
Machine Learning, 37(3):277-296, 1999.

Large Margin Classification
Using the Perceptron Algorithm
� � � � � � � � � 	

yoav@research.att.com
AT&T Labs, Shannon Laboratory, 180 Park Avenue, Room A205, Florham Park, NJ 07932-0971

� � 
 � � � � �  � � � � � � �
schapire@research.att.com

AT&T Labs, Shannon Laboratory, 180 Park Avenue, Room A279, Florham Park, NJ 07932-0971

Abstract. We introduce and analyze a new algorithm for linear classification which combines Rosenblatt’s
perceptron algorithm with Helmbold and Warmuth’s leave-one-out method. Like Vapnik’s maximal-margin clas-
sifier, our algorithm takes advantage of data that are linearly separable with large margins. Compared to Vapnik’s
algorithm, however, ours is much simpler to implement, and much more efficient in terms of computation time.
We also show that our algorithm can be efficiently used in veryhigh dimensional spaces using kernel functions.
We performed some experiments using our algorithm, and somevariants of it, for classifying images of handwrit-
ten digits. The performance of our algorithm is close to, butnot as good as, the performance of maximal-margin
classifiers on the same problem, while saving significantly on computation time and programming effort.

1. Introduction

One of the most influential developments in the theory of machine learning in the last few
years is Vapnik’s work on support vector machines (SVM) (Vapnik, 1982). Vapnik’s anal-
ysis suggests the following simple method for learning complex binary classifiers. First,
use some fixed mapping

�
to map the instances into some very high dimensional space

in which the two classes are linearly separable. Then use quadratic programming to find
the vector that classifies all the data correctly and maximizes themargin, i.e., the minimal
distance between the separating hyperplane and the instances.

There are two main contributions of his work. The first is a proof of a new bound on the
difference between the training error and the test error of alinear classifier that maximizes
the margin. The significance of this bound is that it depends only on the size of the margin
(or the number of support vectors) and not on the dimension. It is superior to the bounds
that can be given for arbitrary consistent linear classifiers.

The second contribution is a method for computing the maximal-margin classifier effi-
ciently for some specific high dimensional mappings. This method is based on the idea of
kernel functions, which are described in detail in Section 4.

The main part of algorithms for finding the maximal-margin classifier is a computation
of a solution for a large quadratic program. The constraintsin the program correspond to
the training examples so their number can be very large. Muchof the recent practical work
on support vector machines is centered on finding efficient ways of solving these quadratic
programming problems.

In this paper, we introduce a new and simpler algorithm for linear classification which
takes advantage of data that are linearly separable with large margins. We named the
new algorithm thevoted-perceptronalgorithm. The algorithm is based on the well known
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perceptron algorithm of Rosenblatt (1958, 1962) and a transformation of online learn-
ing algorithms to batch learning algorithms developed by Helmbold and Warmuth (1995).
Moreover, following the work of Aizerman, Braverman and Rozonoer (1964), we show
that kernel functions can be used with our algorithm so that we can run our algorithm effi-
ciently in very high dimensional spaces. Our algorithm and its analysis involve little more
than combining these three known methods. On the other hand,the resulting algorithm is
very simple and easy to implement, and the theoretical bounds on the expected general-
ization error of the new algorithm are almost identical to the bounds for SVM’s given by
Vapnik and Chervonenkis (1974) in the linearly separable case.

We repeated some of the experiments performed by Cortes and Vapnik (1995) on the
use of SVM on the problem of classifying handwritten digits.We tested both the voted-
perceptron algorithm and a variant based on averaging rather than voting. These exper-
iments indicate that the use of kernel functions with the perceptron algorithm yields a
dramatic improvement in performance, both in test accuracyand in computation time.
In addition, we found that, when training time is limited, the voted-perceptron algorithm
performs better than the traditional way of using the perceptron algorithm (although all
methods converge eventually to roughly the same level of performance).

Recently, Friess, Cristianini and Campbell (1998) have experimented with a different
online learning algorithm called theadatron. This algorithm was suggested by Anlauf and
Biehl (1989) as a method for calculating the largest margin classifier (also called the “max-
imally stable perceptron”). They proved that their algorithm converges asymptotically to
the correct solution.

Our paper is organized as follows. In Section 2, we describe the voted perceptron al-
gorithm. In Section 3, we derive upper bounds on the expectedgeneralization error for
both the linearly separable and inseparable cases. In Section 4, we review the method of
kernels and describe how it is used in our algorithm. In Section 5, we summarize the re-
sults of our experiments on the handwritten digit recognition problem. We conclude with
Section 6 in which we summarize our observations on the relations between the theory and
the experiments and suggest some new open problems.

2. The Algorithm

We assume that all instances are pointsx � � � . We use� �x � � to denote the Euclidean length
of x. For most of the paper, we assume that labels� are in � � � � � � � .

The basis of our study is the classical perceptron algorithminvented by Rosenblatt (1958,
1962). This is a very simple algorithm most naturally studied in the online learning model.
The online perceptron algorithm starts with an initial zeroprediction vector� � � . It
predicts the label of a new instancex to be �� � sign� � � x . If this prediction differs from
the label� , it updates the prediction vector to� � � � � x. If the prediction is correct then� is not changed. The process then repeats with the next example.

