
1

1

Project 5

Virtual Memory

2

Goals

 Two-level page tables
 Setup Page Directory & Page Tables
 Read Soft. Devel. Manual Vol. 3 (Ch 2-4)

 Page fault handler
 Allocate physical page and bring in virtual page

 Physical page frame management
 page allocation & replacement
 swap in & out

2

3

Two Level Virtual Memory

dir table offset

Virtual address

0122232

Page Directory
Page table

Base Addr. offset

Physical address

012321232

Flags

0

PDB

CR3

Entry Entry

4

In Words…

 MMU uses CR3 and the first 10 bits of the
virtual addr to index into the page directory
and find the physical address of the page
table we need.

 Then it uses the next 10 bits of the virtual
addr to index into the page table, find the
physical address of the actual page.

 The lowest 12 bits are used as the offset in
the page.

3

5

Properties
 Size of one Page Directory or one Page

Table or one Page is 4KB (2^12)
 Page Directory is a Page Table for the Page

Tables
 Avoids million entry page tables

 Each Entry is 4 bytes (32 bits)
 So one page can have 2^10 entries!

 Each page must be page aligned

6

Two-Level Page Tables(cont’d)

Base Address

Page table entry
6

1232

12345 0

Present/Absent
Read/Write
User/Supervisor

Accessed
Dirty

4

7

Protection bits
 Present Bit (P)

 If 1, then physical page is in memory
 If 0, then other bits can be used to provide

information to help the OS bring in the page
 Read/Write Bit (RW)

 All pages can be read
 If 1, page can be written to

 User/Supervisor Bit (US)
 If 1, page can be accessed in kernel or user mode
 If 0, page can only be accessed in kernel mode

8

 Each process (including the kernel) has its
own page directory and a set of page tables.

 The address of page directory is in CR3
(page directory register) when the process is
running

 On context switch pcb->page_directory is
loaded into CR3
 Done for you in the given code

How are page tables used?

5

9

 Don’t forget to mask off extra bits when
using the base address from page table
 PE_BASE_ADDR_MASK (see memory.h)

How are page tables
used?(cont’d)

10

BIOS data

Kernel code/data

free page frames

Video memory

0x1000

0xB8000

MEM_START

next_free_page

MAX_PHY_MEM

(0x100000) page0
page1
page2

pageN

Physical Memory Layout

...

6

11

Virtual Memory (Process) Layout

Kernel code/data,
Kernel stacks, etc

0x0

PROCESS_LOCATION

MAX_PHY_MEM

(0x1000000)
Process code/data

Process user stack
(one page, pinned in mem)MAX_VIRTUAL_MEM

(0xFFFFFFFF)

Kernel address space

User address space

12

pageN

page2

BIOS data

Kernel code/data

free page frames

Video mem

page0
page1

...

Kernel address Space
only accessible
 in supervisor

mode(except Video mem)

code/data
accessible in user mode

user stack
(one page, pinned in mem)

Virtual-Physical Mapping

Virtual memory Physical memory

7

13

Virtual address Mapping

 Kernel addresses are mapped to the same
physical addresses (identity mapped)

 All threads share the same kernel address
space

 Each process has its own address space.
It must also map the kernel address space
 Allows direct access to the video buffer

14

Virtual address Mapping

So what do we need to do?
 Setup kernel page tables that are shared by

all the threads. (In init_memory())
 Setup process page tables when creating the

process (In setup_page_table())
 Note: create_thread() also calls setup_page_table

8

15

Kernel page tables and Process page tables

Kernel page dir

Process page dir

page tab for code/data

 page tab for user stack

page tab for kernel

Process Stack page

First level Second level

...

Kernel code/data

Process code/data

16

Some clarifications:

 It is OK to setup only one page table for each
of the following:

 kernel, process’ data/code and process’ user-stack.
(We assume that our data/code/stack size is not too big.)

 The page directories and page tables are
themselves pages and must be allocated
using page_alloc()

9

17

Setup Kernel Page Table

 Allocate and pin two physical pages: one for
kernel page directory and the other for kernel
page table
 Do we need to allocate pages for kernel

code/data?

