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ABSTRACT

This paper describeégINI, a virtual network infrastructure that al-
lows network researchers to evaluate their protocols andces
in a realistic environment that also provides a high degfemn-
trol over network conditions. VINI allows researchers tpldy
and evaluate their ideas with real routing software, trdéiads,
and network events. To provide researchers flexibility isigieng
their experiments, VINI supports simultaneous experimenith
arbitrary network topologies on a shared physical infragtire.
This paper tackles the following important design questMfhat
set of concepts and techniques facilitate flexible, reéajiahd con-
trolled experimentationg(g, multiple topologies and the ability to
tweak routing algorithms) on a fixed physical infrastrueirWe
first present VINI's high-level design and the challengesidfial-
izing a single network. We then presd®it-VINI, an implementa-
tion of VINI on PlanetLab, running the “Internet In a SliceQur
evaluation of PL-VINI shows that it provides a realistic azwh-
trolled environment for evaluating new protocols and sesi

Categories and Subject Descriptors

C.2.6 [Computer Communication Networks]: Internetworking;
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design

General Terms
Design, Experimentation, Measurement, Performance
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1. Introduction

Researchers continually propose new protocols and serdiee
signed to improve the Internet's performance, reliahiktyd scal-
ability. Testing these new ideas under realistic networhkd@ons
is a critical step for evaluating their merits and, ultintgtéor de-
ploying them in practice. Unfortunately, evaluating newad in
operational networks is difficult, because of the need toicwe
equipment vendors and network operators to deploy theisolut
Accordingly, researchers are faced with the option of etihg
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their proposals via simulations, driven either by synthetiodels
of topology and workloads or by measurements of the exigting
tocols, or evaluating their proposals in a small-scalebtbt Ide-
ally, researchers should be able to conduct experimerttarthéoth
realisticand controlled*

Even services that operate above the network layer areuiffic
to evaluate without some level of visibility into and cortover
network events at lower layers. Consider a Resilient Oye¥let-
work (RON) that circumvents performance and reachabilibp
lems in the underlying network by directing traffic througkerme-
diate hostsI]. RON can offer service to real users without mod-
ifying the underlying infrastructure; unfortunately, &waing its
effectiveness requires waiting for network failures towctatu-
rally”. Additionally, determining when andthya system like RON
works—and how well it works under various failure scenarids
challenging (if not impossible) without access to eithéoimation
about failures in the underlying network or the ability tgeict such
failures ).

Researchers evaluating new protocols and services shoulgn
forced to choose between realistic conditions and coetlatkper-
iments. Instead, we believe that the research communitgsnae
experimental infrastructure that satisfies the followiagrfgoals:

e Running real routing software: Researchers should be able
to run conventional routing software in their experimeias,
evaluate the effects of extensions to the protocols anddie ev
uate new services over commodity network components.

e Exposing realistic network conditions: Researchers should
be able to construct experiments on realistic topologies an
routing configurations. The experiments should be able to
examine system behavior in response to exogenous events,
such as routing-protocol messages from the “real” Internet

e Controlling network events: Researchers should be able to
inject network eventse(g, link failures and flash crowds)
that do not occur often in practice, to enable controlled ex-
periments and fine-grained measurements of these events.

e Carrying real traffic. Researchers should be able to eval-
uate their protocols and services carrying applicatioffitra
between real end hosts, to enable measurements of end-to-
end performance and effects of feedback at the end systems.

Satisfying these four goals requires both the tools fordug
virtual networks and the infrastructure for deploying thedm the
one hand, PlanetLab is an infrastructure that supportspteitis-
tributed services running on hundreds of machines throuigtine
world [3, 4]. However, conducting controlled and realistic network-
ing experiments on PlanetLab is quite challenging, espigcan-
sidering the first three goals above. On the other hand, itedike

1We precisely define the terms “realism” and “control” in Sect2.



X-Bone [p] and Violin [6] automate the creation of overlay net-
works using tunnels between hosts, allowing researchexsatoate
new protocols and services. However, these tools are regriied
with a fixed, wide-area physical infrastructure that refleatreal
network deployment. Instead, we believe the community sieed
sharednfrastructure(like PlanetLab) that can supparirtual net-
works(like X-Bone and Violin), in a controlled and realistic envi
ronment.

To that end, we are building VINI, a Virtual Network Infras-
tructure, for evaluating new protocols and services. \Wename-
ing with the National Lambda Rail (NLR) and Abilene Interdet
backbones to deploy VINI nodes that have direct connections
the routers in these networks and dedicated bandwidth kettie
sites. VINI will have its own globally visible IP address bks, and
it will participate in routing with neighboring domaiisOur goal is
for VINI to become shared infrastructure that enables rebeas to
simultaneously evaluate new protocols and services usignaf-
fic from distributed services that are also sharing VINI reses.
The nodes at each site will initially be high-end serverg, rhay
eventually be programmable hardware devices that carr thette
dle a large number of simultaneous experiments carryingge la
volume of real traffic and many simultaneously running pecots.

Rather than presenting a complete design and implememtaitio
VINI, this paper addresses the following important preisitel de-
sign question\What set of concepts and techniques facilitate flexi-
ble, realistic, and controlled experimentatioag, multiple topolo-
gies, ability to tweak routing algorithms, etc.) on a fixed/gibal
infrastructure? The answer to this question and other insights we
glean from the design and implementation of VINI will progian-
portant lessons for the design of experimental infrastinest such
as the National Science Foundation’s Global EnvironmeniNfet-
work Innovations (GENI) 7, 8] and similar efforts in other coun-
tries. Toward this end, our paper makes three main coniwitistt

Proposed design of VINI: In designing VINI, we grapple with
the challenges of representing every component in the mktwo
routers, interfaces, links, routing, and forwarding, adlae the
failures of these components, as discussed in Se8tibnaddition
to facing similar challenges as testbeds like PlanetLabmust
confront additional issues such as sharing routing-pmtport
numbers across experiments, supporting multiple netwapklo-
gies, numbering the ends of a virtual link from a common stibne
forwarding data packets quickly, diverting user trafficoibhe in-
frastructure, performing network address translatioreteive re-
turn traffic from the Internet, and allowing multiple expegnts to
share a routing adjacency with a neighboring domain.

Initial prototype of VINI on PlanetLab: In prototyping VINI,
we focus first on the significant challenges of supporting exe

We first use microbenchmarks to show that VINI efficiently-for
wards data packets. Our second set of experiments validit's
behavior in the wide-area. We mirror the Abilene backbonéth-w
the real topology and the same OSPF configuration—on PlabetL
nodes co-located at Abilene PoPs. We inject a link failute our
network and observe the effects of OSPF route convergentafen
fic running between two of the nodes.

As we continue to build VINI, we hope to provide the research
community with not only a suitable environment for testirgwn
network protocols and architectures, but also a crediltletpaeal-
world deployment.

2. VINI Usage Model

Researchers who design, implement, and deploy new network
protocols and architectures may demand different amodrdere
trol and realism over many features of the network—topology
(including link bandwidths), failure modes, and traffic dea
depending on the aspects of the new protocol or architectuer
test. Although VINI bears resemblance to many existingstdor
evaluating network protocols and architectures, we belibat one
of VINI's unique strengths is that it provides the experirggrton-
siderably more latitude in introducing various amounts aftcol
and realism into an experiment. This latitude makes VINI an e
vironment that is suitable both for running controlled expents
and for deploying long-running deployment studies.