The most common way the perceptron algorithm is used for learning from a batch of
training examples is to run the algorithm repeatedly through the training set until it finds
a prediction vector which is correct on all of the training set. This prediction rule is then
used for predicting the labels on the test set.
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Block (1962), Novikoff (1962) and Minsky and Papert (1969) have shown that if the
data are linearly separable, then the perceptron algorithmwill make a finite number of
mistakes, and therefore, if repeatedly cycled through the training set, will converge to a
vector which correctly classifies all of the examples. Moreover, the number of mistakes is
upper bounded by a function of the gap between the positive and negative examples, a fact
that will be central to our analysis.

In this paper, we propose to use a more sophisticated method of applying the online
perceptron algorithm to batch learning, namely, a variation of the leave-one-out method of
Helmbold and Warmuth (1995). In thevoted-perceptronalgorithm, we store more informa-
tion during training and then use this elaborate information to generate better predictions
on the test data. The algorithm is detailed in Figure 1. The information we maintain during
training is the list ofall prediction vectors that were generated after each and everymis-
take. For each such vector, we count the number of iterationsit “survives” until the next
mistake is made; we refer to this count as the “weight” of the prediction vector.� To cal-
culate a prediction we compute the binary prediction of eachone of the prediction vectors
and combine all these predictions by a weighted majority vote. The weights used are the
survival times described above. This makes intuitive senseas “good” prediction vectors
tend to survive for a long time and thus have larger weight in the majority vote.

3. Analysis

In this section, we give an analysis of the voted-perceptronalgorithm for the case� � � in
which the algorithm runs exactly once through the training data. We also quote a theorem
of Vapnik and Chervonenkis (1974) for the linearly separable case. This theorem bounds
the generalization error of the consistent perceptron found after the perceptron algorithm is
run to convergence. Interestingly, for the linearly separable case, the theorems yield very
similar bounds.

As we shall see in the experiments, the algorithm actually continues to improve perfor-
mance after� � � . We have no theoretical explanation for this improvement.

If the data are linearly separable, then the perceptron algorithm will eventually converge
on some consistent hypothesis (i.e., a prediction vector that is correct on all of the training
examples). As this prediction vector makes no further mistakes, it will eventually dom-
inate the weighted vote in the voted-perceptron algorithm.Thus, for linearly separable
data, when� � 	 , the voted-perceptron algorithm converges to the regular use of the
perceptron algorithm, which is to predict using the final prediction vector.

As we have recently learned, the performance of the final prediction vector has been
analyzed by Vapnik and Chervonenkis (1974). We discuss their bound at the end of this
section.

We now give our analysis for the case� � � . The analysis is in two parts and mostly
combines known material. First, we review the classical analysis of the online percep-
tron algorithm in the linearly separable case, as well as an extension to the inseparable
case. Second, we review an analysis of the leave-one-out conversion of an online learning
algorithm to a batch learning algorithm.
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Training
Input: a labeled training set� � x � � � �  � � � � � � x� � � �  �

number of epochs�
Output: a list of weighted perceptrons� � � � � � �  � � � � � � � � � � �  �
� Initialize: � 	 � 
 , � � 	 � � , � � 	 � 
 .

� Repeat� times:

– For � � � � � � � � � :
 Compute prediction:�� 	 � sign� � � � x�  
 If �� � � then � � 	 � � � � � .

else� � � � 	 � � � � � � x� ;
� � � � 	 � � ;
� 	 � � � � .

Prediction
Given: the list of weighted perceptrons:� � � � � � �  � � � � � � � � � � �  �

an unlabeled instance:x
compute a predicted label�� as follows:

� �
��

� � �
� � sign� � � � x � �� � sign� �  �

Figure 1.The voted-perceptron algorithm.

3.1. The online perceptron algorithm in the separable case

Our analysis is based on the following well known result firstproved by Block (1962) and
Novikoff (1962). The significance of this result is that the number of mistakes does not
depend on the dimension of the instances. This gives reason to believe that the perceptron
algorithm might perform well in high dimensional spaces.

THEOREM 1 (BLOCK, NOVIKOFF) Let � � x � � � �  � � � � � � x� � � �  � be a sequence of labeled
examples with� �x� � � � � . Suppose that there exists a vector� such that � �� � � � � and
� � � � � x�  � � for all examples in the sequence. Then the number of mistakesmade by the
online perceptron algorithm on this sequence is at most� � � �  � .

Proof: Although the proof is well known, we repeat it for completeness.
Let � � denote the prediction vector used prior to the� th mistake. Thus,� � � � and, if

the � th mistake occurs on� x� � � �  then� � � � � � x�  � 
 and� � � � � � � � � � x� .
We have

� � � � � � � � � � � � � � � � � x�  � � � � � � � �
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Therefore,� � � � � � � � � .

Similarly,

� � � � � � � � � � � � � � � � � � � � � � � � � x�  � � �x� � � � � � � � � � � � � � � �
Therefore,� � � � � � � � � � � � � .

Combining, gives�
� � � � � � � � � � � � � � � � � � � � �

which implies� � � � � �  � proving the theorem.

3.2. Analysis for the inseparable case

If the data are not linearly separable then Theorem 1 cannot be used directly. However,
we now give a generalized version of the theorem which allowsfor some mistakes in the
training set. As far as we know, this theorem is new, althoughthe proof technique is
very similar to that of Klasner and Simon (1995, Theorem 2.2). See also the recent work
of Shawe-Taylor and Cristianini (1998) who used this technique to derive generalization
error bounds for any large margin classifier.

