

Outline	
Introduction	
Point set representations	
Point set matching	
• Brute force search	
• RANSAC	
• Geometric hashing	
• Association graphs	
E Iterative closest point	
Evaluation	
Discussion	

Point Set Representation

Set of attributed points
Atoms

- Residues
- Pseudo-centers
- Surface critical points
- etc.

Binding Site Atoms
(colored by element type)

Point Set Representation

Set of attributed points

- Atoms

Residues

- Pseudo-centers
- Surface critical points
- etc.

Point Set Representation

Set of attributed points

- Atoms
- Residues

Pseudo-centers

- Surface critical points
- etc.

Outline

Introduction
Point set representations
Point set matching \longleftarrow

- Brute force search
- RANSAC
- Geometric hashing
- Association graphs
- Iterative closest point

Evaluation
Discussion

Point Set Matching

Calculating a superposition and distance measure is easy if correspondences are known (proposed)

Point Set Matching

Calculating a superposition and distance measure is easy if correspondences are known (proposed)

Least-squares optimal superposition of corresponding points

Point Set Matching

Calculating a superposition and distance measure is easy if correspondences are known (proposed)

$$
\operatorname{RMSD}(A, B)=\sqrt{\sum_{i=1}^{N}\left(A_{i}-B_{i}\right)^{2}}
$$

Distance $(\mathrm{A}, \mathrm{B})=\operatorname{RMSD}(\mathrm{A}, \mathrm{B})+$ OtherTerms ...

Brute Force Search

O

Simple method:

- Try all possible sets of point correspondences
- Score the alignment for each one

Problem:

- O($\left.\mathrm{n}^{\mathrm{m}}\right)$ possible sets of m correspondences among n points

Brute Force Search

Simple method:

- Try all possible sets of point correspondences
- Score the alignment for each one

Problem:

- $\mathrm{O}\left(\mathrm{n}^{m}\right)$ possible sets of m correspondences among n points

Brute Force Search

Simple method:

- Try all possible sets of point correspondences
- Score the alignment for each one (e.g., RMSD)

All points aligned
Problem:

- O(n $\left.{ }^{\mathrm{m}}\right)$ possible sets of m correspondences among n points

Outline

Introduction
Point set representations
Point set matching

- Brute force search RANSAC
- Geometric hashing
- Assocation graphs
- Iterative closest point

Evaluation
Discussion

RANSAC

Randomly sample set of possible correspondences

- Randomly generate a small set of point correspondences
- Compute the aligning transformation for correspondences Score how well other points align after that transformation

Geometric Hashing

Preprocessing
For each triple of points
Compute reference frame For each point

Transform point into reference frame Hash (molecule, ref. frame, properties, point)
Query processing
Choose any triple of points
Compute reference frame
For each point
Transform point into reference frame
For each entry in hash bin for transformed point
Check point properties
Vote for (molecule, ref. frame)

Geometric Hashing

Preprocessing complexity

- $\mathrm{O}\left(\mathrm{n}^{4}\right)$ for n points per binding site
$\$ \mathrm{O}\left(\mathrm{n}^{3}\right)$ possible triples * $\mathrm{O}(\mathrm{n})$ transformations per triple
Query complexity
- $\mathrm{O}(\mathrm{m})^{*}$ binsize for m points in query binding site
$\$ 1$ triple * $O(\mathrm{~m})$ transformations per triple *
binsize hash processing per transformation
Shulman-Peleg et al. 2004

Association Graphs

Association graphs

- Iterative closest point

Evaluation
Discussion

Association Graphs 3

Association Graphs息

Association Graphs

Association Graphs
 R

reate edges between (uv) and (wx) if the edges between (u) and (w) as well as between (v) and (x) match.
For this example, edge length is the only consideration

Outline里

Introduction
Point set representations
Point set matching

- Brute force
- RANSAC
- Geometric hashing
- Assocation graphs Iterative closest points

Evaluation
Discussion

Iterative Closest Points

3

Find the transformation that optimally aligns proposed correspondences (superposition)

[Bes192]

Iterative Closest Points

Iterate until convergence

1. Select source points (from one or both molecules)
2. Match to points in the other molecule
3. Weight the correspondences
4. Reject outlier point pairs
5. Compute an error metric for the current transform
6. Minimize the error metric w.r.t. transformation

Computational complexity

- $\mathrm{O}(\mathrm{k}$ * nlogn) for n points per binding site and k iterations \& kiterations * $\mathrm{O}(\mathrm{n})$ points * $\mathrm{O}(\operatorname{logn})$ to find closest point

Iterative Closest Points

Slide courtesy of Szymon Rusinkiewicz

Outline

Introduction
Point set representations
Point set matching

- Association graphs
- Geometric hashing
- Iterative closest point

Evaluation

Discussion

Evaluation

Questions:

- How well can the types of bound ligands be predicted from the positions of protein atoms near its binding site using standard point matching algorithms?
- What types of information (element type? residue type?) must be included with the atom positions in order to get good classification performance?

