
1

1

Project 5

Virtual Memory

2

Goals

 Two-level page tables
 Setup Page Directory & Page Tables
 Read Soft. Devel. Manual Vol. 3 (Ch 2-4)

 Page fault handler
 Allocate physical page and bring in virtual page

 Physical page frame management
 page allocation & replacement
 swap in & out

2

3

Two Level Virtual Memory

dir table offset

Virtual address

0122232

Page Directory
Page table

Base Addr. offset

Physical address

012321232

Flags

0

PDB

CR3

Entry Entry

4

In Words…

 MMU uses CR3 and the first 10 bits of the
virtual addr to index into the page directory
and find the physical address of the page
table we need.

 Then it uses the next 10 bits of the virtual
addr to index into the page table, find the
physical address of the actual page.

 The lowest 12 bits are used as the offset in
the page.

3

5

Properties
 Size of one Page Directory or one Page

Table or one Page is 4KB (2^12)
 Page Directory is a Page Table for the Page

Tables
 Avoids million entry page tables

 Each Entry is 4 bytes (32 bits)
 So one page can have 2^10 entries!

 Each page must be page aligned

6

Two-Level Page Tables(cont’d)

Base Address

Page table entry
6

1232

12345 0

Present/Absent
Read/Write
User/Supervisor

Accessed
Dirty

4

7

Protection bits
 Present Bit (P)

 If 1, then physical page is in memory
 If 0, then other bits can be used to provide

information to help the OS bring in the page
 Read/Write Bit (RW)

 All pages can be read
 If 1, page can be written to

 User/Supervisor Bit (US)
 If 1, page can be accessed in kernel or user mode
 If 0, page can only be accessed in kernel mode

8

 Each process (including the kernel) has its
own page directory and a set of page tables.

 The address of page directory is in CR3
(page directory register) when the process is
running

 On context switch pcb->page_directory is
loaded into CR3
 Done for you in the given code

How are page tables used?

5

9

 Don’t forget to mask off extra bits when
using the base address from page table
 PE_BASE_ADDR_MASK (see memory.h)

How are page tables
used?(cont’d)

10

BIOS data

Kernel code/data

free page frames

Video memory

0x1000

0xB8000

MEM_START

next_free_page

MAX_PHY_MEM

(0x100000) page0
page1
page2

pageN

Physical Memory Layout

...

6

11

Virtual Memory (Process) Layout

Kernel code/data,
Kernel stacks, etc

0x0

PROCESS_LOCATION

MAX_PHY_MEM

(0x1000000)
Process code/data

Process user stack
(one page, pinned in mem)MAX_VIRTUAL_MEM

(0xFFFFFFFF)

Kernel address space

User address space

12

pageN

page2

BIOS data

Kernel code/data

free page frames

Video mem

page0
page1

...

Kernel address Space
only accessible
 in supervisor

mode(except Video mem)

code/data
accessible in user mode

user stack
(one page, pinned in mem)

Virtual-Physical Mapping

Virtual memory Physical memory

7

13

Virtual address Mapping

 Kernel addresses are mapped to the same
physical addresses (identity mapped)

 All threads share the same kernel address
space

 Each process has its own address space.
It must also map the kernel address space
 Allows direct access to the video buffer

14

Virtual address Mapping

So what do we need to do?
 Setup kernel page tables that are shared by

all the threads. (In init_memory())
 Setup process page tables when creating the

process (In setup_page_table())
 Note: create_thread() also calls setup_page_table

8

15

Kernel page tables and Process page tables

Kernel page dir

Process page dir

page tab for code/data

 page tab for user stack

page tab for kernel

Process Stack page

First level Second level

...

Kernel code/data

Process code/data

16

Some clarifications:

 It is OK to setup only one page table for each
of the following:

 kernel, process’ data/code and process’ user-stack.
(We assume that our data/code/stack size is not too big.)

 The page directories and page tables are
themselves pages and must be allocated
using page_alloc()

9

17

Setup Kernel Page Table

 Allocate and pin two physical pages: one for
kernel page directory and the other for kernel
page table
 Do we need to allocate pages for kernel

code/data?