Control refers to the researcher’s ability to introduce exogenous
events €.g, failures, changes in traffic volume, etc.) into the sys-
tem. Researchers and protocol designers often need caoweol
an experiment to study the behavior of a protocol or systedeun
a wide variety of network conditions. For example, an experit
that studies how link or node failures affect end-to-endgrerance
in the context of a protocol modification requires the apiiitinject
failures into the routing system (rather than simply wajtior links
or nodes to fail). VINI offers levels of control that are coangble
to those provided in simulators such as nst3] jor SSFNet 14],
or in emulation testbeds(g, Emulab [L5], DETER [16], Mod-
elnet [L7], WAIL [ 18], or ONL [19]), which allow researchers to
evaluate real prototypes of network protocols and archites in a
controlled environment.

Realismrefers to the ability of a network researcher to subject
a prototype network protocol or architecture to networkditons
(i.e., topology, failures, and traffic) that resemble those of@nal
deployment as closely as possible. Although it is certgiagsible
to synthetically generate these features of the networsrdioty to
various “realistic models”, VINI's philosophy is that thest way
to test a prototype under realistic conditions is to acyudéploy

periment on the infrastructure at a time, as discussed in Sec the prototype in a real network. For example, as we will see in
tion 4. We synthesize many of the software components created Section5, VINI allows a researcher to deploy and test protocols

by the networking research community—from software raiter
configuration-management tools—into a single functionifgas-
tructure. We use XORP for routin@]} Click for packet forwarding
and network address translatidt0O], OpenVPN servers to connect
with end users11], andrcc for parsing router configuration data
from operational networks to drive our experimerit&][ We use
the PlanetLab nodes in Abilene for prototyping and expeniing,
while working in parallel on deploying equipment for VINI.
Evaluation of PL-VINI: We evaluate our prototype to demon-
strate its suitability for evaluating network archite@sirand sys-
tems in a realistic and controlled setting, as discusse@ai@5.

2We are in discussions with service providers about havirgicdéed up-
stream connectivity to the commercial Internet at a few arge points.

on virtual networks that physically mirror the Abilene netk, a
capability that is not provided by any existing simulatotestbed.
VINI is most useful for experiments that ultimately requsieme
level of both realism and control. These experiments fatl two
broad classesccontrolled experimentsind long-running deploy-
ment studies Although VINI can support controlled experiments
involving synthetic traffic and network events, these expents
could arguably run in an existing testbed such as Emulab. -How
ever, a controlled experiment that requires some level afrob
over traffic, network events, or topology but eventually tgato
incorporate realistic features can benefit tremendousin INI.
Once a controlled experiment demonstrates the value of a new
idea, the protocol might be deployed as a long-running stRexal
end hosts—either users or servers—could “opt in” to theqtype



system, to achieve better performance, reliability, ouség or to
access services that are not available elsewhere. In facystem
running in VINI might even provide services for another, wehend
hosts subscribe to some service that, in turn, runs over ane¢w
work architecture deployed on VINI. For example, end hostatw
ing certain guarantees about the integrity of content nsghscribe
to a content delivery service deployed over a secure roitiings-
tructure.

3. VINI Design Requirements

This section outlines the design requirements for a virtigdt
work infrastructure. We focus on the general requiremehssioh
an infrastructure—and why we believe the infrastructureusth
provide those requirements—independent of how any péatiau
stantiation of VINI would meet these requirements.

VINI's design requirements are motivated by the desire éai-r
ism (of traffic, routing software, and network conditionsidacon-
trol (over network events), as well as the need to providécseint
flexibility for embedding different experimental topolegion a sin-
gle, fixed physical infrastructure. Generally speakingulization
provides much of the machinery for solving this problem;eied,
virtualization is a common solution to many problems in coiep
architecture, operating systems, and even in networkedhdited
systems. Still, despite the promises of virtualizationaipplication
to buildingcommunication networks not straightforward.

As Tablel shows, constructing a virtual network involves solv-
ing four main problems. First, the infrastructure must jaevsup-
port for virtualizing network devices and attachment poimecause
a network researcher may wish to use the physical infrastreito
build an arbitrary topology (SectioB.1). Second, once the basic
topology is established, the infrastructure must fadéitaunning
routing protocols over this virtual topology. This goal satleng-
ing because each virtual node may have characteristicarhalis-
tinct from physical reality Sectio8.2 discusses these requirements
in more detail. Third, once the virtual network can estédbitis own
routing and forwarding tables, it must be able to transpaffit to
and from real networks (Sectidh3). Finally, the virtual network
infrastructure should allow multiple network researchengerform
the above three steps using the same physical infrastejettnich
presents complications that we discuss in Sec3idn

3.1 Flexible Network Topology

To allow researchers (and practitioners) to evaluate newng
protocols, architectures, and management systems, VIIst affer
the ability to configure a wide variety of nodes and links. ey
this type of flexible network configuration requires satiisfytwo
main challenges: the ability to configure each of these nadiés
an arbitrary number of interfacesq, the flexibility to give each
node an arbitrary degree), and the ability to provide theeapmce
of a physical link between any two virtual node( the flexibil-
ity to establish arbitrary edges in the topology). Neithtthese
problems is straightforward: indeed, each problem in®keme-
how abstracting (“virtualizing”) physical network compants in
new and interesting ways.

Problem: Unique interfaces per experimentRouting protocols
such as OSPF and IS-IS have configurable parameters formach i
terface €.g, weights and areas). To run these protocols, VINI must
enable an experiment to have multiple interfaces on the sapes-
iment, but most commodity physical nodes typically have adix
(and typically small) number of physical interfaces. Liimif the
flexibility of interface configuration to the physical corants of

each node is not acceptable: Because different experinnezys
need more (or fewer) interfaces for each node, massivelspoye
visioning each node with a large number of physical devicag m
prohibitively expensive and physically impossible.

Even if a node could be deployed with a plethora of physical
interfaces, we ultimately envision VINI as an infrastruetthat is
sharedamong multiple experiments. Many experiments, each of
which may configure a different number of virtual interfades
each node, must be able to share a fixed (and likely small) aumb
of physical interfaces.

Problem: Virtual point-to-point connectivity To allow construc-
tion of arbitrary network topologies, VINI must also progid fa-
cility for constructing virtual “links” {.e., the appearance of di-
rect physical connectivity between any two virtual nodes)first
brush, providing this capability might seem simple: VINhcgim-
ply allow an experimenter to create the appearance of a l@ak b
tween any two arbitrary nodes by building an overlay netwafrk
tunnels. In principle, this approach is the essence of olutisa,
but our desire to make VINI look and feel like a “real” netwerk
not just an overlay—presents additional complications.

Each virtual link must create the illusion of a physical linét
only in terms of providing connectivityi.€., all physical nodes in
between two endpoints of any virtual link must know how to-for
ward traffic along that link) but also from the standpointe$aurce
control (.e., the performance of any virtual link should ideally be
independent of the other traffic that is traversing that majdink).

A primary concern is that the topology that an experimenséalte
lishes in VINI should reflect to a reasonable degree the ptigse
of the corresponding links in the underlying network. Vatlinks
in a VINI experiment will, in many cases, not consist of a $ng
point-to-point physical connection, but may instead berlaie on
a sequence of physical links.

