
CS 425 Fall 2004
Exam 1 solutions

Problem 1:
Entity key constraints:

For movie: name, producer, release date
For theater: name, location
For distributor: business name
For actor: Equity ID
For agent: taxpayer ID

Other constraints:
Numbers of screens ≥ 1.
There is only one distributor for any one movie in one theater.
The number of movies showing in a theater is equal to the number of screens.
Each actor has at most one agent.

Problem 2:

This is one of several correct ER diagrams. Most variations are different ways of trying
to capture constraints listed in Problem 1 that are not entity key constraints. Of those

actor movie review
body

appear review

name

ID
ability

name producer rel. date

rating

date

publisher

reviewer

text

represent

agent

name ID

address

email

tele theater

showing
distributes

name

loc manager
distributor

from

screens

start
end

name proprietor addr tele

four constraints, only “Each actor has at most one agent.” is easily captured - as a key
constraint. The solution here captures “There is only one distributor for any one movie in
one theater.” by using aggregation to relate a “movie showing in a theater” to a unique
distributor with a key and participation constraint from the movie-theater pair. However,
the aggregation results in a consistency constraint that cannot be captured: the distributor
related to the “movie showing in theater” pair through the from relationship must be
related to that movie in the distributes relationship. Constraints “Numbers of screens ≥ 1”
and “The number of movies showing in a theater is equal to the number of screens.”
cannot be captured (they are constraints relating values of entities), but these constraints
do imply the total participation constraint of theater in showing. Note that this solution
interprets a movie review as a prose critique; one would expect the text to be specific to a
certain movie. Other interpretations were not penalized if represented correctly.

Problem 3:
create table movie (

name char(30),
producer char(30),
rel_date char(8),
rating char,
primary key (name, producer, rel_date))

create table theater (
name char(30),
loc char(30),
#_screens integer,
manager char(50),
primary key (name, loc.),
check (#_screens >= 1))

create table distributor (
name char(30),
proprietor char(50),
addr char(100),
tele char(10)
primary key (name))

create table actor (
name char(50),
ID char(10),
ability integer,
agent_ID char(20),
primary key (ID),
foreign key (agent_ID) references agent)

create table agent (
name char(50),

ID char(20),
address char(100),
tele char(10),
email char(50),
primary key (ID))

create table review (
reviewer char(50),
publisher char(50),
text char(5000),
date char(8),
name char(30) not null,
producer char(30) not null,
rel_date char(8) not null,
primary key (reviewer, publisher, text, date),
foreign key (name, producer, rel_date) references movie)

create table distributes (
name char(30),
producer char(30),
rel_date char(8),
distrib_name char(30),
primary key (name, producer, rel_date, distrib_name),
foreign key (name, producer, rel_date) references movie,
foreign key (distrib_name) references distributor)

create table showing (
name char(30),
producer char(30),
rel_date char(8),
t_name char(30),
t_loc char(30),
distrib_name char(30) not null,
start char(8),
end char(8),
primary key(name, producer, rel_date, t_name, t_loc)
foreign key (name, producer, rel_date, distrib_name) references distributes,
foreign key (t_name, t_loc) reference theater)

create table appear (
name char(30),
producer char(30),
rel_date char(8),
ID char(10),
foreign key (name, producer, rel_date) references movie,
foreign key(ID) references actor)

create assertion all_screens
check (not exists (

select T.name, T.loc
from theater T
where T.#_screens != (

select count(*)
from showing S
where (S.t_name = T.name) AND

(S.t_loc = T.loc)
)

)
)

Problem 4:
A.
 Π ID, Birthdate (
 (ΠDogIDσ Impairment = ‘total’
 (Client_Dog_Relation ►◄ ClientName = Name AND ClientAddress = Address Client))
 ►◄ DogID=ID Dog)

B.
(Π CertificationTrainerSSN (Trained_Dog)) U
(Π SSN σ NumberYearsService > 2 (Trainer))

C.
Π SSN, Name, Address (Trainer ►◄ SSN=TrainerSSN (
 (ΠTrainerSSN, Breed (Trainer_Dog_Relation ►◄ DogID=ID Dog)) ⁄ (ΠBreedDog)
))

Problem 5:
A.
{ < S,N,A > | EXISTS(Y,L) ((< S,N,A,Y,L> ε Trainer) AND
 FORALL(B) (
 (EXISTS(I1,T1) (<I1,B,T1 > ε Dog)) =>
 EXISTS(I2,T2) ((<I2,B,T2 > ε Dog) AND
 (<S,I2 > ε Trainer_Dog_Relation))
)
) }

B.
select count(*) as count_in_breed, D.breed
from Trained_Dog T, Dog D
where T.ID = D.ID
grouped by D.Breed