18

Setup Kernel Page
Table(cont’d)

 Set US bit for video memory area
(SCREEN_ADDR in common.h)
 User process’ require direct access
 One page is enough

 Don’t forget to map kernel page table into
kernel page directory

 For threads, just store the address of the kernel
page directory into the pcb

10

19

Set up a Process’ Page Tables

 Allocate and pin four physical pages for
each of the following:
 Page directory, page table for code/data, page

table for stack, and stack page
 Page Table entries in the Page Directory that

point to kernel page tables should be user
accessible
 However, the kernel pages themselves should not

be user accessible, except for video memory

20

Set up a Process’ Page
Tables(cont’d)

 Map the page tables into the page
directory

 Fill in the page table for code/data pages
 Which bits should be set?

 Fill in the page table for user stack page
 Which bits should be set here?

 Don’t forget to store the physical address
of the page directory into
 pcb->page_directory

11

21

Paging Mechanism

 After init_memory(), the kernel enables
paging mode by setting CR0[PG] to one
 Done in kernel.c

 In dispatch(), the kernel load CR3 register
with current_running->page_directory
 Done in scheduler.c

22

Paging Mechanism(Cont’d)
 When the physical page of a virtual

address is not present in memory(the P bit
is not set), the MMU hardware will trigger a
page fault interrupt (int 14).

 The exception handler saves the faulting
virtual address in
current_running->fault_addr

 and then calls page_fault_handler()
 done in interrupt.c

12

23

Page Fault Handler

 That’s what you are to implement
 Only code/data pages will incur page fault

 all other pages (page directory, page tables, stack page) are
pinned in memory

 So assume the page table is always there
and go directly to find the corresponding
entry for the faulting virtual address
 You should never page fault on a page directory

or page table access

24

Page Fault Handler(Cont’d)

 Allocate a physical page
 Swap out another page if no free page is available

 Fill in the page_map structure
 Discussed in more detail later

 Swap in the page from disk and map the
virtual page to the physical page
 Similar to last assignment, use USB disk as

backing store

13

25

Physical Page Management—
The page_map structure

 Defined in memory.c
 An array that maintains the management

information of each physical page. All
physical pages are indexed by a page #

 Fields in each page_map structure
 Pinned or not
 The page table entry that points to this page
 The pcb that owns the page
 Page_aligned virtual address of the page

26

Page Allocation

 Implement page_alloc() in memory.c
 A simple page allocation algorithm
 If (there is a free page)
 allocate it
 Else
 swap out a page and allocate it

14

27

Page Allocation(Cont’d)

 How do we know whether there is a free
page and where it is?

 If no free pages, which page to swap out?
 Completely at your discretion

 Be careful not to swap out a pinned page

28

Swap in and Swap out
 From where and to where?

 The process’ image is on the USB disk
 Location and size are stored in pcb->swap_loc and

pcb->swap_size
 Note: swap_loc, swap_size is in term of sectors!

 The read()/write() utilities will be useful
(usb functions)

 If the dirty bit (D bit) of the page table entry
is clear, do you still need to write the page
back?

15

29

Swap in and Swap out(Cont’d)

 Be careful when reading or writing
 The images on disk are sector-aligned (512 bytes)

not page-aligned (4KB)
 Only swap in the data belonging to this process
 Be careful not to overwrite other process’s image

when swapping out
 Example: Swapping in a page of process 1, but the

page on the disk actually contains 3 sectors of
process 1 followed by 5 sectors of process 2

 Don’t forget to modify the protection bits of the
corresponding page table entry after swapping in
or swapping out

30

Swap in and Swap out (Cont’d)
 Invalidate TLB entry when swapping out a

page.
 Use invalidate_page() which is done in memory.c

 Note: we do not have different swap space for
different instances of same process. When
we swap a page out for a process, that page
will be written to the space allocated to store
that process on disk.

 So in our implementation, each process can
only be started once.

16

31

Synchronization Issue

 The page map array is accessed and
modified by multiple processes during
setup_page_table() and
page_fault_handler().

 So what should we do?

32

Some clarifications:

 Only the process’ code/data pages could be
swapped in or out. The following pages are
allocated once and pinned in memory
forever:

 Page directories, page tables, user stack pages
 It is OK not to reclaim the pages when a

process exits

17

33

Summary

 You need to implement the following three
functions in memory.c:

 init_memory(), setup_page_table(pcb_t *),
page_fault_handler()

 You need also implement the following
auxiliary functions and use them in the
above three functions:

 page_alloc(), page_replacement_policy(),
page_swap_out(), page_swap_in()

 Add whatever other auxiliary functions you
need to make your code more readable

34

Extra Credit

 FIFO replacement policy
 Queue structure

 FIFO with second chance
 Use accessed bit

 You may need to modify the page_map
structure we discussed here