Providing this type of guarantee is challenging. First, samh
these “links” may bear very little correspondence to howyeta
two link between the same nodes might actually behave, siace
IP link comprising a single virtual link may experience netiw
events such as congestion and failures independentlymaétiiy,
as we discuss in Sectidh4, the underlying links in the network
may be shared by multiple topologies, and the traffic from exe
periment may affect the network conditions seen in anotiveral
network. The challenges we face in solving these probleras ar
similar in spirit to those faced by EmulaB(], but we are grap-
pling with these issues over the Internet, rather than inndrotbed
testbed environment.

Problem: Exposure of underlying topology change# physical
component and its associated virtual components shoute &iie.
Topology changes in the physical network should manifesinth
selves in the virtual topology. If a physical link fails, fekample,
VINI should guarantee that the virtual links that use thatgital
link should see that failure. For example, VINI should ndowl
the underlying IP network to mask the failure by dynamicaéy
routing around it. Without this requirement, experimemnts\oNI
would be subject to properties of the underlying networksstatie
(e.g, IP routing), and the designer of a new network protocohiarc
tecture, or management system would have trouble disshqng
properties of the new system from artifacts of the substrate

3.2 Flexible Forwarding and Routing

VINI must not only provide the flexibility for constructingetk-
ible network topologies, but it must also carry traffic oveege
topologies. This requirement implies that VINI must suppapa-
bilities for forwarding (.e., directing traffic along a particular path)



Design Requirement

Solution Section

Flexible Network Topology (Secti@l)

Virtual point-to-point connectivity Virtual network devices from common subnets in UML 4.1.3
Tunnels and encapsulation in Click 42.1
Unique interfaces per experiment Virtual network devices in UML 422
Exposure of underlying topology changes Upcalls of layer-3 alarms to virtual nodes —
Flexible Routing and Forwarding (Secti@?)

Distinct forwarding tables per virtual node Separate instance of Click on each virtual node 42.1
Distinct routing processes per virtual node Separate instance of XORP on each virtual node 4.2.2
Connectivity to External Hosts (Secti8r8)

Allowing end hosts to direct traffic through VINI End-host connection to an OpenVPN server 423
Ensure return traffic flows back through VINI | Network address translation in Click on egress 4.2.3
Support for Simultaneous Experiments (Sec8ah
Resource isolation between experiments Virtual servers and network isolation in PlanetLab 41.1

Extensions for CPU reservations and priorities 4.1.2
Distinct external routing adjacencies BGP multiplexer to share external BGP sessions —

Table 1: Design requirements for VINI. This table also discisses how our prototype implementation of VINI tackles each fothese challenges; these

solutions are discussed in more detail in SectioA.

and routing i.e., distributing the information that dictates how traf-
fic is forwarded). VINI must provide its users the flexibilttyarbi-
trarily control how routing and forwarding over the virtuapolo-
gies is done. Forwarding must be flexible because diffengmtre
iments may require different virtual topologies. Routingshbe
flexible because each experiment may implement entirelgreifit
routing mechanisms and protocols. In this section, we desbow
VINI's design facilitates node-specific forwarding and ting.

Problem: Distinct forwarding tables per virtual nodeAs we de-
scribed in Sectior.l, different experiments may require different
topologies: Any given virtual node may connect to a différset

offered traffic. Supporting real traffic requires the VINIsign to
address the following two problems.

Problem: Allowing end hosts to direct traffic through VINEnd
hosts should be able to “opt in” to having their traffic trasesan ex-
periment running on VINI. For example, end users should teetab
connect to nearby VINI nodes and have their packets reagltesr
running on VINI, as well as external services (e.g., Webs$itsn

the existing Internet. This requires VINI to provide theidion of

an access network between the end host and the VINI nodepand e
sure that all packets to and from the end host (or to/from éopgetr
application on the end host) reach the virtual node in theapate

of neighboring nodes. For example, one experiment may use avirtual topology. The virtual nodes can then forward theaekpts

topology where every node has a direct point-to-point cotioe
with every other node, while another experiment may wisheto s
up a topology with significantly fewer edges. Supporting ifiéx
topology construction not only requires supporting flegibiter-
face configuration, but it also implies that the each toppladgl
require different forwarding tables. In addition, VINI niuslso
allow experimenters to implement completely differentfarding
paradigms than those based on today’s IPv4 destinaticedifas-
warding. This implies that VINI must allow network experinie
to specify different forwarding mechanisned, forwarding based
on sourceand destination, forwarding on tags or flat identifiers,
etc.).

Problem: Distinct routing processes per virtual nadeFor simi-
lar reasons of flexible experimentation, VINI must enableheax-
periment to construct its own routing table and implemenbitn
routing policies. Thus, in addition to giving each slice thal-
ity to configure its own network topology and forwarding &l
VINI must also allow each experiment to run its own distirmit
ing routing protocols and processes. These routing presessich
each handle two cases: (1) discovering routes to destirsatvithin
VINI; and (2) discovering routes to external destinations.

3.3 Connectivity to External Hosts

A cornerstone of VINI is the ability to carry traffic to and fro
real end hosts, to allow researchers to evaluate their guist@nd
services under realistic conditions. This enalolesed-loopexper-
iments that capture how network behavior affects end-tbger-
formance and, in turn, how adaptation at the end systemtaffiee

across the virtual topology using the forwarding tablesstartted
by the experimental routing software.

Problem: Ensuring return traffic from external services flows back
through VINL To support realistic experiments, VINI should be
able to direct traffic to and from external hosts that offenouni-
cation services, even if these hosts do not participate Ml.\For
example, a VINI experiment should be able to act as a stubanktw
that connects to the Internet to reach a wide range of coioreit
services (e.g., Web sites). Directing traffic from VINI tcetlex-
ternal Internet is not especially difficult. However, ensgrthat
the return traffic is directed to a VINI node, and forwardegbtigh
VINI and onward to the end host, is more challenging.

Solving these two problems would enable a wide range of exper
iments with either synthetic or real users running real igpfibns
that direct traffic over experimental network protocols ardvices
running on VINL. Ultimately, we envision that some VINI expe
ments could provide long-running services for end usersagpd-
cations that need better performance, security, and riyathan
they have today.

3.4 Support for Simultaneous Experiments

VINI should support multiple simultaneous experimentsitma:
tize the cost of deploying and running the physical infractire.
In addition, running several experiments at the same tirfweval
researchers to provide long-running services that atteattusers,
while still permitting other researchers to experimentwiéw pro-
tocols and services. Supporting multiple virtual topoésgat the



same time introduces two main technical challenges in tkggde
of VINL.

Problem: Resource isolation between simultaneous experiments
Each physical node should support multiple virtual nodes #ne
each part of its own virtual topology. To provide virtual msdwvith
their own dedicated resources, each physical node shdolkcheg
and schedule resources.d, CPU, bandwidth, memory, and stor-
age) so that the run-time behavior of one experiment doeadhot
versely affect the performance of other experiments rumoimthe
same node. Furthermore, the resource guarantees msistdbein

the sense that they should afford an experiment no more—and n
less—resources than allocated, to ensure repeatabilibheaxper-
iments. Each virtual node also needs its own name spacesfile.g
names) and IP addresses and port numbers for communicatimg w
the outside world.

