

Mesh Simplification Goals

Reduce number of polygons

- Less storage
- Faster rendering
- Simpler manipulation

Desirable properties

- Generality, efficiency, scalability
- Produces "good" approximation § Geometric § Visual

Mesh Simplification Overview

Some algorithms

- Vertex clustering
- Mesh retiling
- Mesh optimization
- Mesh decimation

Considerations

- Speed of algorithm
- Quality of approximation
- Generality (types of meshes)
- Topology modifications
- Control of approximation quality
- Continuous LOD
- Smooth transitions

Vertex Clustering

Partition vertices into clusters and replace all vertices in each cluster by one representative

Vertex Cluster

Method

- Merge vertices based on proximity
- Triangles with repeated vertices become edge or point

Properties

- General and robust
- Allows topological changes
- Not best quality

Mesh Decimaion Operations

General idea:

- Each operations simplifies model by small amount
- Apply many operations in succession

Types of operations

- Vertex remove
- Edge collapse
- Vertex cluster

Edge Collapse

8
Method

- Merge two edge vertices to one
- Delete degenerate triangles

Properties

- Requires manifold surface around vertex
- Preserves local topological structure
- Allows smooth transition

Operation Considerations

Topology considerations

- Attention to topology promotes better appearance
- Allowing non-manifolds increases robustness and ability to simplify

Operation considerations

- Collapse-type operations allow smooth transitions
- Vertex remove affects smaller portion of mesh than edge collapse

Mesh Decimation Error Metrics

Vertex-Vertex Distance

Motivation

- Promote accurate 3D shape preservation
- Preserve screen-space silhouettes and pixel coverages

Types

- Vertex-Vertex Distance
- Surface-Surface Distance
- Point-Surface Distance
- Vertex-Plane Distance

Surface-Surface Distance

8

Error is maximum distance between original and simplified surface

- Tolerance Volumes - Guéziec 96
- Simplification Envelopes - Cohen/Varshney 96
- Hausdorf Distance - Klein 96
- Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97

Vertex-Plane Distance

Error is based on distances from original vertices to planes of faces in simplified surface

- Max distance to plane
§ Maintain set of planes for each vertex [Ronfard96]
- Sum of squared distances
§ Approximated by quadric at each vertex [Garland97]

Quadric Error Metric

Sum of squared distances from vertex to planes:

Using Quadric Error Metric

Approximate error of edge collapses

- Each vertex v_{i} has associated quadric Q_{i}
- Error of collapsing v_{1} and v_{2} to v^{\prime} is $v^{\prime} Q_{1} v^{\prime}+v^{\prime} Q_{2} v^{\prime}$
- Quadric for new vertex v^{\prime} is $Q^{\prime}=Q_{1}+Q_{2}$

Using Quadric Error Metric

Find optimal location v' after collapse:

$$
\left[\begin{array}{cccc}
q_{11} & q_{12} & q_{13} & q_{14} \\
q_{12} & q_{22} & q_{23} & q_{24} \\
q_{13} & q_{23} & q_{33} & q_{34} \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{v}^{\prime}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

$$
\mathbf{v}^{\prime}=\left[\begin{array}{cccc}
q_{11} & q_{12} & q_{13} & q_{14} \\
q_{12} & q_{22} & q_{23} & q_{24} \\
q_{13} & q_{23} & q_{33} & q_{34} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Mesh Decimation Summary

Properties

- Fast (with quadric error metric)
- Good quality approximation
- Only connected meshes
- Allows topology modifications (if allow vertex merging)
- Allows control over amount of simplification
- Continuous LOD
- Smooth transitions

