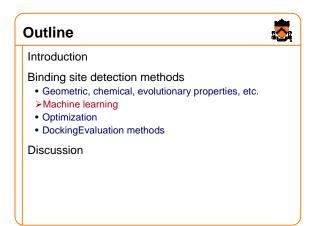
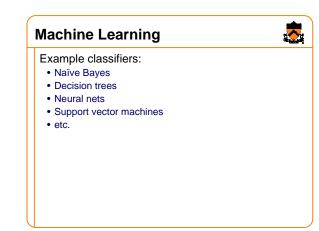
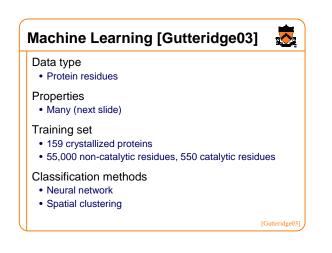
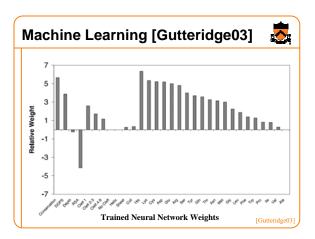
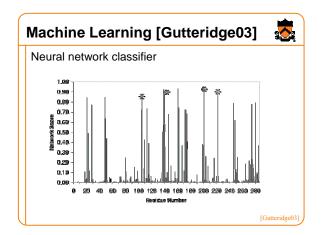

Learned distribution	ns of prope	erties:	
Surface cavity property	Calegory	Drug-binding cavities	Non drug-binding cavities
Cavdy netk* Number of available* Number of available* Depth standbard of available* Depth standbard of available Depth standbard of available Normaliable standbard to mented of inertia* Normaliable standbard to the theorem (K. 6, 6, 757/ Largest to normalist to depth between (K. 6, 6, 757/ Largest to normalist to depth between (K. 6, 6, 757/ Largest to normalist to depth between (K. 6, 6, 757/ Maximum rouws conversions* Carvediness < 0.57 Properties of century with high between (-1, 0, 07 Schwartzen with entry standbard	Size Size Size Sizehape Sizehape Sizehape Sizehape Sizehape Sizehape Sizehape Size Size Size Size Size Size Size Siz	$\begin{array}{c} 1.89 = 2.07\\ 22.8 = 1.1.3\\ 85.0 = .02.4\\ 1.7 \times 10^3 = 2.5 \times 10^4\\ 2.3 = 1.1 (Å^5)\\ 1.05 = 4.9 (Å)\\ 1.05 = 4.9 (Å)\\ 1.05 = 4.9 (Å)\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.1.7\\ 1.05 = 1.05 = 1.05\\ 1.05 = 1.05$	$\begin{array}{l} 8.88 \pm 5.4 \\ 7.31 \pm 5.4 \\ 18.7 \pm 21.3 \\ 1.2 \times 10^{-1} \pm 6.3 \times 10^{0} \\ 4.75 \pm 0.45 \\ 4.75 \pm 0.45 \\ 1.3 \pm 0.167 \\ 1.3 \pm 0.167 \\ 2.8 \times 10^{0} \pm 1.6 \times 10^{0} \\ -0.55 \pm 0.25 \\ -0.75 \pm 0.16 \\ 4.0 \pm 4.9 \\ 3.3 \pm 4.2 \\ 0.04 \pm 0.090 \\ 0.55 \pm 0.16 \\ 0.55 \pm 0.117 \end{array}$