Problem: Distinct external routing adjacencies per virtual node
Multiple virtual nodes may need to exchange routing infdiorg
such as BGP announcements, with the same operational iauter
the external Internet. This is crucial for allowing eachwé topol-
ogy to announce its own address space to the external Ihimde
control where its traffic enters and leaves the network. Hewex-
ternal networks are not likely to establish separate rggirotocol
adjacencies with each virtual node, for two reasons. Fiser-
ational networks might reasonably worry about the stabdit a
routing-protocol session running on prototype softwarg@as of

a research experiment, especially when session failurésmn
plementation errors might compromise routing stabilityha real
Internet. Second, maintaining multiple routing-protoseksions
(each with a different virtual node) would impose a memoand>
width, and CPU overhead on the operational router. VINI must
address these issues to strike the right trade-off betwersiding
flexibility (for experimenters) and robustness (for theeemall net-
works).

In the next section, we describe how we address these chafien
in our prototype of VINI running on the PlanetLab nodes in the
Abilene backbone.

4. A VINI Implementation on PlanetLab

As a first step toward realizing VINI, we have built an initjpab-
totype on the PlanetLab nodes in the Abilene backbone. Agho
we do not (yet) have dedicated bandwidth between the nodgs or
stream connectivity to commercial ISPs, this environmerathées
us to address many of the challenges of supporting virtualarés
on a fixed physical infrastructure. For extensibility ande=af pro-
totyping, we place many key functions in user space throagéfal
configuration of the routing and forwarding software. Irsteec-
tion, we describéL-VINI, our extensions to PlanetLab to support
experimentation with network protocols and services, dntéfnet
In a Slice” (IIAS), a network architecture thRL-VINI enables.

Table 1 summarizes how th@L-VINI prototype addresses the
problems outlined in Sectio® The table emphasizes that we must
solve several problems in user space software (e.g., pnovehch
experiment with point-to-point connectivity and uniquevnerk in-
terfaces) that would ideally be addressed in the kernel diceieed
hardware. This division is a direct consequence our detito
implement our initial VINI prototype on PlanetLab; sinceaPét-

4.1 PL-VINI: PlanetLab Extensions for VINI

Our prototype implementation of VINI augments PlanetLathwi
features that improve its support for networking experitaeifhis
goal appears to depart somewhat from PlanetLab’s origiission,
which was to enable wide deploymentaMerlays—distributed sys-
tems that, like networks, may route packets, but that conicats
using socketsq.g, UDP tunnels) PL-VINIdoes, however, preserve
PlanetLab’s vision by enabling interesting and meaningéiivork
protocols and services to be evaluated on an overlay; weidesc
one such network design in Sectiér

4.1.1 PlanetLab: Slices and Resource Isolation

PlanetLab was a natural choice for a proof-of-concept VIidtp
totype and deployment, both due to its large physical itfuas
ture and the virtualization it already provides. Virtualibn—the
ability to partition a real node and its resources into aritiaty
number of virtual nodes and resource pools—is a definingirequ
ment of VINI. PlanetLab isolates experiments in virtualvees
(VServers) 1]. Each VServer is a lightweight “slice” of the node
with its own namespace. Because of the isolation provide@lay-
etLab, multiplePL-VINI experiments can run on the same Planet-
Lab nodes simultaneously in different slices. VINI alsodieges
PlanetLab’s slice management infrastructure.

VServers enable tight control over resources, such as CEU an
network bandwidth, on a per-slice (rather than a per-pmoesa
per-user) basis. The PlanetLab CPU scheduler grants eaetasl
“fair share” of the node’s available CPU, and supports terago
share increase®.Q, via Sirius R2]). Similarly, the Linux hierar-
chical token bucket (HTB) schedule23] provides fair share ac-
cess to, and minimum rate guarantees for, outgoing netwemnkl-b
width. Network isolation on PlanetLab is provided by a medul
called VNET R4] that tracks and multiplexes incoming and outgo-
ing traffic. VNET provides each slice with the illusion of teevel
access to the underlying network device. Each slice hasactcdy
to its own traffic and may reserve specific ports.

4.1.2 Improved CPU Isolation

PlanetLab provides a fair share of the CPU resources to each
slice, but fluctuations in the CPU demands of other sliceswalke
running repeatable networking experiments challengihg. node
supports a large number of slices, a routing process rurininge
slice may not have enough processing resources to keep bp wit
sending heartbeat messages and responding to events, and a f
warding process may not be able to maintain a desired thpuigh
Many slices simultaneously contending for the CPU can adad |
to jitter in scheduling a forwarding process, which marigetself
in an overlay network as added latency.

PL-VINI leverages two recently exposed CPU scheduling knobs
on PlanetLab: CPU reservations and Linux real-time piesiR5].

A CPU reservation of 25% provides the slice with a minimum of
25% of the CPU during the times that it is active, though it may
get more than this if no “fair share” slices are running. Boasa
process to real-time priority on Linux cuts the time betwadren

a process wakes up (e.g., receives a packet) and it runsl-fimea
process that becomes runnable immediately jumps to the dfead
the run-queue and preempts any non-real-time process. thate
even real-time processes are still subject to PlanetLaBl f&ser-
vations and shares, so a real-time process that runs amalotcan

Lab must continue to support a large user base, we cannot makeock the machine. These two PlanetLab capabilities progidater

extensive changes to the kernel. We expect more functigrtali
be provided by the infrastructure itself as we gain insigbtrf our
initial experiences.

isolation for a VINI experiment running in a slice. In Secti®2we
describe several additional extensions we are explorimydeide
even better isolation betwe&-VINI slices.



4.1.3 Virtual Network Devices

A networking experiment running in a slice in user space seed
the illusion that each virtual node has access to one or netveonk
devices. Our prototype leverages User-Mode Linux (UM2§][

a full-featured Linux kernel that runs as a user-space gder

this purpose. For each user-space tunnel in our overlayidgpo
PL-VINI creates a pair of interfaces on a common subnet in the
UML instances at its endpoints. Routing software runnirgjde
UML is in this way made aware of the structure of an overlay net
work. PL-VINI then maps packets sent on these network interfaces
to the appropriate tunnel at a layer beneath UML. We note\that
olin [6] also uses an overlay network to connect UML instances.
However, the goal of Violin is to hide topology from Grid ajual-
tions, wherea®L-VINI uses network interfaces in UML to expose
a tunnel topology to the routing software that runs above it.

Our prototype also uses a modified version of Linux's TUN/TAP
driver to allow applications running in the networking exXpgent’s
slice to send and receive packets on the overlay. A process ru
ning in user space can read frof@lev/net/tunX to receive pack-
ets routed by the kernel to the TUN/TAP device; similarlycla
ets written to/dev/net/tunX are injected back into the kernel's
network stack and processed as if they arrived from a network
device. Our modifications to the driver allow it to preserhe t
isolation between different slices on PlanetLab: evergesiees
a single TUN/TAP interface with the same IP address, but our
changes allow multiple processes (in different slicesyegmdrfrom
/dev/net/tunX simultaneously, and each will only see packets
sent by its own slice.

For PL-VINI, we create a virtual Ethernet device calteh0 on
every PlanetLab node. We give eachkp0 device a unique IP ad-
dress chosen from the 10.0.0.0/8 private address spacenmiBains
that each PlanetLab node’s kernel will route all packetschiag
10.0.0.0/8 tcap0 and onto that slice’s own overlay network.

