
Programming Languages

MinML: A MINiMaL Functional

Language

Static Semantics

David Walker



Static Semantics

The static semantics, or type system, im-

poses context-sensitive restrictions on the for-

mation of expressions.

• Distinguishes well-typed from ill-typed ex-

pressions.

• Type constraints eliminate prima facie non-

sensical programs.

The static semantics is inductively defined by

a set of typing rules.

1



Typing Judgements

A typing judgement, or typing assertion, is

a triple

Γ ` e : τ

with three parts

1. A type assignment, or type context, Γ

that assigns types to some finite set of vari-

ables. Think of Γ as a “symbol table”.

2. An expression e whose free variables are

given types by Γ.

3. A type τ for the expression e.

2



Type Assignments

Formally, a type assignment is a finite func-

tion

Γ : Variables ⇀ Types

That is, Γ is a function whose domain dom(Γ)

is a finite set of variables.

We write Γ, x:τ , or Γ[x:τ ], for the function Γ′

defined as follows:

Γ′(y) =

{
τ if x = y
Γ(y) if x 6= y

3



Typing Rules

A variable has whatever type Γ assigns to it:

Γ ` x : Γ(x)

The constants have the evident types:

Γ ` n : int

Γ ` true : bool Γ ` false : bool

4



Typing Rules

The primitive operations have the expected

typing rules:

Γ ` e1 : int Γ ` e2 : int
Γ ` +(e1, e2) : int

Γ ` e1 : int Γ ` e2 : int
Γ ` =(e1, e2) : bool

(and similarly for the others).

5



Typing Rules

Both “branches” of a conditional must have

the same type!

Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ
Γ ` if e then e1 else e2 fi : τ

Intuitively, we cannot predict the outcome of

the test (in general) so we must insist that

both results have the same type. Otherwise

we could not assign a unique type to the con-

ditional.

6



Typing Rules

Functions may only be applied to arguments in

their domain:

Γ ` e1 : τ2→τ Γ ` e2 : τ2
Γ ` apply(e1, e2) : τ

The result type is the co-domain (range) of

the function.

7



Typing Rules

Type checking recursive functions:

Γ[f :τ1→τ2][x:τ1] ` e : τ2
Γ ` fun f (x:τ1):τ2 = e : τ1→τ2

We tacitly assume that { f, x } ∩ dom(Γ) = ∅.
This is always possible by our conventions on

binding operators.

8



Typing Rules

Type checking a recursive function is tricky!

We assume that

1. the function has the specified domain and

range types, and

2. the argument has the specified domain type.

We then check that the body has the range

type under these assumptions.

If the assumptions are consistent, the func-

tion is type correct, otherwise not.

9



Well-Typed and Ill-Typed Expressions

An expression e is well-typed, or typable, in

a context Γ iff there exists a type τ such that

Γ ` e : τ .

If there is no τ such that Γ ` e : τ , then e is

ill-typed, or untypable, in context Γ.

10



Typing Example

Consider the following expression f :

fun f(n:int):int is

if n=0 then 1 else n * f(n-1) end

Proposition 1

The expression f has type int→int.

To prove this, we must show that ∅ ` f :

int→int is a valid typing judgement accord-

ing to the rules above.

11



Typing Example

∅ ` f : int→int because

f:int→int, n:int ` if n=0 then 1 else n*f(n-1) :

int because

f:int→int, n:int ` n=0 : bool

f:int→int, n:int ` 1 : int

f:int→int, n:int ` n*f(n-1) : int

12



Typing Example

f:int→int, n:int ` n=0 : bool because

f:int→int, n:int ` n : int

f:int→int, n:int ` 0 : int

f:int→int, n:int ` 1 : int is immediate.

13



Typing Example

f:int→int, n:int ` n*f(n-1) : int because

f:int→int, n:int ` n : int

f:int→int, n:int ` f(n-1) : int

The first case is immediate, the second re-

quires a bit more work.

