # records per block (size of record)
— # of blocks (# of records)
— Note:
« block size fixed system parameter
« Duplicates significantly affect # of records
» Need plan for buffer use
— Write out all results of interior nodes to disk
« Costs of writes for intermediate results count!
— Intermediate result fits in buffer
« Algorithm for parent use this?

« Can save cost of writing result by child AND reading result by
parent

— Pipeline result of child as input to parent

Pipelining

» Parent and child execute concurrently
» Parent and child share buffer space
— k-block shared (sub)buffer
— child produces k blocks of output — Fill buffer
— parent consumes k blocks of input from child —
Empty buffer
— NO disk write cost child;
— NO disk read cost parent
+ Algorithms of child and parent must support this
— Child: usually does; produce 1 block output at a time
— Parent: choice of algorithm critical !

Algorithms for parent - JOIN

Block nested loop?
Index nested loop?
Sort-merge

Hash

Algorithms for parent - JOIN

Block nested loop?

— Outer relation — ok
* Read relation once, “chunk” by “chunk”
 Use shared buffer for “chunk”

— Inner relation — NO

+ Must re-read entire inner relation for every “chunk”
of outer

* Index nested loop?
» Sort-merge

* Hash

Algorithms for parent - JOIN

Block nested loop?
— Outer relation — OK
— Inner relation —

Index nested loop?
— Outer relation — ok — same as Block nested loop
— Inner relation — NO

* Using index

Sort-merge

Hash

Algorithms for parent - JOIN

« Block nested loop?
— Outer relation — OK
— Inner relation —

« Index nested loop?
— Outer relation — OK
— Inner relation —

+ Sort-merge
— To sort input relation:
« Can pipeline from child to group of buffer blocks for Stage 1
(Stage 1: sorting individual groups to make runs)
— If child produced in sorted order, pipeline merge
« Child must be outer relation if duplicates

* Hash

Algorithms for parent - JOIN

Block nested loop?
— Outer relation — OK
— Inner relation —

Index nested loop?
— Outer relation — OK
— Inner relation —

Sort-merge — OK

Hash
— To partition input relation:

* Can pipeline from child to buckets in buffer for
Stage 1

- OK

Allocating buffer blocks

« If have simultaneous pipelining up tree

— How many buffer blocks for each child-to-
parent exchange?

— Affects speed of algorithms

Limit number of simultaneous pipelines
If no pipeline between child and parent
materialize result of child

— Child writes result to disk

— Parent reads from disk

Multi-operation query

* Want plan
— Parse tree
— Pipelining plan for each edge
— Algorithm for each interior node (operation)
* To build plan
— Consider alternatives
* ALL?
— Estimate costs
— Choose “best”
* Really “good enough”

Catalog

* Need info about base relations
* In catalog:
— For each base relation:
* # tuples
* # blocks
— List of existing indexes
— For each index
« # distinct search-key values
* # blocks
— For each tree index
* Tree height
* high/low search keys

Calculating size estimates of result

* Assume
— independence of attributes of a tuple
— Uniform distribution of values of each attribute among
tuples
* Calculate reduction factor (RF) for # tuples of result
— Examples:
O = constant @nd index on attribute A:
RF = 1/(# search key values)

O > constant @Nd tree index on attribute A:

(high key value) — constant
RF =

(high key value) — (low key value)

— Estimate # blocks output as RF * (# blocks input relation) ®

Reduction factor of joins

+ Estimate # tuples of (R00S) on shared
attribute A as
RF * (# tuples R) * (# tuples S)

—Looking at join as selection on RXS

« Example: 09 for join attribute A
— Ifindexes on R.A and S.A
RF = 1/max (# key values R.A, # key values S.A)

—If no indexes, could use # distinct values
—What if real-valued?

Size of tuples of result

« If attributes of fixed length, calculate
— Projection: sizes of attributes retained

— Cross-product RXS: sum of sizes of tuples in
Rand S
« Join with single occurrence equal attributes
— Projection of Cross-product

— Selection & Union-compatible set operations:
no change

« If attributes of variable length, estimate

Planning

* Know how estimate costs of algorithms
+ Know how estimate sizes of results ON
* How use to make plan for query eval?

« algebraic equivalences
select algorithm for each operation
¢ best depends on operation order

determine operation order for expression
interact C

e Can't try all possibilities - exponential time

19

Heuristics
Consider k joins: R, 00 R, 00 ... 00 R,

* Too many parse trees
— associativity and commutativity
+ Example heuristic:
consider only “Left-deep join trees”
—IBM system R 1979
— determines tree shape, not order R;
— why this shape?

— still a lot of trees: k!
20

Algorithm design

+ Observe for (R; 00 R, 00 ... R)00 Ry :
— once decide least-cost way do ()
actual order compute w/in (') not affect

best choice for () 00 R,
— whether () result sorted or hashed does
affect best choice for () 00 R,

=dynamic programming algorithm
¢ walk up left-deep tree

21

Using dynamic programming

For node distance d from leftmost leaf,
» estimate lowest cost of evaluating subtree for
each size-(d+1) subset of {R;}
1. without regard to order of result records
2. in each “natural” sorted order of result records
e Use results from child node
¢ Include pipelining strategy
¢« Remember best plans and pipelining strategy
for each subset
— can reconstruct order going back down tree
¢ Running time exponential in k
- still consider each subset of {R}

— don'’t consider each order of R;’s at next level 22

Other operations

» Move selects and projects up/down tree
» Try to push selects down tree

Pushing projects can also be useful
—why?

— not always good idea: destroys indexes
can include in left-join-tree analysis

» Text has detailed discussion equivalences
for relational algebra operations

23

Index-only Algorithms

If have indexes giving pointers to records for
all relations in query, consider:
— Use indexes to execute operations
» must have right search keys
— Retrieve records only at end
— If need only count, never retrieve full records

24

Summary

Have seen in detail how to execute joins
Have considered execution of other relational
alg. op.s

Have looked at how estimate sizes of results

Have briefly considered one heuristic for making
plan for several joins

— restrict to left-deep trees

Have looked briefly at planning when relational
alg. expr. has more than just joins

25

