

 1

Project 6: File Systems

Overview
 Write a UNIX-like hierarchical FS

 (implement various system calls)
 Completes the OS course
 Final abstraction

 Expose files and directories instead of raw
disk blocks

 Offers a much more ‘familiar’ environment

 2

Global view of Disk Layout

System calls:
 init(): OS initialization
 mkfs: Formatting
 open: file creation
 close, read, write, lseek: file access
 link, unlink: associate dirEntry to inode (or

not)
 mkdir, chdir, rmdir: directory stuff
 stat: information about a file or directory

 3

fs_init() vs. fs_mkfs()
 What needs to be done where:

 fs_init() - initialization for whole system
 fs_mkfs() - initialization for the FS on disk

 Imagine two disks in your system
 When do you:

 Initialize the file descriptor table?
 Set bitmaps and inodes to be free?
 Initialize currentInode (correspond to “/”)
 ‘mount’ the filesystem?

Formatting
 mkfs() creates the filesystem.

 Fill in the superblock structure, write to disk
 Mark inodes and data blocks to be free
 Create root directory

 In other words: formats the disk
 fsck() checks integrity of file system

 Provided

 4

File Creation / Deletion
 open(): Create file if it does not exist

 link(): Hard link to a file
 Create a link to an existing file
 Allows multiple locations in the FS point to

the same file on disk
 unlink: Delete a file if link count == 0

 delete directory entry

File Access
 read()
 write()
 lseek(): move file pointer on open

descriptors
 close()

 5

Directories

 mkdir(): make a directory
 create an entry in parent directory
 create two directories: “.”, “..”

 rmdir: remove directory
 chdir: change the $CWD

 For relative path names

Directories (cont)

 Can be implemented like a file
 Contains a list of dirEntry structures that

contain (filename, inode number) pairs

 6

Global view of Disk Layout

Super Block

 Meta data about layout of the disk
 Magic numbers/name
 Size of partition/disk
 Number of inodes
 Number of data blocks
 Sectors where inodes or data blocks begin
 Etc…

 7

Superblock Structure

Inode

 Associates disk blocks with files
 Directory entries point to Inodes
 Structure for book keeping

 List of blocks in file
 Type (file or directory)
 Count of hard links
 Permission/Owner information

 8

Structure
 typedef struct {

 short type;
 char links;
 int size;
 int direct[NUM_DIRECT_BLOCKS];
 int indirect[NUM_INDIRECT_BLOCKS];
} inode;

Inode direct/indirect lookup

 9

Inode (cont)

 Advantages
 Simple
 Fast access for small files
 Support for large files
 Support for sparse files

Allocation Bitmap

 There is a one-to-one mapping
 Bits in allocation bitmap --> data blocks

 For simplicity use a ByteMap
 fs_fsck() expects bytes (0 or 1)
 Document any changes you make to fsck()

 10

Example: mkdir()
int fs_mkdir(char *file_name) {
if (file_name exists) return ERROR;
/* allocate data block */
/* allocate inode */
/* add directory entries for ‘.’, ‘..’ */
/* set inode entries appropriately *
/* update parent directory */
return SUCCESS

}

Development

 Check Errors
 Many boundary conditions
 So, be thorough

 Feel free to add more files
 Abstraction is your friend
 Layer between disk and files

 11

Doing the Assignment
 Most development in Linux

 Use a file to simulate a disk (make lnxsh)
 Code is provided (*Fake files)
 Should be able to move right over to your

OS
 Shell supports

 System calls for File System
 Commands like “ls”, “cat”, “create”