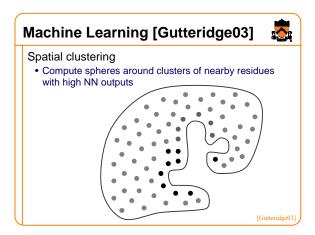


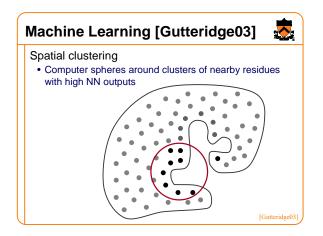


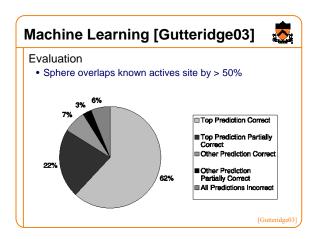

Machine Learning

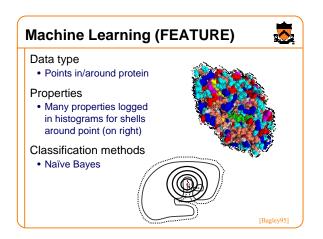


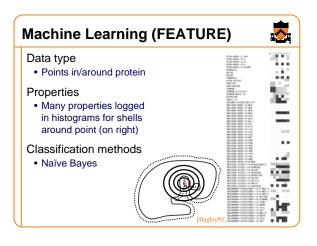

Build classifier to recognize functional residues/sites from multiple properties:

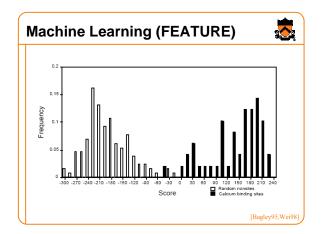

- Depth
- Solvent accessibility
- Propensity
- Conservation
- Hydrophobicity
- Secondary structure type
- Pocket size
- Amino acid
- etc.