4.2 |IAS: “Internet In a Slice” Architecture

Thelnternet In a Slic€llAS) is the example network architecture
that we run on ouPL-VINI. Researchers can use IIAS to conduct
controlled experiments that evaluate the existing IP nmufroto-
cols and forwarding mechanisms under realistic conditigxiter-
natively, researchers can view IIAS as a reference impléatien
that they can modify to evaluate extensions to today’s patoand
mechanisms. An IIAS consists of five componer2¥||

1. aforwarding engine for the packets carried by the oveday
overlayrouter);

. asmart method of configuring the engine’s forwardingesbl
(acontrol plang; and

. a mechanism for clients to opt-in to the overlay and divert
their packets to it, so that the overlay can carry real trédfic
overlayingress;

. ameans of exchanging packets with servers that know noth-
ing about the overlay, since most of the world exists outside
of it (an overlayegres$;

. a collection ofdistributed machinesn which to deploy the
overlay, so that it can be properly evaluated and can attract
real users.

Our 1IAS implementation synthesizes many components edeat
by the networking research and open source communitiesS [IA

data plane

UmISwitch
element

‘ encapsulation table ‘

by 3

— 1

UL

UDP tunnels

Click
(S

Y

tap0

Figure 1: An lIAS router on PL-VINI

employs the Click modular software routel(] as the forward-
ing engine, the XORP routing protocol suit@] [as the control
plane, OpenVPNI1] as the ingress mechanism, and performs NAT
(within Click) at the egress. Since we run IIAS &b-VINI, [IAS

can also us®L-VINI’s tap0 device as an ingress/egress mecha-
nism for applications running onRL-VINI node.

Figurel shows the IIAS router supported BL-VINI . Routing
protocols implemented by XORP, running unmodified in a UML
kernel process, construct a view of the overlay network ltwgpo
exposed by the virtual Ethernet interfaces. Each XORP nigsta
then configures a forwarding table (FIB) implemented in ICli
process running outside of UML. This means that data padkets
warded by the overlay do not enter UML, which leads to better p
formance since forwarding data packets in the UML kerneliiac
nearly 15% additional overhea@]][ Next we discuss significant
features of each component in the IIAS software.

421 Click: Links and Packet Forwarding

IIAS uses the Click modular software router( as its virtual
data plane. Our Click configuration consists of five comptsen
that create the illusion of point-to-point links to othertual nodes
and enable the virtual nodes to forward data packets:

e UDP tunnels: UDP tunnelsi(e., sockets) are the links in the
I1AS overlay network. Each Click instance is configured with
tunnels to each of its neighbors in the overlay.

e Local interface: Click reads and writes Ethernet packets to
PL-VINI's local tap0 interface. Packets sent by local appli-
cations to a 10.0.0.0/8 destination are forwarded by thesgter
to tap0 and are received by Click. Likewise, Click writes
packets destined forap0's IP address to the interface, in-
jecting the packets into the kernel which delivers them & th

proper application.

e Forwarding table: Click’s forwarding table maps IP pre-
fixes (both within and outside of 1IAS’s private address



space) to “next hops” within 1IAS. The forwarding table is
initially empty and is populated by XORP. Since XORP sees
a network of virtual Ethernet interfaces, the “next hops” in
serted by XORP are the IP addresses of the virtual interfaces
on neighboring nodes.

Encapsulation table: The preconfigured encapsulation table

matches the “next hop” selected by the forwarding table to
a UDP tunnel by mapping it to the public IP address of a
PlanetLab node.

UML Switch: Click exchanges Ethernet packets with the
local UML instance via a virtual switchufil_switch) dis-
tributed with UML. We wrote a Click element so that Click
could connect to this virtual switch.

Two points about the IIAS data plane are worthy of note. First
the forwarding table in IIAS controls both how data and cohtr
traffic is forwarded between IIAS nodes, and how traffic is- for
warded to external destinationise(, on the “real” Internet). Sec-
ond, though IIAS currently performs IPv4 forwarding, it calso
support new forwarding paradigms beyond IP. Our design bas n

fundamental dependence on IP since Click exchanges Etherne

frames with UML (via the virtual switch) and the locakpO in-
terface. One could implement a new addressing scheme in IIAS
for instance based on DHTSs, simply by writing new forwardamgl
encapsulation table elements.

4.2.2 XORP: Routing

IIAS uses the XORP open-source routing protocol s@ias its
control plane. XORP implements a number of routing protecol
including BGP, OSPF, RIP, PIM-SM, IGMP, and MLD. XORP ma-
nipulates routes in the data plane through a Forwardingriengjb-
straction (FEA); supported forwarding engines include lthix
kernel routing table and the Click modular software routehni¢h
is why we chose XORP for IIAS).

The main complication of running XORP on PlanetLab is the
lack of physical interfaces to correspond to each virtud In our
configuration. XORP generally assumes that each link to ghrei
boring router is associated with a physical interface; O8BE& as-
signs costs to network interfaces. In our Click data planteri
faces conceptually map to sockets and links to tunnels. eftwe,
to present XORP with a view of multiple physical interfaces
run it in UML and map packets from each UML interface to the
appropriate UDP tunnel in Click.

An important feature of IIAS is that it decouples the contaod
data planes by placing the routing protocol in a differemtual
world than the forwarding engine. In fact, decoupling thetcol
and data planes in this way means that XORP could run in ardiffe
ent slice than Click, or even on a different node.

423 OpenVPN and NAT: External Connectivity

IIAS is intended to enable realistic experiments by cagyieal
traffic generated by outside hosts, as well as applicatiomsing on
the local node. IIAS uses OpenVPM]] as an ingress mechanism;
I1AS runs an OpenVPN server on a set of designated ingressnod
and hosts “opt-in” to a particular instance of IIAS by contiveg an
OpenVPN client that diverts their traffic to the server. OpeN is
a robust, open-source VPN access technology that runs odea wi
range of operating systems and supports a large user cortymuni
Note that OpenVPN creates a TUN/TAP device on the clientto in
tercept outgoing packets from the operating system, justeado
in PL-VINIand IIAS.

PL-VINI

198.32.154.170 198.32.154.250 198.32.154.226: 64.236.16.2(

-XORP -XORP b’\j
umL umL i
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O
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®
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Figure 2: The life of a packet in IIAS (shown shaded) running @ PL-
VINI (dotted box)

1IAS’s Click forwarder implements NAPT (Network Address
and Port Translation) to allow hosts participating in 11AG ex-
change packets with external hosts that have not “optedlik€ a
Web server). IIAS forwards packets destined for an extenoat
to an egress point, where they exit IIAS via NAPT. This inedv
rewriting the source IP address of the packet to the the egae’s
public IP address, and rewriting the source port to an aviailacal
port. After passing through Click's NAPT element, a packetent
out and forwarded to the destination by the “real” Internidbte
that, since the packets reaching the external host bearotirees
address of the IIAS egress node, return traffic is sent batkaio
node, where it is intercepted by IIAS and forwarded back ® th
client.

PL-VINI’s tap0 interface provides another ingress/egress mech-
anism for other applications running in the same slice a$!IFor
example, in the experiments described in Sedhiome sendipert
packets through the overlay usingpo0.

