Recall that the diameter of our body is poly(n) since we started with a body whose
diameter was n? and then we placed a grid of size 1/n? or so. Combining all the above

information, we get that
1

~ poly(n)’
Therefore, the mixing time is (9( log N) = O(poly(n)).

4 Dimension Reduction

Now we describe a central result of high-dimensional geometry (at least when distances are
measured in the /5 norm). Problem: Given n points 21, 22, ..., 2" in R", we would like to
find n points u',u?,...,u™ in R™ where m is of low dimension (compared to n) and the

metric restricted to the points is almost preserved, namely:
12 = 2l < [lu* — w2 < L+ )27 — 27|z Vi, j. (2)
The following main result is by Johnson & Lindenstrauss :

THEOREM 4

In order to ensure (2), m = O(log”

) suffices.

Note: In class, we used the notation of k vectors z!...z* in 7, but we can always embed

the k vectors in a k-dimensional space, so here I assume that n = k and use only n.
PRrOOF:
Choose m vectors z',..., 2™

from {4/ %, — %} Then consider the mapping from R"™ to R given by

€ R™ at random by choosing each coordinate randomly

z— (z-ahz 22 .z 2™).
In other words u’ = (2% - 2',2* - 22,...,2" - 2™) for i = 1,...,k. We want to show that
with positive probability, u!, ..., u* has the desired properties. This would mean that there
exists at least one choice of u', ..., u¥ satisfying inequality 2. To show this, first we write
the expression ||u — u?|| explicitly:

Jod =il =3 (Z A4 - )

k=1 \l=1

Denote by z the vector z* — 27, and by u the vector v’ — u?. So we get:

2
2 ‘ 12
[Jul|* = [u" — o’ Z (Z zm) -
k=1
Let X}, be the random variable (3" ; zizf)%. Its expectation is p = 1E€||2||2 (can be seen
similarly to the proof of lemma 1). Therefore, the expectation of ||Ju? is (1 + €)||z||?. If we
show that ||u||? is concentrated enough around its mean, then it would prove the theorem.

More formally, we state the following Chernoff bound lemma:



LEMMA 5
There exist constants ¢y > 0 and ¢y > 0 such that:

L Prllu)® > (1 + p)p] < e=arm
2. Prijul® < (1= B)p] < e=2m
Therefore there is a constant ¢ such that the probability of a "bad” case is bounded by:

Pr{([ull® > (14 B)w) v (Jull* < (1 = B)p)] < e~

Now, we have (g) random variables of the type [lu; — u;||?. Choose 8 = 5. Using the
union bound, we get that the probability that any of these random variables is not within
(1 £ §) of their expected value is bounded by

n efcﬁm
2
8(log n+log c)

So if we choose m > ==="5—=, we get that with positive probability, all the variables
are close to their expectation within factor (1 & §). This means that for all 4,j:

€ . . . .
(1= A+ =27 < [lu’ — || < (1+2)(1+6)sz—2]\\2

Therefore, '
2 = 212 < lu' =!I < (1 +€)?|l2" = 2%,

and taking square root:
12 = 2| < [l — || < (L + €)= = 2|,

as required.
It remains to prove lemma 4. We prove the first part. Let a? = €, 50 i = a?m/|z||?
and we get the following equation:

P = Pr{ul® > (1 + B)u] = Prilul?® > (1 + B)a’m]z||?)
Pr(llull® = (1 + B)a?m|z||* > 0]
= Prit(|lull* = (1 + B)a’m||*) > 0] V¢ >0 (3)
Priexp (t([[ul® — (1 + B)a’m|]*)) > 1]
< Elexp (t([|ul® = (1 + B)a?m||]*))]  (Markov)
We calculate the last expectation:

P < Elexp(t (HUH2))] exp(—t(1 + B)a®m]|z||?) (constant goes out)

— Blexp(t(3(Y a2 exp(—(1+ B)atm =|)

k=1 I=1

= Flexp(t(3 (3 22)) + 13 (3 mznat b)) exp(—t(1 + Gam|)?) Y

Eol kE  I£h

= Blexp(ta®ml|z|* + t(Y (Y aznaia)))] exp(—t(1+ B)a’m|z|*)

kE  I#h



The last step used the fact that (z)? = a2 and Y 22 = ||2||>. So continuing, we get:

P < Elexp (3 (3 ziznafaf))) exp (~tda?ml =) )

kE  I£h

The set of variables {xf:rﬁ}#h are pairwise independent. Therefore the above expectation
can be rewritten as a product of expectations:

pP< H HE[exp(tzlzhxfxlfL)] exp(—tfBa’m)||z|?) (6)
k I#h
we notice that

1 1
Elexp(tzzpaiaf)] = 3 exp(tzizpa?) + 3 exp(—tzzpa?) < exp(t?zizia’)

(the last inequality is easily obtained by Taylor expanding the exponent function). Plugging
that in (6), we get:

P < HHexp(tQZ?z}QLa4) exp (—tfa’ml|z||?)

k 1+h
m
_ 2.2.2 4 a2 2 (7)
= | [Texp (P227a) | exp(—tBa®mz|)
I+h
= exp (mt? Z 2ot — tBa’ml|z||?)

I#h

Using simple analysis of quadratic function we see that the last expression obtains its
minimum when )
Pl

= 9.2 2.2°
20 Zl;ﬁhzl Zh

Substituting for ¢, we get:

&l

P < exp (—fPm-—————
A3 25

) (8)

Finally, the expression

5(z) = [l
A3 25

is bounded below by a constant ¢;. To prove this, first note that §(z) = d(yz) for any v # 0.
So it is enough to consider the case ||z|| = 1. Then, using Lagrange multipliers technique,
for example, we get that 0(z) obtains its minimum when z; = ﬁ for each | = 1..n. Plugging
this in the expression for d(z) we see that it is bounded above by a constant ¢; that does
not depend on n. This completes the proof. O