THEOREM 2 Let � � x � � � �  � � � � � � x� � � �  � be a sequence of labeled examples with� �x� � � �
� . Let � be any vector with� �� � � � � and let� � 
 . Define the deviation of each example
as � � � � � � � 
 � � � � � � � � x�  � �
and define� � 	 
 �� � �

� �� . Then the number of mistakes of the online perceptron algo-
rithm on this sequence is bounded by� � � �

� � � �

Proof: The case� � 
 follows from Theorem 1, so we can assume that� � 
 .
The proof is based on a reduction of the inseparable case to a separable case in a higher

dimensional space. As we will see, the reduction does not change the algorithm.
We extend the instance space� � to � � � �

by adding� new dimensions, one for each
example. Letx� � � � � �

denote the extension of the instancex� . We set the first�
coordinates ofx� equal tox� . We set the� � � �  ’th coordinate to� where� is a positive
real constant whose value will be specified later. The rest ofthe coordinates ofx� are set
to zero.

Next we extend the comparison vector� � � � to �  � � � � �
. We use the constant�

, which we calculate shortly, to ensure that the length of�  is one. We set the first�
coordinates of�  equal to� � �

. We set the� � � �  ’th coordinate to� � � � �  � � � �  . It is easy
to check that the appropriate normalization is

� � 	 � � � � � � � .
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Consider the value of� � � �  � x�  :
� � � �  � x�  � � �

� � � x�� � � � � � �� � �
� � � � � � x�  � �

� ��
� � � � � � x�  � � � � � � � � � x�  �
� �� �

Thus the extended prediction vector�  achieves a margin of� � 	 � � � � � � � on the ex-
tended examples.

In order to apply Theorem 1, we need a bound on the length of theinstances. As� �� �x� � � for all � , and the only additional non-zero coordinate has value� , we get that� �x� � � � �
� � � � � . Using these values in Theorem 1 we get that the number of mistakes of the online
perceptron algorithm if run in the extended space is at most

� � � � � �  � � � � � � � �  
� � �

Setting� � �
� � minimizes the bound and yields the bound given in the statement of

the theorem.
To finish the proof we show that the predictions of the perceptron algorithm in the ex-

tended space are equal to the predictions of the perceptron in the original space. We use� � to denote the prediction vector used for predicting the instancex� in the original space
and� � to denote the prediction vector used for predicting the corresponding instancex� in
the extended space. The claim follows by induction over� � � � � of the following three
claims:

1. The first� coordinates of� � are equal to those of� � .
2. The � � � �  ’th coordinate of� � is equal to zero.

3. sign� � � � x�  � sign� � � � x�  .

3.3. Converting online to batch

We now have an algorithm that will make few mistakes when presented with the examples
one by one. However, the setup we are interested in here is thebatch setup in which
we are given a training set, according to which we generate a hypothesis, which is then
tested on a seperate test set. If the data are linearly separable then the perceptron algorithm
eventually converges and we can use this final prediction rule as our hypothesis. However,
the data might not be separable or we might not want to wait till convergence is achieved.
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In this case, we have to decide on the best prediction rule given the sequence of different
classifiers that the online algorithm genarates. One solution to this problem is to use the
prediction rule that has survived for the longest time before it was changed. A prediction
rule that has survived for a long time is likely to be better than one that has only survived
for a few iterations. This method was suggested by Gallant (1986) who called it thepocket
method. Littlestone (1989), suggested a two-phase method in whichthe performance of
all of the rules is tested on a seperate test set and the rule with the least error is then used.
Here we use a different method for converting the online perceptron algorithm into a batch
learning algorithm; the method combines all of the rules generated by the online algorithm
after it was run for just a single time through the training data.

We now describe Helmbold and Warmuth’s (1995) very simple “leave-one-out” method
of converting an online learning algorithm into a batch learning algorithm. Our voted-
perceptron algorithm is a simple application of this general method. We start with the
randomized version. Given a training set� � x � � � �  � � � � � � x� � � �  � and an unlabeled in-
stancex, we do the following. We select a number� in � 
 � � � � � � � uniformly at random.
We then take the first� examples in the training sequence and append the unlabeled in-
stance to the end of this subsequence. We run the online algorithm on this sequence of
length� � � , and use the prediction of the online algorithm on the last unlabeled instance.

In the deterministic leave-one-out conversion, we modify the randomized leave-one-out
conversion to make it deterministic in the obvious way by choosing the most likely predic-
tion. That is, we compute the prediction that would result for all possible choices of� in
� 
 � � � � � � � , and we take majority vote of these predictions. It is straightforward to show
that taking a majority vote runs the risk of doubling the probability of mistake while it has
the potential of significantly decreasing it. In this work wedecided to focus primarily on
deterministic voting rather than randomization.

The following theorem follows directly from Helmbold and Warmuth (1995). (See also
Kivinen and Warmuth (1997) and Cesa-Bianchi et al. (1997).)

THEOREM 3 Assume all examples� x � �  are generated i.i.d. Let� be theexpectednum-
ber of mistakes that the online algorithm� makes on a randomly generated sequence of
� � � examples. Then given� random training examples, the expected probability that
the randomized leave-one-out conversion of� makes a mistake on a randomly generated
test instance is at most� � � � � �  . For the deterministic leave-one-out conversion, this
expected probability is at most� � � � � � �  .
3.4. Putting it all together

It can be verified that the deterministic leave-one-out conversion of the online perceptron
algorithm is exactly equivalent to the voted-perceptron algorithm of Figure 1 with� � � .
Thus, combining Theorems 2 and 3, we have:

COROLLARY 1 Assume all examples are generated i.i.d. at random. Let
� � x � � � �  � � � � � � x� � � �  � be a sequence of training examples and let� x� � � � � � � �  be a
test example. Let� � � � � � � � � � � � � �x� � �. For � �� � � � � and � � 
 , let
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Then the probability (over the choice of all� � � examples) that the voted-perceptron
algorithm with� � � does not predict� � � � on test instancex� � � is at most�

� � � � � 	 
 �� � � � � � �  � � � � � � � � � �
� � � �

(where the expectation is also over the choice of all� � � examples).