4.2.4 1IAS Summary: Life of a Packet

Figure2 ties together the discussion of the various pieces of I11AS
by illustrating the life of a packet as it journeys througle thAS
overlay. In Figure2, the Firefox web browser on the client machine
at left is sending a packet toww.cnn.com at right through 11AS
(shown shaded). The steps along the packet’s journey are:

1. Firefox sends a packet to CNN. The routing table of thentlie
directs the packet to the locedp0 device that was created by
OpenVPN. This device bounces the packet up to the Open-
VPN client on the same machine. The packet has a source
of 10.0.87.2 (the locatap0 address) and a destination of
64.236.16.20 (the IP address of CNN'’s web server).

. The OpenVPN client tunnels the packet over UDP to an
OpenVPN server running on a nearby IIAS node. The packet
is encapsulated in IP, UDP, and OpenVPN encryption head-
ers. The OpenVPN server removes the headers and forwards
the original packet to Click over a local Unix domain socket.

. Click looks up 64.236.16.20 in its forwarding table andosa
itto the IP address of a UML interface on a neighboring node.
Click consults the encapsulation table to map the UML ad-
dress t0 198.32.154.250 (the real IP address of the next hop)
and sends the packet over a UDP tunnel to the latter address.
The same process happens again on the next node.

4. The Click process running on 198.32.154.226 receives the

original packet from a UDP tunnel, consults the forwarding
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table, and sees that it is the egress node for 64.236.16.20. Figure 4: Overlay topology on DETER

Click sends the packet through its NAPT element, which

0,
rewrites the source IP address to the laelo address, and Network meag ég/l b/s) std(;j v mean4gPU %
rewrites the source port to an available local port (portitew TAS 195 0843 99
ing is not shown in Figur@). Click then directs the packet to -
www . cnn. com Via the public Internet. Table 2: TCP throughput test on DETER testbed

Then, the packet traverses the rest of the path through temét min avg | max | mdev | % loss
to the CNN Web server. The response packets from CNN have a Network | 0.193 | 0.414 | 0.593 | 0.089 0
destination IP address of 198.32.154.226, ensuring theyrréo IIAS 0.269 | 0.547 ] 0.783] 0.080 0

the client through the VINI node. Table 3: ping results on DETER; units are ms

5. F,)re“mlnary Exp.erlments ) . to send 20 simultaneous streams from a client to a servenghro
In this section, we describe two experiments that we havérun  the ynderlying network anBL-VINI . We measure behavior with
IIAS on PL-VINI. These experiments are intended not to demon- jerf's constant-bit-rate UDP test, observing the jitter andslos

stratePL-VINI as a “final product”, but rather as a proof of concept  rate of packet streams (with 1430-byte UDP payloads) ofingry

that highlights the efficiency, correctness, and utilitytieé VINI rates. Each testis run 10 times and we report the mean ardhstan
design. The microbenchmark experiments (Secfdl demon- deviation. When measuring the capacity?af VINI, we also report
strate thaPL-VINI provides a level of support for networking ex-  the mean CPU percentage consumed by the Click process (bsing
periments comparable to running on dedicated hardwa@yial TIME field as reported bys).

the experiment’s throughput and traffic flow characterssta@mir-

ror that of the underlying network. Next, intra-domain iiagtex- 5.1.1 Microbenchmark #1: Overlay Efficiency

perimgnts (Sectiob.2) on the Abilgne topology demo.nstrate. that First we compare the capacity and behavior of IIAS’s usecsp
meaningful results for such experiments can be obtainet#i- Click forwarder versus in-kernel forwarding. The experittseare

VINI on PlanetLab. run on the DETER testbed, which allows a researcher to speuif
51 Microbenchmarks qrbltrary netwprk topology for an experiment, |nclud.|nglﬂaj|ed
) ) link characteristics such as delay and loss rate, using script.

The purpose of the microbenchmarks is to demonstratePthat The machines used in the experiment pe@s00 2.8 GHz Xeons

VINI can support an interesting networking experiment on Planet \yiih 2 GB memory and five 10/100/1000 Ethernet interfaced, an
Lab. To this end, we first establish that the IIAS overlay elsa are running Linux 2.6.12.

like a real network when run on dedicated hardware in antisdla Our experiments run on a simple topology shown in Figire

environment, and then show tHaL-VINI can provide IIAS witha  ¢onsisting of three machines connected by Gigabit Etheimiet
similar environment on PlanetLab. ) that do not have any emulated delay or loss. In this topoltiwy,

In order to provide a realistic enqunment for network axpe machineFwdr is configured as an IP router; a packet sent f@m
ments PL-VINI must enable IIAS to deliver along two dimensions: Sink or vice-versa, is forwarded iRwdr's kernel. We compare
the performance of the network with that of IIAS running oe th
same three nodes. We configure a Linux TUN/TAP device on each
node to divert packets sent hyperf to the local Click process.
Click then tunnels the packets over the topology as showrign F

e Behavior: To boost our confidence that observed anomalies Ure 4. The key difference between the two scenarios is that IIAS
are meaningful network events and not undesirable arsifact makes the the forwarding decisions in user space ratheiinttae
of thePL-VINI environment, I1AS should exhibit roughly the ~ Linux kernel.
same behavioral characteristics as the underlying network Table2 shows the results of the TCP throughput test for the IIAS
overlay versus the underlying network. 11AS is not as effitias
We run two sets of experiments to measure the capacity and be-the network alone: it manages to achieve about 10% of thedifro

e Capacity: To attract real users and real traffic, IIAS must be
able to forward packets at a relatively high rate. If IIAS’s
performance is bad, nobody will use it.

havior of 11AS. The first set of experiments runs on dedicated put with an equal amount of CPU. The throughput achieved by th
chines on DETERT6], which is based on Emulali]; we quantify Linux kernel, 940Mb/s, was roughly the maximum supported by
the efficiency of the IIAS overlay by evaluating the perfonoea of the configuration, and even at this maximum rate the CPEWafr

DETER’s emulated network topology versus IIAS running dyeit was 52% idle. In comparison, Click’s forwarding rate is CPU-

same topology. The second set of experiments repeats thERET bound. Runningstrace on the Click process indicates (not sur-
experiments on PlanetLab; here we quantify the effects ofimgo prisingly) that the issue is system-call overhead: for gaatket
IIAS from dedicated hardware (DETER/Emulab) to a sharett pla forwarded, Click callspoll, recvfrom, andsendto once, and
form (PlanetLab), and then show how PL-VINI'S support forlCP  gettimeofday three times, with an estimated costifs per call.
reservations and real-time priority reduce CPU contention For sendto andrecvfrom, this cost appears to be independent of
The microbenchmark experiments are run usipgrf version packet size. Reducing this overhead is future work. Howestep-
1.7.0 R8]. We measure capacity usingert’s TCP throughput test ping back, we observe that even 200Mb/s is a significant amoun
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Figure 5: PlanetLab topology for microbenchmarks

Mb/s | stddev | CPU%
Network 90.8 0.53 N/A
IIAS on PlanetLab|| 22.5 4.01 13
1IAS on PL-VINI 86.2 0.64 40

Table 4: TCP throughput test on PlanetLab

min | avg | max | mdev | loss

Network 244|245 28.2| 0.2 0%
IIAS on PlanetLabl|| 24.7 | 27.7 | 80.9 | 4.8 0%
IIAS on PL-VINI 247 25.1| 28.6| 0.38 | 0%

Table 5: ping results on PlanetLab; units are ms

mean | stddev
Network 0.27 0.16
IIAS on PlanetLab|| 2.4 3.7
IIAS on PL-VINI 1.3 0.9

Table 6: Summary of jitter results on PlanetLab; units are ms

of throughput for a networking experiment, as it far oupsrthe
available bandwidth between edge hosts in the Interneytoda

Next we compare the fine-grained behavior of the network and
IIAS. Table3 shows the results of measuring latency on the overlay
and network usinging -f -c 10000. We see that IIAS adds
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Figure 6: Packet losses in IIAS on PlanetLab

that CPU contention in particular is likely to be a problem Ri.-
VINI on PlanetLab; howevePL-VINI uses CPU reservations and

about130pus latency on average, but doesn’t change the standardreal-time priorities to provide consistent CPU schedubiegpavior.

deviation of ping times. Likewise, running UDP CBR strearhs a
rates from 1Mb/s to 100Mb/s over the network and IIAS did not
reveal significant jitter in either case. In all UDP CBR tesiserf
observed jitter of less than 0.1ms and no packet losses.