Binding Site Test Set

Protein-ligand complexes from PDB

- Crystallization resolution $\leq 3 A ̊$
- Ligands ≥ 10 HETATOMS

Remove homologous protein domains

- No two ligands contact same CATH superfamily
- No two ligands contact same SCOP family
- No two ligands from same PDB file

Select groups for classification experiment

- Classified by bound ligand type (e.g., ATP, NAD, etc.)
- Keep all classes with at least four members

Point Set Matching Method

Score is RMSD between corresponding points of the same type within $3 \AA$ of each other

Evaluation Method

"Leave-one-out" classification experiment
Match every ligand against all the others in data set

- Log a "hit" when best match performs same reaction
- Report percentage of hits (correctly classified ligands)

Evaluation Method

"Leave-one-out" classification experiment Match every ligand against all the others in data set

- Log a "hit" when best match performs same reaction
- Report percentage of hits (correctly classified ligands)

Query

2nd

3rd

4th

Evaluation Method

"Leave-one-out" classification experiment

- Match every ligand against all the others in data set Log a "hit" when best match performs same reaction
- Report percentage of hits (correctly classified ligands)

CATH

Distance measure is proximity in CATH hierarchy

- $D(A, B)=$ least \#levels to common ancestor in hierarchy for any pair of contacting chains

CATH hierarchy:

- Class
- Architecture
- Topology
- Homology
- S35 (Family)
- 595
- S100

Conclusions (1 of 4)

Current point matching methods may be useful for classifying binding sites by ligand type when given the correct location for the center of the ligand

- 34.7% of ligand types classified correctly, as compared to $9.7 \%-17.1 \%$ with other methods

Conclusions (3 of 4)

The conformational variation of ligands bound to proteins in the PDB usually is not so great that it thwarts a rigid shape matching algorithm

Conclusions (3 of 4)

The conformational variation of ligands bound to proteins in the PDB usually is not so great that it thwarts a rigid shape matching algorithm

Still to Do ...

Investigate impact of parameters

- Site representation, outlier rejection

Investigate other point properties

- Conservation, charge, etc.

Investigate other binding site representations

- Templates, surfaces, grids, etc.

Grid-based model of binding site (with atom types) predicted by XSITE

References

[Bes192] P.J. Besl and N.D. McKay, "A method for registration of 3d shapes", IEEE Transactions on PAMI, 14, 1992. pp. 239-256.
(Brakoulias04] A. Brakoulias., R.M. Jackson, "Towards a structural classification of phosphate binding sites in proteinnucleotide complexes: an automatec all-against-al1 structural comparison using geometric malching. "
Proteins-Structure Function and Genetics, 56, 2004, pp. 250-260.
[Lin94] S.L. Lin, R. Nussinov, D. Fischer, H.J. Wolfson, "Molecular-Surface Representations By Sparse CriticalPoints," Proteins-Structure Function and Genetics, 18, 1994, pp. 94-101
[Pennec98] X. Pennec,, N. Ayache, "A geometric algorithm to find small but highly similar 3D substructures in proteins, Bioinformics, 14, 1998, pp. 516-52.

independent of sequence and fold homology," J Mol Biol, 323, 2002, pp. 387-406.
[Shulman-Peleg04] A. Shulman-Peleg, R. Nussinov, H.J. Wolfson, "Recognition of functional sites in protein structures," J Mol Biol, 339, 2004, pp. 607-633.
[Wolfson97] H.J. Wolfson and I. Rigoutsos, "Geometric hashing: an overview," IEEE Computational Science \& Engineering, 4(4), 1997, pp. 10-21

Weskamp04] N. Weskamp, D. Kuhn, E. Hullermeier, G. Klebe, "Efficient similarity search in protein structure databases by k -clique hashing." Bioinformatics, 20, 2004, pp. 1522-1526.