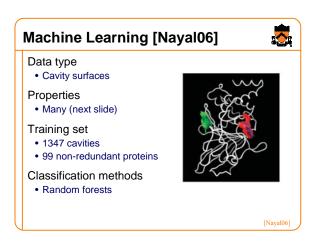


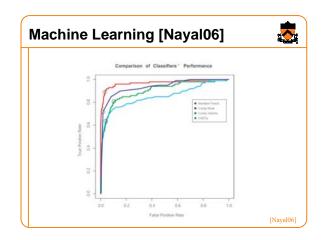


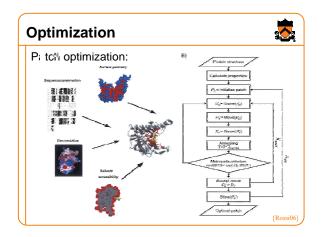


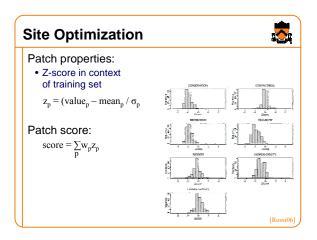




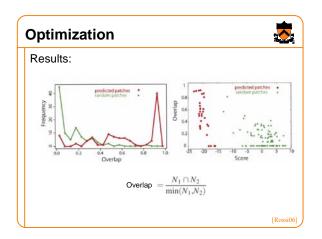


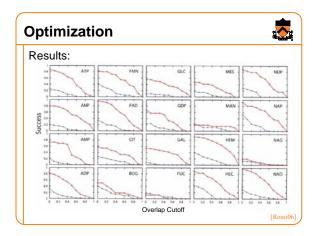






Surface cavity property	Category	Drug-binding cavities	Non drug-binding cavities
Cavity rank*	Size	1.89 ± 2.07	8.88 ± 5.4
Number of residues ^b	Size	22.8 ± 14.3	7.31 ± 5.4
Number of atoms*	Size	85.0 ± 62.4	18.7 ± 21.2
Smallest moment of inertia ⁴	Size/shape	$1.7 \times 10^4 \pm 2.5 \times 10^4$	$1.2 \times 10^{3} \pm 8.3 \times 10^{3}$
Depth standard deviation*	Simishape	2.3 ± 1.1 (Å ³)	0.75 ± 0.45
Moximum depth ⁴	Simishape	10.5 ± 4.0 (Å)	4.75 ± 1.67
Average depth st Normalized smallest moment of inertia ^b	Sizeéhape	5.3 ± 1.9 (Å)	3.2 ± 0.7 3.9 ± 5.3
Proportion of cavity at depth between 16.5, 6.757	Shape	17.0 = 11.7 0.02 = 0.013	3.9 ± 5.3 0.003 ± 0.001
Propertion of cavity at depth between [0.5, 6, 757 Largest moment of inertial	Size/shape	0.02 ± 0.013 $1.6 \times 10^4 \pm 8.4 \times 10^4$	$2.8 \times 10^3 \pm 1.6 \times 10^4$
Average side-chains residual entropy ^b	Rigidity	-0.41 ± 0.18 (kml)	-0.55 ± 0.25
Average suc-chains residual entropy-	Shape	-49.0 ± 8.3	-57.0 = 13.1
Maximum curvedness ⁴⁶	Shars	6.4 = 2.9	4.0 = 4.9
Maximum mean curvature*	Shape	53 = 2.6	3.5 ± 4.2
Curvedness < 0.5"	Share	0.35 ± 0.04	0.29 ± 0.08
Proportion of proline ¹⁰	Amine acid composition	0.019 ± 0.028	0.04 ± 0.09
Proportion of cavity with logP between 1-1, 0/9	Hydrophobicity	0.09 ± 0.07	0.15 ± 0.16
Side-chain residual entropy standard deviation*	Rigidity	$0.43\pm0.18(kml)$	0.55 ± 0.17

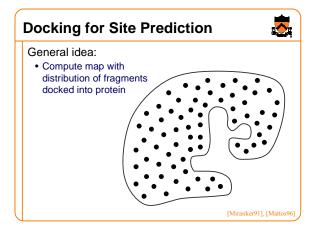


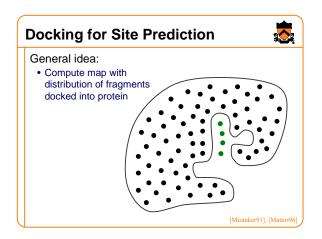

5 5 Outline Optimization Introduction Patch optimization: • Define patch as set of contiguous residues Binding site detection methods • Compute patch properties • Geometric, chemical, evolutionary properties, etc. Compute patch score • Machine learning • If not optimal, ≻Optimization grow/shrink patch Docking and iterate itch Evaluation methods Discussion

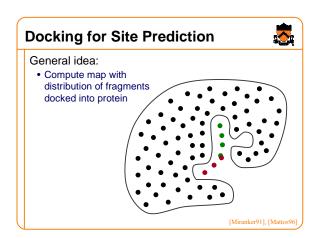
[Rossi06]

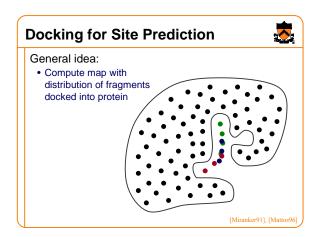
Outline

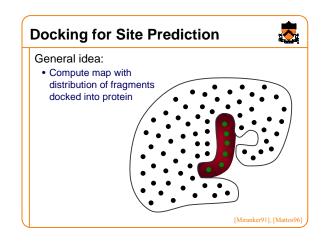
Introduction

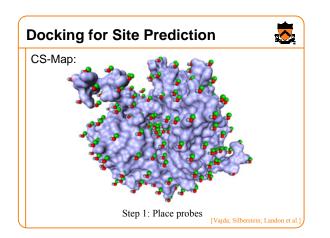

- Binding site detection methods
- Geometric, chemical, evolutionary properties, etc.