In fact, the same proof yields a slightly stronger statementwhich depends only on exam-
ples on which mistakes occur. Formally, this can be stated asfollows:

COROLLARY 2 Assume all examples are generated i.i.d. at random. Supposethat we run
the online perceptron algorithm once on the sequence� � x � � � �  � � � � � � x� � � � � � � �  � , and
that � mistakes occur on examples with indices� � � � � � � � � . Redefine� � � � � � � � � � � �x� � � �,
and redefine

� � � � �
���� ��� � � � � � � � 
 � � � � � � � � � x� �  � � � �

Now suppose that we run the voted-perceptron algorithm on training examples
� � x � � � �  � � � � � � x� � � �  � for a single epoch. Then the probability (over the choice of all
� � � examples) that the voted-perceptron algorithm does not predict � � � � on test instance
x� � � is at most�

� � � � � � � � �
� � � � � 	 
 �� � � � � � �  � � � � � � � � � �

� � � �
(where the expectation is also over the choice of all� � � examples).

A rather similar theorem was proved by Vapnik and Chervonenkis (1974, Theorem 6.1)
for training the perceptron algorithm to convergence and predicting with the final percep-
tron vector.

THEOREM 4 (VAPNIK AND CHERVONENKIS) Assume all examples are generated i.i.d.
at random. Suppose that we run the online perceptron algorithm on the sequence
� � x � � � �  � � � � � � x� � � � � � � �  � repeatedly until convergence, and that mistakes occur on
a total of � examples with indices� � � � � � � � � . Let � � � � � � � � � � � �x� � � �, and let

� � � � �� � � � � � �
� 	 


� � � � � � � � � � � x� �  �

Assume� � 
 with probability one.
Now suppose that we run the perceptron algorithm to convergence on training examples

� � x � � � �  � � � � � � x� � � �  � . Then the probability (over the choice of all� � � examples) that
the final perceptron does not predict� � � � on test instancex� � � is at most
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(where the expectation is also over the choice of all� � � examples).

For the separable case (in which� � � � can be set to zero), Corollary 2 is almost identical
to Theorem 4. One difference is that in Corolary 2, we lose a factor of 2. This is because we
use the deterministic algorithm, rather than the randomized one. The other, more important
difference is that� , the number of mistakes that the perceptron makes, will almost certainly
be larger when the perceptron is run to convergence than whenit is run just for a single
epoch. This gives us some indication that running the voted-perceptron algorithm with
� � � might be better than running it to convergence; however, ourexperiments do not
support this prediction.

Vapnik (to appear) also gives a very similar bound for the expected error of support-
vector machines. There are two differences between the bounds. First, the set of vectors on
which the perceptron makes a mistake is replaced by the set of“essential support vectors.”
Second, the radius� is the maximal distance of any support vector from some optimally
chosen vector, rather than from the origin. (The support vectors are the training examples
which fall closest to the decision boundary.)

4. Kernel-based Classification

We have seen that the voted-perceptron algorithm has guaranteed performance bounds
when the data are (almost) linearly separable. However, linear separability is a rather
strict condition. One way to make the method more powerful isby adding dimensions or
features to the input space. These new coordinates are nonlinear functions of the original
coordinates. Usually if we add enough coordinates we can make the data linearly separable.
If the separation is sufficiently good (in the senses of Theorems 1 and 2) then the expected
generalization error will be small (provided we do not increase the complexity of instances
too much by moving to the higher dimensional space).

However, from a computational point of view, computing the values of the additional
coordinates can become prohibitively hard. This problem can sometimes be solved by the
elegant method of kernel functions. The use of kernel functions for classification problems
was proposed by suggested Aizerman, Braverman and Rozonoer(1964) who specifically
described a method for combining kernel functions with the perceptron algorithm. Contin-
uing their work, Boser, Guyon and Vapnik (1992) suggested using kernel functions with
SVM’s.

Kernel functions are functions of two variables� � x � y which can be represented as an
inner product

� � x � � � y for some function
� 	 � � � � � and some� � 
 . In other

words, we can calculate� � x � y by mappingx andy to vectors
� � x and

� � y and then
taking their inner product.

For instance, an important kernel function that we use in this paper is the polynomial
expansion

� � x � y � � � � x � y � � (1)
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There exist general conditions for checking if a function isa kernel function. In this par-
ticular case, however, it is straightforward to construct

�
witnessing that� is a kernel

function. For instance, for� � � and
� � � , we can choose

� � x � � � � � �� � � �� � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �  �
In general, for

� � � , we can define
� � x to have one coordinate� � � x for each monomial

� � x of degree at most
�

over the variables� � � � � � � � � , and where� is an appropriately
chosen constant.

Aizerman, Braverman and Rozonoer observed that the perceptron algorithm can be for-
mulated in such a way that all computations involving instances are in fact in terms of inner
productsx � y between pairs of instances. Thus, if we want to map each instancex to a vec-
tor

� � x in a high dimensional space, we only need to be able to computeinner products� � x � � � y , which is exactly what is computed by a kernel function. Conceptually, then,
with the kernel method, we can work with vectors in a very highdimensional space and
the algorithm’s performance only depends on linear separability in this expanded space.
Computationally, however, we only need to modify the algorithm by replacing each inner
product computationx � y with a kernel function computation� � x � y . Similar observations
were made by Boser, Guyon and Vapnik for Vapnik’s SVM algorithm.

