Programming Languages MinML: A MINiMaL Functional Language Static Semantics

David Walker

Static Semantics

The **static semantics**, or **type system**, imposes context-sensitive restrictions on the formation of expressions.

- Distinguishes **well-typed** from **ill-typed** expressions.
- Type constraints eliminate **prima facie** nonsensical programs.

The static semantics is inductively defined by a set of **typing rules**.

Typing Judgements

A **typing judgement**, or **typing assertion**, is a triple

 $\Gamma \vdash e : \tau$

with three parts

- A type assignment, or type context, Γ that assigns types to some finite set of variables. Think of Γ as a "symbol table".
- 2. An **expression** e whose free variables are given types by Γ .
- 3. A **type** τ for the expression *e*.

Type Assignments

Formally, a type assignment is a **finite func-tion**

$$\mathsf{\Gamma}: Variables \rightarrow Types$$

That is, Γ is a function whose domain dom(Γ) is a finite set of variables.

We write $\Gamma, x:\tau$, or $\Gamma[x:\tau]$, for the function Γ' defined as follows:

$$\Gamma'(y) = \begin{cases} \tau & \text{if } x = y \\ \Gamma(y) & \text{if } x \neq y \end{cases}$$

A variable has whatever type Γ assigns to it:

 $\overline{\Gamma \vdash x : \Gamma(x)}$

The constants have the evident types:

 $\overline{\Gamma \vdash n : int}$

 $\overline{\Gamma \vdash \text{true : bool}}$ $\overline{\Gamma \vdash \text{false : bool}}$

The primitive operations have the expected typing rules:

$$\frac{\Gamma \vdash e_1 : \texttt{int} \quad \Gamma \vdash e_2 : \texttt{int}}{\Gamma \vdash \texttt{+}(e_1, e_2) : \texttt{int}}$$

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash = (e_1, e_2) : \text{bool}}$$

(and similarly for the others).

Both "branches" of a conditional must have the **same** type!

$$\frac{\Gamma \vdash e : \texttt{bool} \quad \Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \texttt{if} \, e \, \texttt{then} \, e_1 \, \texttt{else} \, e_2 \, \texttt{fi} : \tau}$$

Intuitively, we cannot predict the outcome of the test (in general) so we must insist that both results have the same type. Otherwise we could not assign a unique type to the conditional.

Functions may only be applied to arguments in their domain:

$$\frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \operatorname{apply}(e_1, e_2) : \tau}$$

The result type is the co-domain (range) of the function.

Type checking recursive functions:

$$\frac{\Gamma[f:\tau_1 \to \tau_2][x:\tau_1] \vdash e:\tau_2}{\Gamma \vdash \operatorname{fun} f(x:\tau_1):\tau_2 = e:\tau_1 \to \tau_2}$$

We tacitly **assume** that $\{f, x\} \cap \text{dom}(\Gamma) = \emptyset$. This is always possible by our conventions on binding operators.

Type checking a recursive function is tricky! We **assume** that

- 1. the function has the specified domain and range types, and
- 2. the argument has the specified domain type.

We then **check** that the body has the range type under these assumptions.

If the assumptions are **consistent**, the function is type correct, otherwise not.

Well-Typed and Ill-Typed Expressions

An expression e is **well-typed**, or **typable**, in a context Γ iff there exists a type τ such that $\Gamma \vdash e : \tau$.

If there is no τ such that $\Gamma \vdash e : \tau$, then e is **ill-typed**, or **untypable**, in context Γ .

Consider the following expression f:

fun f(n:int):int is
if n=0 then 1 else n * f(n-1) end

Proposition 1

The expression f has type int \rightarrow int.

To prove this, we must show that $\emptyset \vdash f$: int \rightarrow int is a valid typing judgement according to the rules above.

 $\emptyset \vdash f: \texttt{int} {\rightarrow} \texttt{int} \text{ because}$

 $f:int \rightarrow int, n:int \vdash if n=0$ then 1 else n*f(n-1): int because

 $\texttt{f:int} {\rightarrow} \texttt{int}, \texttt{n:int} \vdash \texttt{n=0:bool}$

 $f:int \rightarrow int, n:int \vdash 1:int$

 $f:int \rightarrow int, n:int \vdash n*f(n-1) : int$

 $\texttt{f:int} \rightarrow \texttt{int}, \texttt{n:int} \vdash \texttt{n=0}$: bool because

 $\texttt{f:int} \rightarrow \texttt{int}, \texttt{n:int} \vdash \texttt{n} : \texttt{int}$

 $\texttt{f:int} {\rightarrow} \texttt{int}, \texttt{n:int} \vdash \texttt{0:int}$

 $f:int \rightarrow int, n:int \vdash 1:int$ is immediate.

 $f:int \rightarrow int, n:int \vdash n*f(n-1) : int because$

 $f:int \rightarrow int, n:int \vdash n:int$

 $f:int \rightarrow int, n:int \vdash f(n-1) : int$

The first case is immediate, the second requires a bit more work.