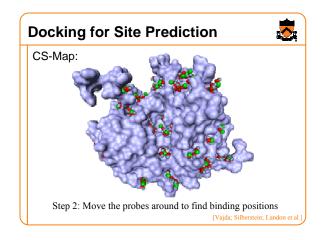

5

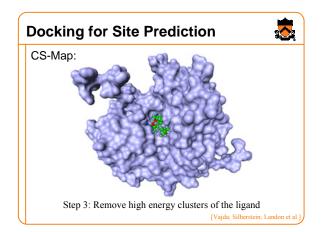

- Machine learning
- Optimization
- ≻Docking

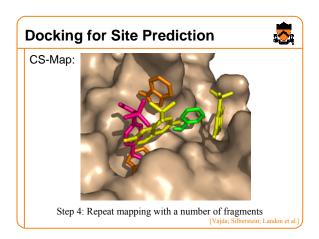

Evaluation methods

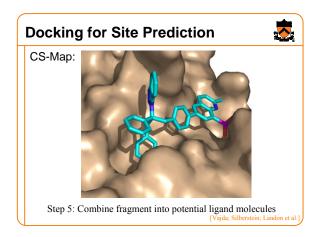

Discussion

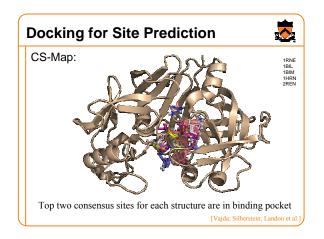


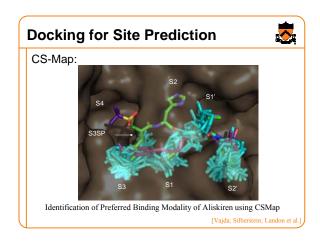


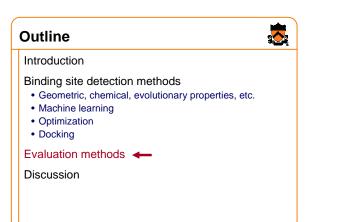


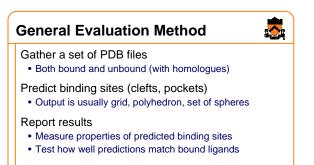




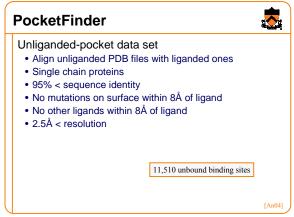


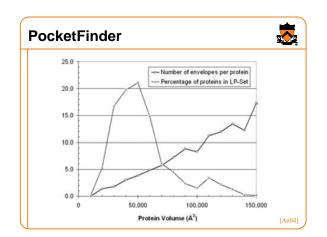


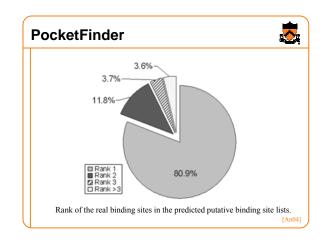


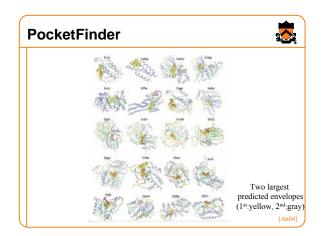


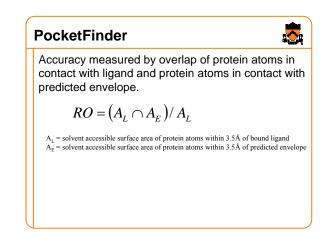
Docking for Site Prediction	
CS-Map:	
66666666666666666	
66666666666666666	
N N N N N N N N N N	
 bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	
N N N P O , O PN NO HO , COOH CONH, COH	
HO,	
66666666666666666	
Prototype fragment library [Vajda; Silberstein; Lar	ndon et al.]