14



Typing Example

f:int→int, n:int ` f(n-1) : int because

f:int→int, n:int ` f : int→int

f:int→int, n:int ` n-1 : int because

f:int→int, n:int ` n : int

f:int→int, n:int ` 1 : int

15



Typing Example

This completes the proof! It’s rather tedious

to do by hand, but what’s nice is that there are

precise rules to fall back on if you get stuck.

In practice we use computers to find typing

proofs. This is the job of a type checker:

Given Γ, e, and τ , is there a derivation

of Γ ` e : τ according to the typing

rules?

16



Type Checking

How does the type checker find typing proofs?

Important fact: the typing rules are syntax-

directed — there is one rule per expression

form.

Therefore the checker can invert the typing

rules and work backwards towards the proof,

just as we did above.

For example, if the expression is a function,

the only possible proof is one that applies the

function typing rule. So we work backwards

from there.

17



Type Checking

We can say something even stronger for MinML:

every expression has at most one type.

Therefore to determine whether or not Γ ` e :

τ , we may

1. Compute the unique type τe (if any) of e

in Γ.

2. Compare τe with τ .

This is called type synthesis because we syn-

thesize the unique (if it exists) type of e rela-

tive to Γ.

18



Type Checking

Formally, we prove that the three-place rela-

tion Γ ` e : τ is a partial function of Γ and

e.

That is, if Γ ` e : τ1 and Γ ` e : τ2, then

τ1 = τ2.

This is proved by induction on the structure of

e (exercise).

For homework you will implement this style of

type checker.

19



Properties of Typing

Theorem 2 (Inversion)
The typing rules are necessary, as well as sufficient.

1. If Γ ` x : τ , then Γ(x) = τ .

2. If Γ ` n : τ , then τ = int.

3. If Γ ` true : τ , then τ = bool, and similarly for
false.

4. If Γ ` +(e1, e2) : τ , then τ = int and Γ ` e1 : int and
Γ ` e2 : int.

5. If Γ ` if e then e1 else e2 fi : τ , then Γ ` e : bool,
Γ ` e1 : τ and Γ ` e2 : τ .

6. If Γ ` fun f (x:τ1):τ2 = e : τ , then τ = τ1→τ2 and
then Γ[f :τ1→τ2][x:τ1] ` e : τ2.

7. If Γ ` apply(e1, e2) : τ , then there exists τ2 such that
Γ ` e1 : τ2→τ and Γ ` e2 : τ2.

Proof by rule induction on the typing rules.

20



Induction on Typing

To show that some property P (Γ, e, τ) holds
whenever Γ ` e : τ , it is enough to show

• P (Γ, x,Γ(x))

• P (Γ, n, int)

• P (Γ, true, bool)

• P (Γ, false, bool)

• if P (Γ, e1, int) and P (Γ, e2, int), then P (Γ, +(e1, e2), int)
(and similarly for the other primitive operators)

• if P (Γ, e, bool), P (Γ, e1, τ), and P (Γ, e2, τ), then
P (Γ, if e then e1 else e2 fi, τ)

• if P (Γ, e1, τ2→τ) and P (Γ, e2, τ2), then
P (Γ, apply(e1, e2), τ).

• if P (Γ[f :τ1→τ2][x:τ1], e, τ2), then
P (Γ, fun f (x:τ1):τ2 = e, τ1→τ2).

21



Properties of Typing

Theorem 3 (Weakening)

If Γ ` e : τ and Γ′ ⊇ Γ, then Γ′ ` e : τ .

Intuitively, “junk” in the symbol table doesn’t

matter. We may always α-convert expressions

to “steer around” the junk.

The proof is by induction on typing.

22



Properties of Typing

Theorem 4 (Substitution)

If Γ[x:τ ] ` e′ : τ ′ and Γ ` e : τ , then Γ ` {e/x}e′ :
τ ′.

Intuitively, we may “click in” the second deriva-

tion wherever the type of x is required in the

first derivation.

Formally, we prove this by rule induction on

the first typing judgement.

• Consider each rule in turn.

• Show in each case that substitution pre-

serves type.

23



Summary

1. The static semantics of MinML is speci-

fied by an inductive definition of the typing

judgement Γ ` e : τ .

2. Properties of the type system may be proved

by induction on typing derivations.

24