5.1.2 Microbenchmark #2: Overlay on PlanetLab

The next set of microbenchmarks contrasts the behavio A& 11
running on dedicated hardware (DETER) to a shared platform
(PlanetLab) an®L-VINI. Our main concern is that the activities of
other users on a shared system like PlanetLab can negadiffett
the performance of IIAS. To test this, we repeat the exparme
of Section5.1.10n three PlanetLab nodes co-located with Abilene
PoPs. Figuré shows the topology of the PlanetLab nodes and the
underlying Abilene network, as revealed by runnitithceroute
between the three nodes. The Chicago and Washington, ag- Pl

Therefore, we run our experiments from Sectih.1using Plan-
etLab’s default fair share (“IIAS on PlanetLab”), as wella&5%
CPU reservation plus a priority boost for the IIAS Click pess
(“lIAS on PL-VINI " in the tables and graphs). The CPU reserva-
tion improves the overall capacity of IIAS by giving it mordPQO,
while the boost to real-time priority reduces the schedulatency
of the Click process and so improves end-to-end overlandgte
Table4 shows the results of the bandwidth test with both sets of
CPU scheduling parameters. We note that, WithVINI, 1IAS ap-
proaches the underlying network in both observed througapd
variability of the result. Running IIAS oRL-VINI provides a 4X
increase in throughput and reduces variability by over 80%.
Focusing on fine-grained behavior of IIAS on PlanetLab, &abl
presents results using ping. IIAS clearly introduces $icgunt vari-
ability in the latency measurements when run with the déethdre:

etLab nodes are 1.4 GHz P-Ill, and the New York node is a 1.267 the standard deviation PL-VINI ping times is over 20X that of the

GHz P-lll; all nodes have 1 GB of memory. Again, we compare the
capacity and behavior of 1IAS with that of the underlyingwetk.
Note that the network traffic between Chicago and Washintygon
verses the three routers only, but IIAS traffic traverges router
hops since it is forwarded by the Click process on the New York
node and so visits the local router twice. Because the linkké
Abilene backbone are lightly loaded, we do not expect to gge s
nificant interference from cross traffic.

PlanetLab makes running meaningful experiments chaltengi
because it is shared among many users, whose actions mayechan
the experimental results. The Emulab microbenchmarksateli

network. PL-VINI again improves 1IAS’s overall behavior, reduc-
ing maximum latency by two-thirds and standard deviatiomwsr
90%. In this case IIAS introduces a small amount of addititara
tency, and the variability in ping times is roughly doublattbf the
underlying network.

Table6 shows the effects d?L-VINI on jitter in the IIAS overlay.
The experiment sends CBR streams between 1Mb/s and 50Mb/s on
the network and overlay; jitter did not appear to be coresglatith
stream size and so we report the the jitter results acrosgraiims.
Here we see that running IIAS dPL-VINI halves the mean jitter
and reduces the variation in test results by 75%.
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Figure 8: Observing OSPF route convergence (using ping)

Figure 6 shows packet loss in the same set of experiments. In-

terestingly, with the default share on PlanetLab, IIAS $ogackets
dramatically as the traffic rate increases as shown in Fi§(aj®
Our hypothesis is that this is due to scheduling latency ®Ghick
process: packets are arriving at a constant rate on the Ufeltu
and Click needs to read them at a faster rate than they avéngrri
or else the UDP socket buffer will overflow and the kernel @ithp
packets. However, if Click’s scheduling latency is highmiy not
get to run before packets are dropped. This hypothesis fgo@d
by running IIAS onPL-VINI : Figure6(b) shows packet loss with
PL-VINI comparable to that measured in Abilene itself.

We conclude from these microbenchmarks tRatVINI and
IIAS together provide a close approximation of the underdynet-
work’s behavior. Clearly, running traffic through an ovgridoes
introduce some overhead and additional variability. Inrtbet ex-
periment we try to demonstrate that the value of being abtero
I1AS using PL-VINI outweighs this additional overhead.

5.2 Intra-domain Routing Changes

To validate that together IIAS arfeL-VINI provide a reasonable
environment for network experiments, we use them to conduoct
intra-domain routing experiment on the PlanetLab nodelecated
with the eleven routers in the Abilene backbone, as showrign F

ure 7. To conduct a realistic experiment, we configure IIAS with
the same topology and OSPF link weights as the underlying Abi

lene network, as extracted from the configuration stateeétbven
Abilene routers. That is, each virtual link maps directlyatsin-
gle physical link between two Abilene routers. Analyzingitro
ing traces collected directly from the Abilene routers desls to
verify that the underlying network did not experience anytimag

changes during our experiment.
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Figure 9: TCP throughput during OSPF routing convergence

Our experiment injects a failure, and subsequent recowétlie
link between Denver and Kansas City, and measures the ffect
end-to-end traffic flows. For this experiment, we “fail” thiek
by dropping packets within Click on the virtual link (UDP 1)
connecting two Abilene nodes. We use ping, iperf, and tcgaton
measure the effects on data traffic.

Figure8 shows the effect on ping times between D.C. and Seattle
of failing the link between Kansas City and Denver 10 secamtts
the experiment, and restoring the link at time 34 secondgally,
IIAS routes packets from D.C. through New York, Chicago,iind
anapolis, Kansas City, and Denver to Seattle, with a meandrou
trip time (RTT) of 76ms. Attime 17, 7 seconds after the link fails,
OSPF briefly finds a path withl0m.s RTT before settling on a new
route through Atlanta, Houston, Los Angeles, and Sunnywitle
amean RTT of3ms>. A few seconds after the link comes back up
at time 34, we see that OSPF briefly finds a path ®ithns before
falling back to the original path.

Figure9 shows the performance of TCP during the same experi-
ment by usingiperf to send a bulk TCP transfer from Washington,
D.C. to Seattle. The TCP receiver window size is sefgerf’s de-
fault of 16 KB, so TCP’s throughput is limited to roughly 3 Nb/
The figure plots the arrival time of data packets at the recens
reported bytcpdump. Figure9(a)shows that packets stop getting
through when the link fails at time 10, and resume at time 18rwh
OSPF finds the a new route. Figu®é) shows what happens at

3For this experiment, the interval between OSPF hello paciseset at 5
seconds, and the “router dead” interval is 10 seconds.



time 18 in more detail; thg axis shows the position in the byte

with the routing software running on the virtual nodes, tovalex-

stream of each arriving TCP packet. The figure shows TCP slow- periments to exchange BGP messages with neighboring demain

start restart in action, then a retransmitted packet, and start
again. Figur@(a)also shows some disruption in the TCP through-
put when OSPF falls back to the original path around time 38.
These experiments do not illustrate any new discoveriesitabo
OSPF or its interaction with TCP. Rather, we argue that they
demonstrate oneould make such discoveries usif)--VINI and
IIAS, since PL-VINI enables IIAS to behave like a real network
on PlanetLab. Experiments such as this can help researstuelss
routing pathologies that are difficult to observe on a reavoek,
where a researcher has no control over network conditions.