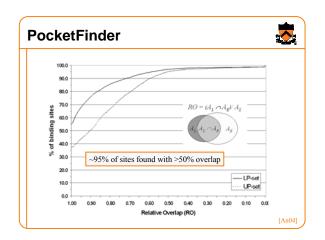


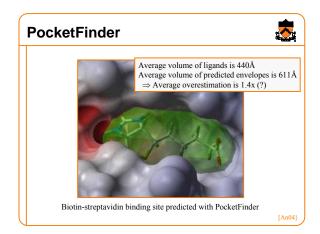


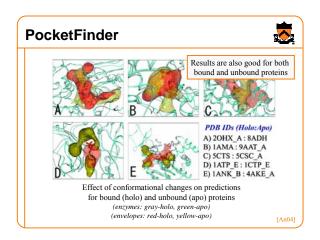


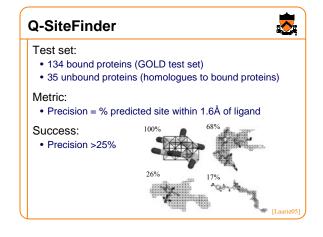


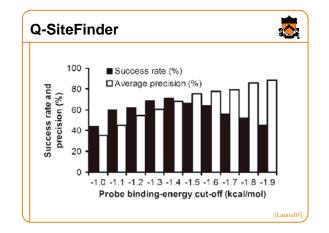

PocketFinder		F
Liganded-pocket data set • Consider all protein-ligand complexes from PDB • Eliminate frequent co-factors (HEM, etc.) • Eliminate ligands far from protein (>3.5Å) • Eliminate ligands in seams between assymmetric uni • Eliminate "duplicates" (?) • 50 < protein residues < 2000 • 6 < ligand atoms • 2.5Å < resolution 5,616 bound binding sites	ts	
	[An04]	

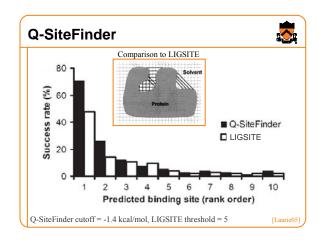


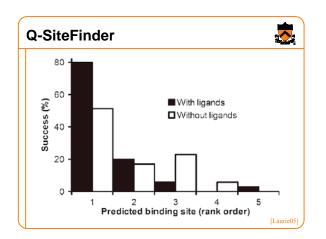












References	
	J. An, M. Totrov, R. Abagyan, "Comprehensive Identification of ``Druggable" Protein Ligand Binding Sites," Genome Informatics, 15, 2, 2004, pp. 31-41.
	GJ. Bartlett, C.T. Porter, N.Borkakoti, J.M. Thornton, "Analysis of catalytic residues in enzyme active sites," J. Mol. Biol, 324, 1, 2002, pp. 105-121.
	P. Bate, J. Warwicker, "Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods," J Mol Biol, 340, 2, 2004, pp. 263-276.
	S.J. Campbell, N.D. Gold, R.M. Jackson, D.R. Westhead, "Ligand binding functional site location, similarity and docking," Curr Opin Struct Biol, 13, 2003, pp. 389-395.
	A.H. Elcock, "Prediction of functionally important residues based solely on the computed energetics of protein structure," J. Mol. Biol., 312, 4, 2001, pp. 885-896.
	A. Gutteridge, G.J. Bartlett, J.M. Thornton, "Using a neural network and spatial clustering to predict the location of active sites in enzymes," J Mol Biol, 330, 2003, pp. 719-734.
	A.T.R. Laurie, R.M. Jackson, "Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites," Bioinformatics, 2005.
	G. Nimrod, F. Glaser, D. Steinberg, N. Ben-Tal, T. Pupko, "In silico identification of functional regions in proteins," Bioinformatics, 21 Suppl., 2005, pp. i328-i337.
	Michael Silberstein, Sheldon Dennis, Lawrence Brown III, Tamas Kortvelyesi, Karl Clodfelter, Sandor Vajda, "Identification of Substrate Binding Sites in Enzymes by Computational Solvent Mapping," J. Mol. Biol., 332, 2003, pp. 1095-1113.
	L. Young, R.L. Jernigan, D.G. Covell, "A role for surface hydrophobicity in protein-protein recognition," Protein Sci, 3, 5, 1994, pp. 717-29.