In this paper, we observe that all the computations in the voted-perceptron learning al-
gorithm involving instances can also be written in terms of inner products, which means
that we can apply the kernel method to the voted-perceptron algorithm as well. Referring
to Figure 1, we see that both training and prediction involveinner products between in-
stancesx and prediction vectors� � . In order to perform this operation efficiently, we store
each prediction vector� � in an implicit form, as the sum of instances that were added or
subtracted in order to create it. That is, each� � can be written and stored as a sum

� � �
� � ��� � �

� � � x� �
for appropriate indices� � . We can thus calculate the inner product withx as

� � � x �
� � ��� � �

� � � � x� � � x �

To use a kernel function� , we would merely replace eachx� � � x by � � x� � � x .
Computing the prediction of the final vector� � on a test instancex requires� kernel

calculations where� is the number of mistakes made by the algorithm during training.
Naively, the prediction of the voted-perceptron would seemto require� � � �  kernel calcu-
lations since we need to compute� � � x for each� � � , and since	 � itself involves a sum of
� � � instances. However, taking advantage of the recurrence� � � � �x � � � �x� � � � � x� � �x , it
is clear that we can compute the prediction of the voted-perceptron also using only� kernel
calculations.

Thus, calculating the prediction of the voted-perceptron when using kernels is only
marginally more expensive than calculating the predictionof the final prediction vector,
assuming that both methods are trained for the same number ofepochs.
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Figure 2.Learning curves for algorithms tested on NIST data.

5. Experiments

In our experiments, we followed closely the experimental setup used by Cortes and Vap-
nik (1995) in their experiments on the NIST OCR database.� We chose to use this setup
because the dataset is widely available and because LeCun etal. (1995) have published a
detailed comparison of the performance of some of the best digit classification systems in
this setup.

Examples in this NIST database consist of labeled digital images of individual handwrit-
ten digits. Each instance is a� � � � � matrix in which each entry is an 8-bit representation
of a grey value, and labels are from the set� 
 � � � � � � � . The dataset consists of 60,000
training examples and 10,000 test examples. We treat each image as a vector in� � � �

, and,
like Cortes and Vapnik, we use the polynomial kernels of Eq. (1) to expand this vector into
very high dimensions.

To handle multiclass data, we essentially reduced to 10 binary problems. That is, we
trained the voted-perceptron algorithm once for each of the10 classes. When training on
class� , we replaced each labeled example� x� � � �  (where� � � � 
 � � � � � � � ) by the binary-
labeled example� x� � � �  if � � � � and by � x� � � �  if � � �� � . Let

� � � �� � � ��  � � � � � � � �� 	 � � �� 	  �
be the sequence of weighted prediction vectors which resultfrom training on class� .

To make predictions on a new instancex, we tried four different methods. In each
method, we first compute a score�

� for each� � � 
 � � � � � � � and then predict with the
label receiving the highest score:

�� � � 
 � � � �
�

�
� �
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 � � 	  � � �

Table 1.Results of experiments on NIST 10-class OCR data with� � � � � � � . The rows marked SupVec
and Mistake give average number of support vectors and average number of mistakes. All other rows
give test error rate in percent for the various methods.

� � 0.1 1 2 3 4 10 30

� � � Vote 10.7 8.5 8.3 8.2 8.2 8.1
Avg. (unnorm) 10.9 8.7 8.5 8.4 8.3 8.3

(norm) 10.9 8.5 8.3 8.2 8.2 8.1
Last (unnorm) 16.0 14.7 13.6 13.9 13.7 13.5

(norm) 15.4 14.1 13.1 13.5 13.2 13.0
Rand. (unnorm) 22.0 15.7 14.7 14.3 14.1 13.8

(norm) 21.5 15.2 14.2 13.8 13.6 13.2
SupVec 2,489 19,795 24,263 26,704 28,322 32,994
Mistake 3,342 25,461 48,431 70,915 93,090 223,657

� � � Vote 6.0 2.8 2.4 2.2 2.1 1.8 1.8
Avg. (unnorm) 6.0 2.8 2.4 2.2 2.1 1.9 1.8

(norm) 6.2 3.0 2.5 2.3 2.2 1.9 1.8
Last (unnorm) 8.6 4.0 3.4 3.0 2.7 2.3 2.0

(norm) 8.4 3.9 3.3 3.0 2.7 2.3 1.9
Rand. (unnorm) 13.4 5.9 4.7 4.1 3.8 2.9 2.4

(norm) 13.2 5.9 4.7 4.1 3.8 2.9 2.3
SupVec 1,639 8,190 9,888 10,818 11,424 12,963 13,861
Mistake 2,150 10,201 15,290 19,093 22,100 32,451 41,614

� � � Vote 5.4 2.3 1.9 1.8 1.7 1.6 1.6
Avg. (unnorm) 5.3 2.3 1.9 1.8 1.7 1.6 1.5

(norm) 5.5 2.5 2.0 1.8 1.8 1.6 1.5
Last (unnorm) 6.9 3.1 2.5 2.2 2.0 1.7 1.6

(norm) 6.8 3.1 2.5 2.2 2.0 1.7 1.6
Rand. (unnorm) 11.6 4.9 3.7 3.2 2.9 2.2 1.8

(norm) 11.5 4.8 3.7 3.2 2.9 2.2 1.8
SupVec 1,460 6,774 8,073 8,715 9,102 9,883 10,094
Mistake 1,937 8,475 11,739 13,757 15,129 18,422 19,473

The first method is to compute each score using the respectivefinal prediction vector:

�
� � � �� 	 � x �

This method is denoted “last (unnormalized)” in the results. A variant of this method is to
compute scores after first normalizing the final prediction vectors:

�
� � � �� 	 � x

� � � �� 	 � � �

This method is denoted “last (normalized)” in the results. Note that normalizing vectors
has no effect for binary problems, but can plausibly be important in the multiclass case.

