
Princeton University
COS 217: Introduction to Programming Systems

GDB Tutorial for Assembly Language Programs (Part 2)

Motivation

Suppose you are developing the assembly language BigInt_add() function. Further suppose that the function assembles and links cleanly,
but executes incorrectly. How can you use gdb to debug the function?

The BigInt_add() function is somewhat difficult to debug because it uses the stack, structures, and arrays. This is an appropriate
sequence...

Building for gdb

To prepare to use gdb, build your program with the -g option.

% gcc -g -Wall -ansi -pedantic fib.c bigint.c bigintadd.s -o fib

Doing so places extra information into the fib file that gdb uses.

Running gdb

Run gdb from within xemacs.

% xemacs
<Esc key> x gdb <Enter key> fib <Enter key>

Setting Breakpoints

Set breakpoints at appropriate places. Breakpoints at the beginning of the main() and BigInt_add() functions would be appropriate.

Page 1 of 5

(gdb) break main
(gdb) break BigInt_add

Running Your Program

Run the program, specifying some command-line argument.

(gdb) run 500000

Continue past the breakpoint at the beginning of the main() function.

(gdb) continue

Execution is paused after the two-instruction prolog of the first call of the BigInt_add() function. Issue the “continue” command nine
more times. At this point the BigInt_add() function is being called to add the numbers 55 and 34.

Examining Memory

Use the print command to determine the contents of the EBP register:

(gdb) print/a $ebp
bffff7b8

Thus you know the address of the base of the current stack frame. (That address might be different each time you run the program.) Now
use the x command repeatedly to examine the function’s parameters as they exist in the stack and the heap.

Examine the function’s stack frame, interpreting each value as an address:

(gdb) x/a 0xbffff7b8
bffff808
(gdb) x/a 0xbffff7bc
804868e
(gdb) x/a 0xbffff7c0
b7f1a008

Page 2 of 5

(gdb) x/a 0xbffff7c4
b7f7c008
(gdb) x/a 0xbffff7c8
b7eb8008

Examine the heap, interpreting each value as a decimal integer:

(gdb) x/d 0xb7f1a008
1
(gdb) x/d 0xb7f1a00c
55
(gdb) x/d 0xb7f1a010
0
(gdb) x/d 0xb7f1a014
0
(gdb) x/d 0xb7f7ba88
0

(gdb) x/d 0xb7f7c008
1
(gdb) x/d 0xb7f7c00c
34
(gdb) x/d 0xb7f7c010
0
(gdb) x/d 0xb7f7c014
0
(gdb) x/d 0xb7fdda88
0

(gdb) x/d 0xb7eb8008
1
(gdb) x/d 0xb7eb800c
21
(gdb) x/d 0xb7eb8010
0
(gdb) x/d 0xb7eb8014
0
(gdb) x/d 0xb7f19a88
0

As you traverse memory, draw a map of it as shown on the next page.

Page 3 of 5

Page 4 of 5

Registers

BFFFF7B8EBP

Memory

BFFFF808BFFFF7B8

0804868EBFFFF7BC

B7F1A008BFFFF7C0

B7F7C008BFFFF7C4

B7EB8008BFFFF7C8

old EBP

return addr.

oSum

oAddend1

oAddend2

00000001B7F1A008

00000037B7F1A00C

00000000B7F1A010

00000000B7F1A014

oAddend1->iLength

oAddend1->auiDigits[0]

oAddend1->auiDigits[1]

oAddend1->auiDigits[2]

Stack Heap

…

00000000B7F7BA88 oAddend1->auiDigits[99999]

00000001B7F7C008

00000022B7F7C00C

00000000B7F7C010

00000000B7F7C014

oAddend2->iLength

oAddend2->auiDigits[0]

oAddend2->auiDigits[1]

oAddend2->auiDigits[2]

…

00000000B7FDDA88 oAddend2->auiDigits[99999]

00000001B7EB8008

00000015B7EB800C

00000000B7EB8010

00000000B7EB8014

oSum->iLength

oSum->auiDigits[0]

oSum->auiDigits[1]

oSum->auiDigits[2]

…

00000000B7F19A88 oSum->auiDigits[99999]

Suppose oAddend1 = 55, oAddend2 = 34, and oSum = 21

Using the Memory Map

Such a memory map can help with debugging. Moreover, such a memory map can help with writing assembly language code in the first
place. (Indeed if you did not have such a memory map, you probably would find it helpful/necessary to create one using pretend memory
addresses before writing your assembly language code.)

For example, suppose you must write assembly language code to access oAddend2->auiDigits[2]. Using the memory map, it is easy to
see that either of these instruction sequences would work:

Using indirect addressing:

movl %ebp, %eax # EAX contains BFFFF7B8
addl $12, %eax # EAX contains BFFFF7C4, alias &oAddend2
movl (%eax), %eax # EAX contains B7F7C008, alias oAddend2
addl $4, %eax # EAX contains B7F7C00C, alias oAddend2->auiDigits
movl $2, %ecx # ECX contains 2, alias the index
sall $2, %ecx # ECX contains 8, alias a byte offset
addl %ecx, %eax # EAX contains B7F7C014, alias oAddend2->auiDigits + 2
movl (%eax), %eax # EAX contains 00000000, alias oAddend2->auiDigits[2]

Using base-pointer and indexed addressing:

movl 12(%ebp), %eax # EAX contains B7F7C008, alias oAddend2
addl $4, %eax # EAX contains B7F7C00C, alias oAddend2->auiDigits
movl $2, %ecx # ECX contains 2, alias the index
movl (%eax, %ecx, 4), %eax # EAX contains 00000000, alias oAddend2->auiDigits[2]

Copyright © 2007 by Robert M. Dondero. Jr.

Page 5 of 5