18

Setup Kernel Page
Table(cont’d)

 Set US bit for video memory area
(SCREEN_ADDR in common.h)
 User process’ require direct access
 One page is enough

 Don’t forget to map kernel page table into
kernel page directory

 For threads, just store the address of the kernel
page directory into the pcb

10

19

Set up a Process’ Page Tables

 Allocate and pin four physical pages for
each of the following:
 Page directory, page table for code/data, page

table for stack, and stack page
 Page Table entries in the Page Directory that

point to kernel page tables should be user
accessible
 However, the kernel pages themselves should not

be user accessible, except for video memory

20

Set up a Process’ Page
Tables(cont’d)

 Map the page tables into the page
directory

 Fill in the page table for code/data pages
 Which bits should be set?

 Fill in the page table for user stack page
 Which bits should be set here?

 Don’t forget to store the physical address
of the page directory into
 pcb->page_directory

11

21

Paging Mechanism

 After init_memory(), the kernel enables
paging mode by setting CR0[PG] to one
 Done in kernel.c

 In dispatch(), the kernel load CR3 register
with current_running->page_directory
 Done in scheduler.c

22

Paging Mechanism(Cont’d)
 When the physical page of a virtual

address is not present in memory(the P bit
is not set), the MMU hardware will trigger a
page fault interrupt (int 14).

 The exception handler saves the faulting
virtual address in
current_running->fault_addr

 and then calls page_fault_handler()
 done in interrupt.c

12

23

Page Fault Handler

 That’s what you are to implement
 Only code/data pages will incur page fault

 all other pages (page directory, page tables, stack page) are
pinned in memory

 So assume the page table is always there
and go directly to find the corresponding
entry for the faulting virtual address
 You should never page fault on a page directory

or page table access

24

Page Fault Handler(Cont’d)

 Allocate a physical page
 Swap out another page if no free page is available

 Fill in the page_map structure
 Discussed in more detail later

 Swap in the page from disk and map the
virtual page to the physical page
 Similar to last assignment, use USB disk as

backing store

13

25

Physical Page Management—
The page_map structure

 Defined in memory.c
 An array that maintains the management

information of each physical page. All
physical pages are indexed by a page #

 Fields in each page_map structure
 Pinned or not
 The page table entry that points to this page
 The pcb that owns the page
 Page_aligned virtual address of the page

26

Page Allocation

 Implement page_alloc() in memory.c
 A simple page allocation algorithm
 If (there is a free page)
 allocate it
 Else
 swap out a page and allocate it

14

27

Page Allocation(Cont’d)

 How do we know whether there is a free
page and where it is?

 If no free pages, which page to swap out?
 Completely at your discretion

 Be careful not to swap out a pinned page

28

Swap in and Swap out
 From where and to where?

 The process’ image is on the USB disk
 Location and size are stored in pcb->swap_loc and

pcb->swap_size
 Note: swap_loc, swap_size is in term of sectors!

 The read()/write() utilities will be useful
(usb functions)

 If the dirty bit (D bit) of the page table entry
is clear, do you still need to write the page
back?

15

29

Swap in and Swap out(Cont’d)

 Be careful when reading or writing
 The images on disk are sector-aligned (512 bytes)

not page-aligned (4KB)
 Only swap in the data belonging to this process
 Be careful not to overwrite other process’s image

when swapping out
 Example: Swapping in a page of process 1, but the

page on the disk actually contains 3 sectors of
process 1 followed by 5 sectors of process 2

 Don’t forget to modify the protection bits of the
corresponding page table entry after swapping in
or swapping out

30

Swap in and Swap out (Cont’d)
 Invalidate TLB entry when swapping out a

page.
 Use invalidate_page() which is done in memory.c

 Note: we do not have different swap space for
different instances of same process. When
we swap a page out for a process, that page
will be written to the space allocated to store
that process on disk.

 So in our implementation, each process can
only be started once.

16

31

Synchronization Issue

 The page map array is accessed and
modified by multiple processes during
setup_page_table() and
page_fault_handler().

 So what should we do?

32

Some clarifications:

 Only the process’ code/data pages could be
swapped in or out. The following pages are
allocated once and pinned in memory
forever:

 Page directories, page tables, user stack pages
 It is OK not to reclaim the pages when a

process exits

17

33

Summary

 You need to implement the following three
functions in memory.c:

 init_memory(), setup_page_table(pcb_t *),
page_fault_handler()

 You need also implement the following
auxiliary functions and use them in the
above three functions:

 page_alloc(), page_replacement_policy(),
page_swap_out(), page_swap_in()

 Add whatever other auxiliary functions you
need to make your code more readable

34

Extra Credit

 FIFO replacement policy
 Queue structure

 FIFO with second chance
 Use accessed bit

 You may need to modify the page_map
structure we discussed here