6. Ongoing Work

In this section, we discuss our ongoing work on VINI. Specifi-
cally, we discuss some of the design goals from Se@itmat we
have yet to address and describe possible solutions to finebe
lems. First, we discuss two ways to improve the realism of RIN
experiments: by exposing the underlying topology changelsby
enabling experiments to exchange routing-protocol messagth
neighboring domains. We then describe our ongoing efforfsa-
vide researchers with better experimental control by atigi@eam-
less migration from simulator®(g, ns-2) and emulation environ-
ments €.g, Emulab) to VINI. Finally, we propose techniques to
provide better isolation between experiments.

6.1 Improving Realism

Exposing network failures and topology changes:The fail-
ure or recovery of a physical component should affect eacheof
associated virtual components, as discussed in Se8tibnOur
PL-VINI prototype does not achieve this goal because theeund
lying network automatically reroutes the traffic betweeio thAS
nodes when the topology changes. Although masking failiges
desirable to most applications, researchers using VINI magt
their protocols and services to adapt to these events tiesssan
different ways; at a minimum, the researchers would wanhtmk
that these events happened, since they may affect thegestilte
experiments. As we continue working with NLR and Abilene, we
are exploring ways to expose the topology changes to VINgat r
time, and extending our software to perform “upcalls” toifyathe
affected slices.

Participating in routing with neighboring networks: As dis-
cussed in SectioB.4, multiple VINI experiments may want to ex-
change reachability information with neighboring netwsoik the
real Internet. Having each virtual node maintain separ&®e Bes-
sions introduces problems with scaling (because the nuoftsas-
sions may be large as the number of experiments grows), raanag
ment (becausbothsides of the BGP session must be configured),
and stability (unstable, experimental software couldodtice in-
stability into neighboring networks and the rest of the inét).

To avoid these potential issues, we are designing and ingsiem
ing a multiplexer that manages BGP sessions with neightyorét-
works and forwards (and filters) routing protocol messagésden
the external speakers and the BGP speakers on the virtuasnod
Each experiment might have its own portion of a larger addres
block that has already been allocated to VINI. The multipfean-
sures that each virtual node announces only its own addpese s

6.2 Improving Control

Better isolation: VINI should be able to support multiple simul-
taneous experiments with strict resource guarantees &br gice,
as discussed earlier in Secti8rt. Adding support for CPU reser-
vations and real-time priority helps isolate a PL-VINI expeent
from other slices, but PL-VINI arguably needs better isotat The
first step is to implement a non-work-conserving schedtiat én-
sures that each experiment always receives the same CRdtalo
(i.e., neither less nor more), which is necessary for repeatable e
periments. To allow researchers to vary link capacitiesalse plan
to add support for setting link bandwidths, either via camfigion
of traffic shapers in Click, or in the kernel itself.

Experiment specification: Beyond the existing support for con-
structing arbitrary topologies and failing links, VINI shid also
provide the ability taspecifyexperiments. In anssimulation fL3],
an experimenter can generate traffic and routing streanesjfgp
times when certain links should fail, and define the traced th
should be collected. VINI should provide similar facilgiéor cre-
ating an experiment. We envision that VINI experiments widog
specified using the same type of syntax that is used to cansisu
or Emulab [L5] experiments, so that researchers can move an ex-
periment from Emulab to VINI as seamlessly as possible, eopa
a natural progression. We are currently working on such aispe
fication for IIAS, which already allows an experimenter t@sify
the underlying topology, the intradomain routing adjadées@nd
internal BGP sessions, and the times these links and sedsitn

We envision that aspects of a VINI experiment, such as tepolo
gies, routing configurations, and failures, could be drikgrireal
world” routing configurations and measurements. PL-VINI5-
rent machinery for mirroring the Abilene topology autoratly
generates the necessary XORP and Click configurations @ted-d
mines the appropriate co-located nodes at Abilene PoPa)JtiX|
experiment from the actual Abilene routing configuratioxpleit-
ing the configuration-parsing functionality from previowsrk on
router configuration checkindl®]. Eventually, we intend to aug-
ment VINI to incorporate more of the routing configuratiorioin
XORP and Click and also support playback of routing traces.

7. Conclusion

This paper has described the desigrnvéiil, a virtual network
infrastructure for supporting experimentation with netkvproto-
cols and architectures in a realistic network environmevitNI
complements the current set of tools for network simulatod
emulation by providing a realistic network environment veigy
real routing software can be evaluated under realistic odtwon-
ditions and traffic loads with closed-loop experimentatidfe first
outlined the case for VINI, providing both design principland
an implementation-agnostic design. Based on this higbHMiNI
design, we have presented one instantiation of VINI on tlaa-PI
etLab testbedPL-VINI. Our preliminary experiments in Sectién
demonstrate tha®L-VINI is both efficient and a reasonable reflec-
tion of network conditions.

Once VINI is capable of allowing users to run multiple viftua

and may also impose limits on the rate of BGP update messagesnetworks on a single physical infrastructure, it may algonately

that are propagated from each experiment. Our current imgrhe
tation of the BGP multiplexer is implemented as multiple¢amses
of XORP, each running in UML and communicating with a single
external speaker. Each instance of XORP maintains BGPossssi

serve as a substrate for new network protocols and servitasrtg
it useful not only for research, but also for operations).cese
VINI also provides the ability to virtualizany component of the
network, it may lower the barrier to innovation for netwdaler



services and facilitate new usage modes for existing potgéodVe
now briefly speculate on some of these possible usage modes.

First, VINI allows a network operator to simultaneously run
different routing protocols (and even different forwaglimecha-
nisms) for different network services. Previous work haseobed
that operators occasionally route external destinatidtisam inter-
nal routing protocol€.g, OSPF, 1S-IS) that scales poorly but con-
verges quickly for applications that require fast convamgeg.g,
voice over IP) 12]. With VINI, a network operator could run multi-
ple routing protocols in parallel on the same physical istitacture
to run different routing protocols for different applicatis.

Second, VINI could be used to help a network operator with
common management tasks. For example, operators roupeely
form planned maintenance operations that may involve timgak
the configurations across multiple network elemeatg,(changing
IGP link costs to redirect traffic for a planned maintenangng.
Similarly, they may occasionally wish to incrementally spnew
versions of routing software, or test bleeding-edge cod&/IM-
enabled network could allow a network operator to run midtip
routing protocols (or routing protocol versions) on the sgwhys-
ical network, controlling the forwarding tables in the netw ele-
ments in one virtual network at any given time, while prorglthe
capability for atomic switchover between virtual networks

VINI's future appears bright, both as a platform for both exp
imentation and more flexible network protocols and servidéss
paper has demonstrated VINI's feasibility, as well as itseeptal
for enabling a new class of controlled, realistic routingenments.
The design requirements we have specified, and the lessdmwe
learned from our initial deployment, should prove usefuhason-
tinue to develop VINI and deploy it in various forms.
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