 $f:int \rightarrow int, n:int \vdash f(n-1) : int because$

 $\texttt{f:int} {\rightarrow} \texttt{int}, \texttt{n:int} \vdash \texttt{f} : \texttt{int} {\rightarrow} \texttt{int}$

 $f:int \rightarrow int, n:int \vdash n-1:int$ because

 $\texttt{f:int}{\rightarrow}\texttt{int},\texttt{n:int}\vdash\texttt{n}\texttt{:int}$

 $f:int \rightarrow int, n:int \vdash 1:int$

This completes the proof! It's rather tedious to do by hand, but what's nice is that there are **precise rules** to fall back on if you get stuck.

In practice we use computers to find typing proofs. This is the job of a **type checker**:

Given Γ , e, and τ , is there a derivation of $\Gamma \vdash e$: τ according to the typing rules?

Type Checking

How does the type checker find typing proofs?

Important fact: the typing rules are **syntaxdirected** — there is **one** rule per expression form.

Therefore the checker can **invert** the typing rules and work backwards towards the proof, just as we did above.

For example, if the expression is a function, the only possible proof is one that applies the function typing rule. So we work backwards from there.

Type Checking

We can say something even stronger for MinML: every expression has **at most one** type.

Therefore to determine whether or not $\Gamma \vdash e$: τ , we may

- 1. Compute the unique type τ_e (if any) of e in Γ .
- 2. Compare τ_e with τ .

This is called **type synthesis** because we **synthesize** the unique (if it exists) type of e relative to Γ .

Type Checking

Formally, we prove that the three-place relation $\Gamma \vdash e : \tau$ is a **partial function** of Γ and e.

That is, if $\Gamma \vdash e : \tau_1$ and $\Gamma \vdash e : \tau_2$, then $\tau_1 = \tau_2$.

This is proved by induction on the structure of e (exercise).

For homework you will implement this style of type checker.

Properties of Typing

Theorem 2 (Inversion)

The typing rules are necessary, as well as sufficient.

- 1. If $\Gamma \vdash x : \tau$, then $\Gamma(x) = \tau$.
- 2. If $\Gamma \vdash n : \tau$, then $\tau = \text{int}$.
- 3. If $\Gamma \vdash \text{true} : \tau$, then $\tau = \text{bool}$, and similarly for false.
- 4. If $\Gamma \vdash +(e_1, e_2) : \tau$, then $\tau = \text{int}$ and $\Gamma \vdash e_1 : \text{int}$ and $\Gamma \vdash e_2 : \text{int}$.
- 5. If $\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 \text{ fi} : \tau$, then $\Gamma \vdash e : \text{ bool}$, $\Gamma \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau$.
- 6. If $\Gamma \vdash \operatorname{fun} f(x:\tau_1):\tau_2 = e : \tau$, then $\tau = \tau_1 \rightarrow \tau_2$ and then $\Gamma[f:\tau_1 \rightarrow \tau_2][x:\tau_1] \vdash e : \tau_2$.
- 7. If $\Gamma \vdash \operatorname{apply}(e_1, e_2) : \tau$, then there exists τ_2 such that $\Gamma \vdash e_1 : \tau_2 \rightarrow \tau$ and $\Gamma \vdash e_2 : \tau_2$.

Proof by **rule induction** on the typing rules.

Induction on Typing

To show that some property $P(\Gamma, e, \tau)$ holds whenever $\Gamma \vdash e : \tau$, it is enough to show

- $P(\Gamma, x, \Gamma(x))$
- $P(\Gamma, n, int)$
- $P(\Gamma, true, bool)$
- $P(\Gamma, \texttt{false}, \texttt{bool})$
- if P(Γ, e₁, int) and P(Γ, e₂, int), then P(Γ, +(e₁, e₂), int) (and similarly for the other primitive operators)
- if $P(\Gamma, e, \text{bool})$, $P(\Gamma, e_1, \tau)$, and $P(\Gamma, e_2, \tau)$, then $P(\Gamma, \text{if } e \text{ then } e_1 \text{ else } e_2 \text{ fi}, \tau)$
- if $P(\Gamma, e_1, \tau_2 \rightarrow \tau)$ and $P(\Gamma, e_2, \tau_2)$, then $P(\Gamma, \operatorname{apply}(e_1, e_2), \tau)$.
- if $P(\Gamma[f:\tau_1 \rightarrow \tau_2][x:\tau_1], e, \tau_2)$, then $P(\Gamma, \operatorname{fun} f(x:\tau_1):\tau_2 = e, \tau_1 \rightarrow \tau_2)$.

Properties of Typing

Theorem 3 (Weakening) If $\Gamma \vdash e : \tau$ and $\Gamma' \supseteq \Gamma$, then $\Gamma' \vdash e : \tau$.

Intuitively, "junk" in the symbol table doesn't matter. We may always α -convert expressions to "steer around" the junk.

The proof is by induction on typing.

Properties of Typing

Theorem 4 (Substitution)

If $\Gamma[x:\tau] \vdash e' : \tau'$ and $\Gamma \vdash e : \tau$, then $\Gamma \vdash \{e/x\}e' : \tau'$.

Intuitively, we may "click in" the second derivation wherever the type of x is required in the first derivation.

Formally, we prove this by rule induction on the **first** typing judgement.

- Consider each rule in turn.
- Show in each case that substitution preserves type.

Summary

- 1. The static semantics of MinML is specified by an inductive definition of the **typing judgement** $\Gamma \vdash e : \tau$.
- 2. Properties of the type system may be proved by **induction on typing derivations**.