The next method (denoted “vote”) uses the analog of the deterministic leave-one-out
conversion. Here we set
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Table 2. Results of experiments on NIST 10-class OCR data with� � � � � � � . The rows marked
SupVec and Mistake give average number of support vectors and average number of mistakes. All
other rows give test error rate in percent for the various methods.

� � 0.1 1 2 3 4 10 30

� � � Vote 5.4 2.2 1.8 1.7 1.6 1.6 1.6
Avg. (unnorm) 5.3 2.2 1.8 1.7 1.7 1.6 1.6

(norm) 5.5 2.3 1.9 1.7 1.6 1.6 1.6
Last (unnorm) 6.5 2.8 2.3 2.0 1.9 1.6 1.6

(norm) 6.5 2.8 2.3 2.0 1.9 1.6 1.6
Rand. (unnorm) 11.5 4.6 3.5 3.1 2.7 2.1 1.8

(norm) 11.3 4.5 3.4 3.0 2.7 2.1 1.8
SupVec 1,406 6,338 7,453 7,944 8,214 8,673 8,717
Mistake 1,882 7,977 10,543 11,933 12,780 14,375 14,538

� � � Vote 5.7 2.2 1.9 1.8 1.8 1.7 1.7
Avg. (unnorm) 5.7 2.3 1.9 1.8 1.7 1.7 1.7

(norm) 5.7 2.3 1.9 1.8 1.7 1.7 1.6
Last (unnorm) 6.6 3.0 2.2 1.9 1.9 1.8 1.7

(norm) 6.3 2.9 2.1 1.9 1.9 1.7 1.7
Rand. (unnorm) 11.9 4.7 3.5 3.0 2.7 2.1 1.9

(norm) 11.5 4.5 3.4 2.9 2.6 2.0 1.8
SupVec 1,439 6,327 7,367 7,788 7,990 8,295 8,313
Mistake 1,953 8,044 10,379 11,563 12,215 13,234 13,289

� � � Vote 6.0 2.5 2.1 2.0 1.9 1.9 1.9
Avg. (unnorm) 6.2 2.5 2.1 2.0 1.9 1.9 1.9

(norm) 6.0 2.5 2.1 2.0 1.9 1.8 1.8
Last (unnorm) 7.3 3.2 2.4 2.2 2.0 1.9 1.9

(norm) 6.9 3.0 2.3 2.1 2.0 1.9 1.9
Rand. (unnorm) 12.8 5.0 3.8 3.3 3.0 2.3 2.0

(norm) 12.1 4.8 3.6 3.2 2.8 2.2 2.0
SupVec 1,488 6,521 7,572 7,947 8,117 8,284 8,285
Mistake 2,034 8,351 10,764 11,892 12,472 13,108 13,118

�
� �

� 	�
� � �

� �� sign� � �� � x �

The third method (denoted “average (unnormalized)”) uses an averageof the predictions
of the prediction vectors

�
� �

� 	�
� � �

� �� � � �� � x �

As in the “last” method, we also tried a variant (denoted “average (normalized)”) using
normalized prediction vectors:

�
� �

� 	�
� � �

� ��
� � �� � x

� � � �� � � � �
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Table 3. Results of experiments on individual classes using polynomial kernels with � � � . The rows marked SupVec
and Mistake give average number of support vectors and average number of mistakes. All other rows give test error rate in
percent for the various methods.

label 0 1 2 3 4 5 6 7 8 9

� � � � � Vote 0.7 0.5 1.3 1.5 1.4 1.4 0.9 1.3 1.8 2.1
Avg. (unnorm) 0.7 0.5 1.3 1.5 1.3 1.3 0.9 1.3 1.8 2.0

(norm) 0.7 0.5 1.3 1.5 1.4 1.4 0.9 1.3 1.8 2.1
Last 1.0 0.7 1.7 2.1 1.5 2.8 1.2 1.8 2.4 2.7
Rand. 2.1 1.3 3.0 3.7 3.0 3.2 2.2 2.7 4.7 4.5

SupVec 133 89 180 228 179 202 136 160 285 290
Mistake 133 89 180 228 179 202 136 160 285 290

� � � Vote 0.3 0.3 0.6 0.5 0.5 0.5 0.5 0.6 0.7 0.9
Avg. (unnorm) 0.3 0.2 0.6 0.5 0.5 0.5 0.4 0.6 0.7 0.9

(norm) 0.3 0.2 0.6 0.6 0.5 0.5 0.4 0.6 0.8 1.0
Last 0.5 0.5 1.0 1.1 0.7 0.8 0.5 1.0 1.2 1.3
Rand. 0.8 0.6 1.4 1.5 1.2 1.3 0.9 1.2 1.9 2.1

SupVec 506 407 782 996 734 849 541 738 1,183 1,240
Mistake 506 407 782 996 734 849 541 738 1,183 1,240

� � � � Vote 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.7
Avg. (unnorm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.7

(norm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.7
Last 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
Rand. 0.3 0.3 0.5 0.6 0.5 0.6 0.5 0.6 0.8 0.9

