
COS 402: Artificial Intelligence

Homework #7 Fall 2005
Machine learning Due: Tuesday, January 17

Part I: Written Exercises

See instructions on the assignments webpage on how to turn these in. Approximate point values are
given in parentheses. Be sure to show your work and justify all of your answers.

1. (32) Consider the following dataset consisting of five training examples followed by three test
examples:

x1 x2 x3 y

training
− + + −
+ + + +
− + − +
− − + −
+ + − +

test
+ − − ?
− − − ?
+ − + ?

There are three attributes (or features or dimensions),x1, x2 andx3, taking the values+ and−.
The label (or class) is given in the last column denotedy; it also takes the two values+ and−.

Simulate each of the following four learning algorithms on this dataset. In each case, show the
final hypothesis that is induced, and show how it was computed. Also, say what its prediction would
be on the three test examples.

For parts b, c and d, be sure to see the errata for R&N Chapters 18 and 20 below.

a. Thedecision tree algorithm discussed in class and R&N. For this algorithm, use the informa-
tion gain (entropy) impurity measure as a criterion for choosing an attribute to split on. Grow
your tree until all nodes are pure, but do not attempt to prunethe tree.

b. AdaBoost. For this algorithm, you should interpret label values of+ and− as the real num-
bers+1 and−1. Use decision stumps as weak hypotheses, and assume that theweak learner
always computes the decision stump with minimum error on thetraining set weighted byDt.
(Recall that a decision stump is a one-level decision tree; see R&N p. 666.) Run your boosting
algorithm for three rounds.

c. Support vector machines. For this algorithm, you should interpret both label and attribute val-
ues of+ and− as the real numbers+1 and−1. Also, you can use the additional information
that the first three examples are support vectors, but the others are not, so thatα4 andα5 are
both zero in R&N Eq. (20.17). This means that you can maximizethis equation overα1, α2

andα3 using calculus. (Note that if any of these variables turn outto be negative, there’s a
problem.) When you have found a solution vectorw, check it by showing thatyi(w ·xi) ≥ 1,
and that equality holds for the support vectors, i.e., the first three examples. (The notation
here is as in class and R&N.) You do not need to use a “kernel,” just a regular inner product,
as in Eqs. (20.17) and (20.18).



d. Neural networks. For this algorithm, use a single-layer neural net consisting of just a single
perceptron at the output, no hidden layers, and the three features at the input level. Attribute
values of+ and− should be interpreted as the real numbers+1 and−1, while label values
of + and− should be interpreted as1 and0. You can disregard the “bias weight” (denoted
W0 in R&N), i.e., assume it is fixed to be zero. Assume that the neural net is trained for a
single epoch that runs through the training data once in the order given. Use a learning rate
of α = 0.1, and start with all weights equal to zero. Forg, use the standard sigmoid function
given in Figure 20.16.

2. (15) In class, we looked at the following dataset:

x1 x2 x3 x4 x5 x6 x7 x8 y

1 1 0 0 0 1 0 1 1
1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0
0 1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 1 0
0 1 1 0 1 1 0 1 1
1 1 0 1 0 1 0 1 1
0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 1 1 0

It was noticed that the labely is 1 if and only if x2 andx6 are both equal to1. Since attributes and
labels are{0, 1}-valued, we can write this rule succinctly asy = x2x6. In general, such a product of
any number of attributes is called amonomial. (This includes the “empty” monomial, which, being
a product of no variables, is always equal to1.)

Throughout this problem, you can assume that the attributesand labels are all{0, 1}-valued.
Also, letn be the number of attributes (for instance,n = 8 in the example above).

a. Describe a simple algorithm that, given a dataset, will efficiently (in polynomial time) find a
monomial consistent with it, assuming that one exists.

b. What is the total number of monomials that can be defined onn attributes?

c. Use the bound derived in class (or the results in R&N) to compute an upper bound on the
generalization error of the monomial that was found to be consistent with the dataset above.
(“Generalization error” is the same as what R&N calls simplythe “error” in Section 18.5.)
Derive a bound that holds with 95% confidence (so thatδ = 0.05).

d. In the example above wheren = 8, how many examples would be needed to be sure the
generalization error of a consistent monomial is at most 10%with 95% confidence?

Part II: Programming

The programming part of this assignment is described at:
http://www.cs.princeton.edu/courses/archive/fall05/cos402/assignments/learning
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Errata for R&N Chapters 18 and 20

There are a few important errors in Chapters 18 and 20 of R&N.
First of all, in Figure 18.10, the second to last line is written ambiguously. It should read:

z[m]← log[(1− error )/error ].

(Actually, however, I would encourage you to use the pseudocode and notation for AdaBoost given
in class and as a handout on the “Schedule & Readings” webpage.)

Secondly, the equation second from the bottom on page 741 that now reads:

= Err ×
∂

∂Wj

g



y −
n
∑

j=0

Wjxj





should instead read:

= Err ×
∂

∂Wj



y − g





n
∑

j=0

Wjxj







 .

Finally, the paragraph describing SVM’s at the very bottom of page 749 continuing at the top
of 751 is not quite correct, but some explanation is requiredto describe what the problem is. In class,
we implicitly required the hyperplane sought by the SVM algorithm to pass through the origin. This
resulted in a hypothesis of the form

sign(w · x).

In other treatments of SVM’s, however, the hyperplane is often not required to pass through the
origin. Thus, the computed hypothesis has the form

sign(w · x + b),

so that the hyperplane is defined both by the vectorw and the scalarb.
The treatment in R&N is not quite correct for either of these cases. For the through-the-origin

case, their treatment would be correct if the constraint
∑

i αiyi = 0 were omitted. With the omission
of this constraint, their treatment is the same as was presented in class. For the not-through-the-
origin case, the treatment in R&N would be correct if Eq. (20.18) were replaced by

h(x) = sign

(

∑

i

αiyi(x · xi) + b

)

,

for someb that can be written in terms of the other variables (details omitted). For this class (in-
cluding Problem 1c above), we will only consider the through-the-origin case.
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