SupVec 736 636 1,164 1,504 1,075 1,271 817 1,103 1,833 1,899
Mistake 837 824 1,339 1,796 1,218 1,487 951 1,323 2,278 2,323

� � � � Vote 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
Avg. (unnorm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.6

(norm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.6
Last 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
Rand. 0.2 0.3 0.5 0.5 0.4 0.5 0.4 0.5 0.6 0.7

SupVec 740 643 1,168 1,512 1,078 1,277 823 1,103 1,856 1,920
Mistake 844 843 1,345 1,811 1,222 1,497 960 1,323 2,326 2,367

Cortes & Vapnik 0.2 0.1 0.4 0.4 0.4 0.5 0.3 0.4 0.5 0.6
SupVec 1,379 989 1,958 1,900 1,224 2,024 1,527 2,064 2,332 2,765

The final method (denoted “random (unnormalized)”), is a possible analog of the ran-
domized leave-one-out method in which we predict using the prediction vectors that exist
at a randomly chosen “time slice.” That is, let� be the number of rounds executed (i.e., the
number of examples processed by the inner loop of the algorithm) so that

� �
� 	�

� � �
� ��

for all � . To classifyx, we choose a “time slice”� � � 
 � � � � � � � uniformly at random. We
then set

�
� � � �� 	 � x
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Table 4.Results of experiments on NIST data when distinguishing “9”from all other digits. The
rows marked SupVec and Mistake give average number of support vectors and average number
of mistakes. All other rows give test error rate in percent for the various methods.

� � 0.1 1 2 3 4 10 30

� � � Vote 4.5 3.9 3.8 3.8 3.8 3.7
Avg. (unnorm) 4.5 3.9 3.8 3.8 3.8 3.7

(norm) 4.6 3.9 3.9 3.8 3.8 3.8
Last 7.9 6.4 5.7 6.3 5.8 5.9
Rand. 8.3 6.7 6.5 6.3 6.2 6.2

SupVec 513 4,085 5,240 5,888 6,337 7,661
Mistake 513 4,085 7,880 11,630 15,342 37,408

� � � Vote 2.4 1.2 1.0 0.9 0.9 0.8 0.8
Avg. (unnorm) 2.4 1.2 1.0 1.0 0.9 0.9 0.8

(norm) 2.5 1.3 1.1 1.0 1.0 0.9 0.8
Last 4.1 1.8 1.6 1.6 1.3 1.1 1.0
Rand. 5.5 2.8 2.2 1.9 1.8 1.4 1.1

SupVec 337 1,668 2,105 2,358 2,527 2,983 3,290
Mistake 337 1,668 2,541 3,209 3,744 5,694 7,715

� � � Vote 2.2 1.0 0.8 0.8 0.7 0.7 0.7
Avg. (unnorm) 2.1 0.9 0.8 0.8 0.7 0.7 0.6

(norm) 2.2 1.0 0.8 0.8 0.8 0.7 0.6
Last 2.9 1.3 1.0 1.0 0.8 0.7 0.7
Rand. 4.9 2.2 1.7 1.5 1.4 1.0 0.8

SupVec 302 1,352 1,666 1,842 1,952 2,192 2,283
Mistake 302 1,352 1,867 2,202 2,448 3,056 3,318

� � � Vote 2.1 0.9 0.8 0.7 0.7 0.7 0.7
Avg. (unnorm) 2.0 0.9 0.8 0.7 0.7 0.7 0.6

(norm) 2.1 1.0 0.8 0.8 0.7 0.7 0.6
Last 2.7 1.3 1.0 0.8 0.8 0.7 0.7
Rand. 4.5 2.1 1.6 1.4 1.2 0.9 0.7

SupVec 290 1,240 1,528 1,669 1,746 1,899 1,920
Mistake 290 1,240 1,648 1,882 2,020 2,323 2,367

� � � Vote 2.2 0.9 0.8 0.7 0.7 0.7 0.7
Avg. (unnorm) 2.2 0.9 0.8 0.7 0.7 0.7 0.7

(norm) 2.2 1.0 0.8 0.8 0.7 0.7 0.7
Last 2.7 1.3 1.0 0.9 0.8 0.7 0.7
Rand. 4.6 2.0 1.5 1.3 1.2 0.9 0.8

SupVec 294 1,229 1,502 1,628 1,693 1,817 1,827
Mistake 294 1,229 1,598 1,798 1,908 2,132 2,150

� � � Vote 2.3 0.9 0.8 0.8 0.8 0.8 0.7
Avg. (unnorm) 2.3 0.9 0.8 0.8 0.8 0.7 0.7

(norm) 2.3 1.0 0.8 0.8 0.8 0.7 0.7
Last 2.7 1.3 1.0 0.9 0.8 0.8 0.7
Rand. 4.7 2.1 1.6 1.3 1.2 0.9 0.8

SupVec 302 1,263 1,537 1,655 1,715 1,774 1,776
Mistake 302 1,263 1,625 1,810 1,916 2,035 2,039
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where� � is the index of the final vector which existed at time� for label � . Formally, � � is
the largest number in� 
 � � � � � � � � satisfying

� 	 � ��
� � �

� �� � � �

The analogous normalized method (“Random (normalized)”) uses

�
� � � �� 	 � x

� � � �� 	 � � �

Our analysis is applicable only for the cases of voted or randomly chosen predictions and
where� � � . However, in the experiments, we ran the algorithm with� up to � 
 . When
using polynomial kernels of degree 5 or more, the data becomes linearly separable. Thus,
after several iterations, the perceptron algorithm converges to a consistent prediction vector
and makes no more mistakes. After this happens, the final perceptron gains more and more
weight in both “vote” and “average.” This tends to have the effect of causing all of the
variants to converge eventually to the same solution. By reaching this limit we compare
the voted-perceptron algorithm to the standard way in whichthe perceptron algorithm is
used, which is to find a consistent prediction rule.

We performed experiments with polynomial kernels for dimensions
� � � (which cor-

responds to no expansion) up to
� � � . We preprocessed the data on each experiment by

randomly permuting the training sequence. Each experimentwas repeated 10 times, each
time with a different random permutation of the training examples. For

� � � , we were
only able to run the experiment for ten epochs for reasons which are described below.

Figure 2 shows plots of the test error as a function of the number of epochs for four of
the prediction methods — “vote” and the unnormalized versions of “last,” “average” and
“random” (we omitted the normalized versions for the sake ofreadability). Test errors are
averaged over the multiple runs of the algorithm, and are plotted one point for every tenth
of an epoch.

Some of the results are also summarized numerically in Tables 1 and 2 which show
(average) test error for several values of� for the seven different methods in the rows
marked “Vote,” “Avg. (unnorm),” etc. The rows marked “SupVec” show the number of
“support vectors,” that is, the total number of instances that actually are used in computing
scores as above. In other words, this is the size of the union of all instances on which a
mistake occured during training. The rows marked “Mistake”show the total number of
mistakes made during training for the 10 different labels. In every case, we have averaged
over the multiple runs of the algorithm.

The column corresponding to� � 
 � � is helpful for getting an idea of how the algorithms
perform on smaller datasets since in this case, each algorithm has only used a tenth of the
available data (about 6000 training examples).

Ironically, the algorithm runs slowest with small values of
�
. For larger values of

�
, we

move to a much higher dimensional space in which the data becomes linearly separable.
For small values of

�
— especially for

� � � — the data are not linearly separable which
means that the perceptron algorithm tends to make many mistakes which slows down the
algorithm significantly. This is why, for

� � � , we could not even complete a run out to 30
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epochs but had to stop at� � � 
 (after about six days of computation). In comparison, for� � � , we can run 30 epochs in about 25 hours, and for
� � � or � , a complete run takes

about 8 hours. (All running times are on a single SGI MIPS R10000 processor running at
194 MHZ.)

The most significant improvement in performance is clearly between
� � � and

� � � .
The migration to a higher dimensional space makes a tremendous difference compared to
running the algorithm in the given space. The improvements for

� � � are not nearly as
dramatic.

Our results indicate that voting and averaging perform better than using the last vector.
This is especially true prior to convergence of the perceptron updates. For

� � � , the data
are highly inseparable, so in this case the improvement persists for as long as we were able
to run the algorithm. For higher dimensions (

� � � ), the data becomes more separable and
the perceptron update rule converges (or almost converges), in which case the performance
of all the prediction methods is very similar. Still, even inthis case, there is an advantage
to using voting or averaging for a relatively small number ofepochs.

There does not seem to be any significant difference between voting and averaging in
terms of performance. However, using random vectors performs the worst in all cases.
This stands in contrast to our analysis, which applies only to random vectors and gives an
upper bound on the error of average vectors which is twice theerror of the randomized
vectors. A more refined analysis of the effect of averaging isrequired to better explain the
observed behavior.

Using normalized vectors seems to sometimes help a bit for the “last” method, but can
help or hurt performance slightly for the “average” method;in any case, the differences in
performance between using normalized and unnormalized vectors are always minor.

LeCun et al. (1995) give a detailed comparison of algorithmson this dataset. The best of
the algorithms that they tested is (a rather old version of) boosting on top of the neural net
LeNet 4 which achieves an error rate of 0.7%. A version of the optimal margin classifier
algorithm (Cortes & Vapnik, 1995), using the same kernel function, performs significantly
better than ours, achieving a test error rate of 1.1% for

� � � .
Table 3 shows how the variants of the perceptron algorithm perform on the ten binary

problems corresponding to the 10 class labels. For this table, we fix
� � � , and we also

compare performance to that reported by Cortes and Vapnik (1995) for SVM’s. Table 4
gives more details of how the perceptron methods perform on the single binary problem
of distinguishing “9” from all other images. Note that thesebinary problems come closest
to the theory discussed earlier in the paper. It is interesting that the perceptron algorithm
generally ends up using fewer support vectors than with the SVM algorithm.

6. Conclusions and Summary

The most significant result of our experiments is that running the perceptron algorithm in
a higher dimensional space using kernel functions producesvery significant improvements
in performance, yielding accuracy levels that are comparable, though still inferior, to those
obtainable with support-vector machines. On the other hand, our algorithm is much faster
and easier to implement than the latter method. In addition,the theoretical analysis of the
expected error of the perceptron algorithm yields very similar bounds to those of support-
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 � � 	  � � �

vector machines. It is an open problem to develop a better theoretical understanding of the
empirical superiority of support-vector machines.

We also find it significant that voting and averaging work better than just using the final
hypothesis. This indicates that the theoretical analysis,which suggests using voting, is
capturing some of the truth. On the other hand, we do not have atheoretical explanation
for the improvement in performance following the first epoch.
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Notes

1. Storing all of these vectors might seem an excessive wasteof memory. However, as we shall see, when
perceptrons are used together with kernels, the excess in memory and computition is really quite minimal.

2. National Institute for Standards and Technology, Special Database 3. See
http://www.research.att.com/� yann/ocr/ for information on obtaining this dataset and for a
list of relevant publications.
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